Search results for: cute%20experiments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: cute%20experiments

3 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action

Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere

Abstract:

Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.

Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results

Procedia PDF Downloads 102
2 Cultural Identity of Mainland Chinese, Hongkonger and Taiwanese: A Glimpse from Hollywood Film Title Translation

Authors: Ling Yu Debbie Tsoi

Abstract:

After China has just exceeded the USA as the top Hollywood film market in 2018, Hollywood studios have been adapting the taste, preference, casting and even film title translation to resonate with the Chinese audience. Due to the huge foreign demands, Hollywood film directors are paying closer attention to the translation of their products, as film titles are entry gates to the film and serve advertising, informative, aesthetic functions. Other than film directors and studios, comments over quality film title translation also appear on various online clip viewing platforms, online media, and magazines. In particular, netizens in mainland China, Hong Kong, and Taiwan seems to defend film titles in their own region while despising the other two regions. In view of the endless debates and lack of systematic analysis on film title translation in Greater China, the study aims at investigating the translation of Hollywood film titles (from English to Chinese) across Greater China based on Venuti’s (1991; 1995; 1998; 2001) concept of domestication and foreignization. To offer a comparison over time, a mini-corpus was built comprised of the top 70 most popular Hollywood film titles in 1987- 1988, 1997- 1998, 2007- 2008 and 2017- 2018 of Greater China respectively. Altogether, 560 source texts and 1680 target texts of mainland China, Hong Kong, and Taiwan were compared against each other. The three regions are found to have a distinctive style and patterns of translation. For instance, a sizable number of film titles are foreignized in mainland China by adopting literal translation and transliteration, whereas Hong Kong and Taiwan prefer domestication. Hong Kong tends to adopt a more vulgar style by using colloquial Cantonese slangs and even swear words, associating characters with negative connotations. Also, English is used as a form of domestication in Hong Kong from 1987 till 2018. Use of English as a strategy of domestication was never found in mainland nor Taiwan. On the contrary, Taiwanese target texts tend to adopt a cute and child-like style by using repetitive words and positive connotations. Even if English was used, it was used as foreignization. As film titles represent cultural products of popular culture, it is suspected that Hongkongers would like to develop cultural identity via adopting style distinctive from mainland China by vulgarization and negativity. Hongkongers also identify themselves as international cosmopolitan, leading to their identification with English. It is also suspected that due to former colonial rule of Japan, Taiwan adopts a popular culture similar to Japan, with cute and childlike expressions.

Keywords: cultural identification, ethnic identification, Greater China, film title translation

Procedia PDF Downloads 115
1 Development of a Social Assistive Robot for Elderly Care

Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He

Abstract:

This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.

Keywords: social robot, vision, elderly care, machine learning

Procedia PDF Downloads 410