Search results for: cryptographic circuit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 789

Search results for: cryptographic circuit

609 Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink

Authors: Diala Bitar, Emmanuel Gourdon, Claude H. Lamarque, Manuel Collet

Abstract:

Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained.

Keywords: electroacoustic absorber, multiple-time-scale with small finite parameter, nonlinear energy sink, nonlinear passive shunt

Procedia PDF Downloads 189
608 Cryptography Based Authentication Methods

Authors: Mohammad A. Alia, Abdelfatah Aref Tamimi, Omaima N. A. Al-Allaf

Abstract:

This paper reviews a comparison study on the most common used authentication methods. Some of these methods are actually based on cryptography. In this study, we show the main cryptographic services. Also, this study presents a specific discussion about authentication service, since the authentication service is classified into several categorizes according to their methods. However, this study gives more about the real life example for each of the authentication methods. It talks about the simplest authentication methods as well about the available biometric authentication methods such as voice, iris, fingerprint, and face authentication.

Keywords: information security, cryptography, system access control, authentication, network security

Procedia PDF Downloads 430
607 Generalized Up-downlink Transmission using Black-White Hole Entanglement Generated by Two-level System Circuit

Authors: Muhammad Arif Jalil, Xaythavay Luangvilay, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin

Abstract:

Black and white holes form the entangled pair⟨BH│WH⟩, where a white hole occurs when the particle moves at the same speed as light. The entangled black-white hole pair is at the center with the radian between the gap. When the speed of particle motion is slower than light, the black hole is gravitational (positive gravity), where the white hole is smaller than the black hole. On the downstream side, the entangled pair appears to have a black hole outside the gap increases until the white holes disappear, which is the emptiness paradox. On the upstream side, when moving faster than light, white holes form times tunnels, with black holes becoming smaller. It will continue to move faster and further when the black hole disappears and becomes a wormhole (Singularity) that is only a white hole in emptiness (Emptiness). This research studies use of black and white holes generated by a two-level circuit for communication transmission carriers, in which high ability and capacity of data transmission can be obtained. The black and white hole pair can be generated by the two-level system circuit when the speech of a particle on the circuit is equal to the speed of light. The black hole forms when the particle speed has increased from slower to equal to the light speed, while the white hole is established when the particle comes down faster than light. They are bound by the entangled pair, signal and idler, ⟨Signal│Idler⟩, and the virtual ones for the white hole, which has an angular displacement of half of π radian. A two-level system is made from an electronic circuit to create black and white holes bound by the entangled bits that are immune or cloning-free from thieves. Start by creating a wave-particle behavior when its speed is equal to light black hole is in the middle of the entangled pair, which is the two bit gate. The required information can be input into the system and wrapped by the black hole carrier. A timeline (Tunnel) occurs when the wave-particle speed is faster than light, from which the entangle pair is collapsed. The transmitted information is safely in the time tunnel. The required time and space can be modulated via the input for the downlink operation. The downlink is established when the particle speed is given by a frequency(energy) form is down and entered into the entangled gap, where this time the white hole is established. The information with the required destination is wrapped by the white hole and retrieved by the clients at the destination. The black and white holes are disappeared, and the information can be recovered and used.

Keywords: cloning free, time machine, teleportation, two-level system

Procedia PDF Downloads 31
606 Corrosion Characterization of ZA-27 Metal Matrix Composites

Authors: H. V. Jayaprakash, P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the metal matrix composites when compared with that of matrix alloy by open circuit potential test. Matrix selected is ZA-27 and reinforcement selected is red mud particulates, which is a ceramic material. The composites are prepared using liquid melt metallurgy technique using vortex method. Preheated but uncoated red mud particulates are added to the melt. Metal matrix composites containing 2, 4 and 6 weight percentage of red mud are casted. Matrix was also casted in the same way for comparison. Specimen are fabricated according to ASTM standards. The corrodents used for the tests were 0.025, 0.05 and 0.1 molar sodium hydroxide solutions. They are subjected to Open Circuit Potential studies and weight loss corrosion tests. Corrosion rate was found to be decreased with increase in exposure time in both experiments. Effect of exposure time and presence of increased percentage of reinforcement red mud is discussed in detail.

Keywords: composites, vortex, particulates, red mud

Procedia PDF Downloads 401
605 Evolutional Substitution Cipher on Chaotic Attractor

Authors: Adda Ali-Pacha, Naima Hadj-Said

Abstract:

Nowadays, the security of information is primarily founded on the calculation of algorithms that confidentiality depend on the number of bits necessary to define a cryptographic key. In this work, we introduce a new chaotic cryptosystem that we call evolutional substitution cipher on a chaotic attractor. In this research paper, we take the Henon attractor. The evolutional substitution cipher on Henon attractor is based on the principle of monoalphabetic cipher and it associates the plaintext at a succession of real numbers calculated from the attractor equations.

Keywords: cryptography, substitution cipher, chaos theory, Henon attractor, evolutional substitution cipher

Procedia PDF Downloads 397
604 Mechanical Study Printed Circuit Boards Bonding for Jefferson Laboratory Detector

Authors: F. Noto, F. De Persio, V. Bellini, G. Costa. F. Mammoliti, F. Meddi, C. Sutera, G. M. Urcioli

Abstract:

One plane X and one plane Y of silicon microstrip detectors will constitute the front part of the Super Bigbite Spectrometer that is under construction and that will be installed in the experimental Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory), located in Newport News, Virgina, USA. Each plane will be made up by two nearly identical, 300 μm thick, 10 cm x 10.3 cm wide silicon microstrip detectors with 50 um pitch, whose electronic signals will be transferred to the front-end electronic based on APV25 chips through C-shaped FR4 Printed Circuit Boards (PCB). A total of about 10000 strips are read-out. This paper treats the optimization of the detector support structure, the materials used through a finite element simulation. A very important aspect of the study will also cover the optimization of the bonding parameters between detector and electronics.

Keywords: FEM analysis, bonding, SBS tracker, mechanical structure

Procedia PDF Downloads 305
603 Effect of Post Circuit Resistance Exercise Glucose Feeding on Energy and Hormonal Indexes in Plasma and Lymphocyte in Free-Style Wrestlers

Authors: Miesam Golzadeh Gangraj, Younes Parvasi, Mohammad Ghasemi, Ahmad Abdi, Saeid Fazelifar

Abstract:

The purpose of the study was to determine the effect of glucose feeding on energy and hormonal indexes in plasma and lymphocyte immediately after wrestling – base techniques circuit exercise (WBTCE) in young male freestyle wrestlers. Sixteen wrestlers (weight = 75/45 ± 12/92 kg, age = 22/29 ± 0/90 years, BMI = 26/23 ± 2/64 kg/m²) were randomly divided into two groups: control (water), glucose (2 gr per kg body weight). Blood samples were obtained before, immediately, and 90 minutes of the post-exercise recovery period. Glucose (2 g/kg of body weight, 1W/5V) and water (equal volumes) solutions were given immediately after the second blood sampling. Data were analyzed by using an ANOVA (a repeated measure) and a suitable post hoc test (LSD). A significant decrease was observed in lymphocytes glycogen immediately after exercise (P < 0.001). In the experimental group, increase Lymphocyte glycogen concentration (P < 0.028) than in the control group in 90 min post-exercise. Plasma glucose concentrations increased in all groups immediately after exercise (P < 0.05). Plasma insulin concentrations in both groups decreased immediately after exercise, but at 90 min after exercise, its level was significantly increased only in glucose group (P < 0.001). Our results suggested that WBTCE protocol could be affected cellular energy sources and hormonal response. Furthermore, Glucose consumption can increase the lymphocyte glycogen and better energy within the cell.

Keywords: glucose feeding, lymphocyte, Wrestling – base techniques circuit , exercise

Procedia PDF Downloads 234
602 Design and Simulation of a Double-Stator Linear Induction Machine with Short Squirrel-Cage Mover

Authors: David Rafetseder, Walter Bauer, Florian Poltschak, Wolfgang Amrhein

Abstract:

A flat double-stator linear induction machine (DSLIM) with a short squirrel-cage mover is designed for high thrust force at moderate speed < 5m/s. The performance and motor parameters are determined on the basis of a 2D time-transient simulation with the finite element (FE) software Maxwell 2015. Design guidelines and transformation rules for space vector theory of the LIM are presented. Resulting thrust calculated by flux and current vectors is compared with the FE results showing good coherence and reduced noise. The parameters of the equivalent circuit model are obtained.

Keywords: equivalent circuit model, finite element model, linear induction motor, space vector theory

Procedia PDF Downloads 536
601 Study on Energy Performance Comparison of Information Centric Network Based on Difference of Network Architecture

Authors: Takumi Shindo, Koji Okamura

Abstract:

The first generation of the wide area network was circuit centric network. How the optimal circuit can be signed was the most important issue to get the best performance. This architecture had succeeded for line based telephone system. The second generation was host centric network and Internet based on this architecture has very succeeded world widely. And Internet became as new social infrastructure. Currently the architecture of the network is based on the location of the information. This future network is called Information centric network (ICN). The information-centric network (ICN) has being researched by many projects and different architectures for implementation of ICN have been proposed. The goal of this study is to compare performances of those ICN architectures. In this paper, the authors propose general ICN model which can represent two typical ICN architectures and compare communication performances using request routing. Finally, simulation results are shown. Also, we assume that this network architecture should be adapt to energy on-demand routing.

Keywords: ICN, information centric network, CCN, energy

Procedia PDF Downloads 300
600 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 178
599 Quantum Engine Proposal using Two-level Atom Like Manipulation and Relativistic Motoring Control

Authors: Montree Bunruangses, Sonath Bhattacharyya, Somchat Sonasang, Preecha Yupapin

Abstract:

A two-level system is manipulated by a microstrip add-drop circuit configured as an atom like system for wave-particle behavior investigation when its traveling speed along the circuit perimeter is the speed of light. The entangled pair formed by the upper and lower sideband peaks is bound by the angular displacement, which is given by 0≤θ≤π/2. The control signals associated with 3-peak signal frequencies are applied by the external inputs via the microstrip add-drop multiplexer ports, where they are time functions without the space term involved. When a system satisfies the speed of light conditions, the mass term has been changed to energy based on the relativistic limit described by the Lorentz factor and Einstein equation. The different applied frequencies can be utilized to form the 3-phase torques that can be applied for quantum engines. The experiment will use the two-level system circuit and be conducted in the laboratory. The 3-phase torques will be recorded and investigated for quantum engine driving purpose. The obtained results will be compared to the simulation. The optimum amplification of torque can be obtained by the resonant successive filtering operation. Torque will be vanished when the system is balanced at the stopped position, where |Time|=0, which is required to be a system stability condition. It will be discussed for future applications. A larger device may be tested in the future for realistic use. A synchronous and asynchronous driven motor is also discussed for the warp drive use.

Keywords: quantum engine, relativistic motor, 3-phase torque, atomic engine

Procedia PDF Downloads 29
598 Time-Domain Analysis of Pulse Parameters Effects on Crosstalk in High-Speed Circuits

Authors: Loubna Tani, Nabih Elouzzani

Abstract:

Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in high-speed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information.

Keywords: multiconductor transmission line, crosstalk, finite difference time domain (FDTD), printed-circuit board (PCB), rise time, statistical analysis

Procedia PDF Downloads 398
597 An Embedded High Speed Adder for Arithmetic Computations

Authors: Kala Bharathan, R. Seshasayanan

Abstract:

In this paper, a 1-bit Embedded Logic Full Adder (EFA) circuit in transistor level is proposed, which reduces logic complexity, gives low power and high speed. The design is further extended till 64 bits. To evaluate the performance of EFA, a 16, 32, 64-bit both Linear and Square root Carry Select Adder/Subtractor (CSLAS) Structure is also proposed. Realistic testing of proposed circuits is done on 8 X 8 Modified Booth multiplier and comparison in terms of power and delay is done. The EFA is implemented for different multiplier architectures for performance parameter comparison. Overall delay for CSLAS is reduced to 78% when compared to conventional one. The circuit implementations are done on TSMC 28nm CMOS technology using Cadence Virtuoso tool. The EFA has power savings of up to 14% when compared to the conventional adder. The present implementation was found to offer significant improvement in terms of power and speed in comparison to other full adder circuits.

Keywords: embedded logic, full adder, pdp, xor gate

Procedia PDF Downloads 419
596 Optimization of Cu (In, Ga)Se₂ Based Thin Film Solar Cells: Simulation

Authors: Razieh Teimouri

Abstract:

Electrical modelling of Cu (In,Ga)Se₂ thin film solar cells is carried out with compositionally graded absorber and CdS buffer layer. Simulation results are compared with experimental data. Surface defect layers (SDL) are located in CdS/CIGS interface for improving open circuit voltage simulated structure through the analysis of the interface is investigated with or without this layer. When SDL removed, by optimizing the conduction band offset (CBO) position of the buffer/absorber layers with its recombination mechanisms and also shallow donor density in the CdS, the open circuit voltage increased significantly. As a result of simulation, excellent performance can be obtained when the conduction band of window layer positions higher by 0.2 eV than that of CIGS and shallow donor density in the CdS was found about 1×10¹⁸ (cm⁻³).

Keywords: CIGS solar cells, thin film, SCAPS, buffer layer, conduction band offset

Procedia PDF Downloads 198
595 Extracts of Cola acuminata, Lupinus arboreus and Bougainvillea spectabilis as Natural Photosensitizers for Dye-Sensitized Solar Cells

Authors: M. L. Akinyemi, T. J. Abodurin, A. O. Boyo, J. A. O. Olugbuyiro

Abstract:

Organic dyes from Cola acuminata (C. acuminata), Lupinus arboreus (L. arboreus) and Bougainvillea spectabilis (B. spectabilis) leaves and their mixtures were used as sensitizers to manufacture dye-sensitized solar cells (DSSC). Photoelectric measurements of C. acuminata showed a short circuit current (Jsc) of 0.027 mA/ cm2, 0.026 mA/ cm2 and 0.018 mA/ cm2 with a mixture of mercury chloride and iodine (Hgcl2 + I); potassium bromide and iodine (KBr + I); and potassium chloride and iodine (KCl + I) respectively. The open circuit voltage (Voc) was 24 mV, 25 mV and 20 mV for the three dyes respectively. L. arboreus had Jsc of 0.034 mA/ cm2, 0.021 mA/ cm2 and 0.013 mA/ cm2; and corresponding Voc of 28 mV, 14.2 mV and 15 mV for the three electrolytes respectively. B. spectabilis recorded Jsc 0.023 mA/ cm2, 0.026 mA/ cm2 and 0.015 mA/ cm2; and corresponding Voc values of 6.2 mV, 14.3 mV and 4.0 mV for the three electrolytes respectively. It was observed that the fill factor (FF) was 0.140 for C. acuminata, 0.3198 for L. arboreus and 0.1138 for B. spectabilis. Internal conversions of 0.096%, 0.056% and 0.063% were recorded for three dyes when combined with (KBr + I) electrolyte. The internal efficiency of C. acuminata DSSC was highest in value.

Keywords: dye-sensitized solar cells, organic dye, C. acuminate, L. arboreus, B. spectabilis, dye mixture

Procedia PDF Downloads 255
594 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation

Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar

Abstract:

Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.

Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source

Procedia PDF Downloads 89
593 A Study on the Reliability Evaluation of a Timer Card for Air Dryer of the Railway Vehicle

Authors: Chul Su Kim, Jun Ku Lee, Won Jun Lee

Abstract:

The EMU (electric multiple unit) vehicle timer card is a PCB (printed circuit board) for controlling the air-dryer to remove the moisture of the generated air from the air compressor of the braking device. This card is exposed to the lower part of the railway vehicle, so it is greatly affected by the external environment such as temperature and humidity. The main cause of the failure of this timer card is deterioration of soldering area of the PCB surface due to temperature and humidity. Therefore, in the viewpoint of preventive maintenance, it is important to evaluate the reliability of the timer card and predict the replacement cycle to secure the safety of the air braking device is one of the main devices for driving. In this study, the existing and the improved products were evaluated on the reliability through ALT (accelerated life test). In addition, the acceleration factor by the 'Coffin-Manson' equation was obtained, and the remaining lifetime was compared and examined.

Keywords: reliability evaluation, timer card, Printed Circuit Board, Accelerated Life Test

Procedia PDF Downloads 241
592 Experimental and Theoretical Study of the Electric and Magnetic Fields Behavior in the Vicinity of High-Voltage Power Lines

Authors: Tourab Wafa, Nemamcha Mohamed, Babouri Abdessalem

Abstract:

This paper consists on an experimental and analytical characterization of the electromagnetic environment in the in the medium surrounding a circuit of two 220 Kv power lines running in parallel. The analysis presented in this paper is divided into two main parts. The first part concerns the experimental study of the behavior of the electric field and magnetic field generated by the selected double-circuit at ground level (0 m). While the second part simulate and calculate the fields profiles generated by the both lines at different levels above the ground, from (0 m) to the level close to the lines conductors (20 m above the ground) using the electrostatic and magneto-static modules of the COMSOL multi-physics software. The implications of the results are discussed and compared with the ICNIRP reference levels for occupational and non occupational exposures.

Keywords: HV power lines, low frequency electromagnetic fields, electromagnetic compatibility, inductive and capacitive coupling, standards

Procedia PDF Downloads 440
591 Distributed Generation Connection to the Network: Obtaining Stability Using Transient Behavior

Authors: A. Hadadi, M. Abdollahi, A. Dustmohammadi

Abstract:

The growing use of DGs in distribution networks provide many advantages and also cause new problems which should be anticipated and be solved with appropriate solutions. One of the problems is transient voltage drop and short circuit in the electrical network, in the presence of distributed generation - which can lead to instability. The appearance of the short circuit will cause loss of generator synchronism, even though if it would be able to recover synchronizing mode after removing faulty generator, it will be stable. In order to increase system reliability and generator lifetime, some strategies should be planned to apply even in some situations which a fault prevent generators from separation. In this paper, one fault current limiter is installed due to prevent DGs separation from the grid when fault occurs. Furthermore, an innovative objective function is applied to determine the impedance optimal amount of fault current limiter in order to improve transient stability of distributed generation. Fault current limiter can prevent generator rotor's sudden acceleration after fault occurrence and thereby improve the network transient stability by reducing the current flow in a fast and effective manner. In fact, by applying created impedance by fault current limiter when a short circuit happens on the path of current injection DG to the fault location, the critical fault clearing time improve remarkably. Therefore, protective relay has more time to clear fault and isolate the fault zone without any instability. Finally, different transient scenarios of connection plan sustainability of small scale synchronous generators to the distribution network are presented.

Keywords: critical clearing time, fault current limiter, synchronous generator, transient stability, transient states

Procedia PDF Downloads 160
590 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper

Authors: Hossein Ramezani Ali-Akbari

Abstract:

This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.

Keywords: back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism

Procedia PDF Downloads 299
589 Musical Tesla Coil with Faraday Box Controlled by a GNU Radio

Authors: Jairo Vega, Fabian Chamba, Jordy Urgiles

Abstract:

In this work, the implementation of a Matlabcontrolled Musical Tesla Coil and external audio signals was presented. First, the audio signal was obtained from a mobile device and processed in Matlab to modify it, adding noise or other desired effects. Then, the processed signal was passed through a preamplifier to increase its amplitude to a level suitable for further amplification through a power amplifier, which was part of the current driver circuit of the Tesla coil. To get the Tesla coil to generate music, a circuit capable of modulating and generating the audio signal by manipulating electrical discharges was used. To visualize and listen to these discharges, a small Faraday cage was built to attenuate the external electric fields. Finally, the implementation of the musical Tesla coil was concluded. However, it was observed that the audio signal volume was very low, and the components used heated up quickly. Due to these limitations, it was determined that the project could not be connected to power for long periods of time.

Keywords: Tesla coil, plasma, electrical signals, GNU Radio

Procedia PDF Downloads 54
588 On-Chip Ku-Band Bandpass Filter with Compact Size and Wide Stopband

Authors: Jyh Sheen, Yang-Hung Cheng

Abstract:

This paper presents a design of a microstrip bandpass filter with a compact size and wide stopband by using 0.15-μm GaAs pHEMT process. The wide stop band is achieved by suppressing the first and second harmonic resonance frequencies. The slow-wave coupling stepped impedance resonator with cross coupled structure is adopted to design the bandpass filter. A two-resonator filter was fabricated with 13.5GHz center frequency and 11% bandwidth was achieved. The devices are simulated using the ADS design software. This device has shown a compact size and very low insertion loss of 2.6 dB. Microstrip planar bandpass filters have been widely adopted in various communication applications due to the attractive features of compact size and ease of fabricating. Various planar resonator structures have been suggested. In order to reach a wide stopband to reduce the interference outside the passing band, various designs of planar resonators have also been submitted to suppress the higher order harmonic frequencies of the designed center frequency. Various modifications to the traditional hairpin structure have been introduced to reduce large design area of hairpin designs. The stepped-impedance, slow-wave open-loop, and cross-coupled resonator structures have been studied to miniaturize the hairpin resonators. In this study, to suppress the spurious harmonic bands and further reduce the filter size, a modified hairpin-line bandpass filter with cross coupled structure is suggested by introducing the stepped impedance resonator design as well as the slow-wave open-loop resonator structure. In this way, very compact circuit size as well as very wide upper stopband can be achieved and realized in a Roger 4003C substrate. On the other hand, filters constructed with integrated circuit technology become more attractive for enabling the integration of the microwave system on a single chip (SOC). To examine the performance of this design structure at the integrated circuit, the filter is fabricated by the 0.15 μm pHEMT GaAs integrated circuit process. This pHEMT process can also provide a much better circuit performance for high frequency designs than those made on a PCB board. The design example was implemented in GaAs with center frequency at 13.5 GHz to examine the performance in higher frequency in detail. The occupied area is only about 1.09×0.97 mm2. The ADS software is used to design those modified filters to suppress the first and second harmonics.

Keywords: microstrip resonator, bandpass filter, harmonic suppression, GaAs

Procedia PDF Downloads 301
587 Performance of Segmented Thermoelectric Materials Using 'Open-Short Circuit' Technique under Different Polarity

Authors: N. H. S. Mustafa, N. M. Yatim

Abstract:

Thermoelectric materials arrange in segmented design could increase the conversion of heat to electricity performance. This is due to the properties of materials that perform peak at narrow temperature range. Performance of the materials determines by dimensionless figure-of-merit, ZT which consist of thermoelectric properties namely Seebeck coefficient, electrical resistivity, and thermal conductivity. Since different materials were arrange in segmented, determination of ZT cannot be measured using the conventional approach. Therefore, this research used 'open-short circuit' technique to measure the segmented performance. Segmented thermoelectric materials consist of bismuth telluride, and lead telluride was segmented together under cold press technique. The results show thermoelectric properties measured is comparable with calculated based on commercially available of individual material. Performances of segmented sample under different polarity also indicate dependability of material with position and temperature. Segmented materials successfully measured under real condition and optimization of the segmented can be designed from the study of polarity change.

Keywords: thermoelectric, segmented, ZT, polarity, performance

Procedia PDF Downloads 163
586 Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off

Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou

Abstract:

The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity, and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate.

Keywords: LDMOS, amplifier, back-off, bias circuit

Procedia PDF Downloads 307
585 Induction Motor Stator Fault Analysis Using Phase-Angle and Magnitude of the Line Currents Spectra

Authors: Ahmed Hamida Boudinar, Noureddine Benouzza, Azeddine Bendiabdellah, Mohamed El Amine Khodja

Abstract:

This paper describes a new diagnosis approach for identification of the progressive stator winding inter-turn short-circuit fault in induction motor. This approach is based on a simple monitoring of the combined information related to both magnitude and phase-angle obtained from the fundamental by the three line currents frequency analysis. In addition, to simplify the interpretation and analysis of the data; a new graphical tool based on a triangular representation is suggested. This representation, depending on its size, enables to visualize in a simple and clear manner, the existence of the stator inter-turn short-circuit fault and its discrimination with respect to a healthy stator. Experimental results show well the benefit and effectiveness of the proposed approach.

Keywords: induction motor, magnitude, phase-angle, spectral analysis, stator fault

Procedia PDF Downloads 330
584 Permanent Magnet Synchronous Generator: Unsymmetrical Point Operation

Authors: P. Pistelok

Abstract:

The article presents the concept of an electromagnetic circuit generator with permanent magnets mounted on the surface rotor core designed for single phase work. Computation field-circuit model was shown. The spectrum of time course of voltages in the idle work was presented. The cross section with graphically presentation of magnetic induction in particular parts of electromagnetic circuits was presented. Distribution of magnetic induction at the rated load point for each phase were shown. The time course of voltages and currents for each phases for rated power were displayed. An analysis of laboratory results and measurement of load characteristics of the generator was discussed. The work deals with three electromagnetic circuits of generators with permanent magnet where output voltage characteristics versus rated power were expressed.

Keywords: permanent magnet generator, permanent magnets, vibration, course of torque, single phase work, asymmetrical three phase work

Procedia PDF Downloads 256
583 Magnetic Simulation of the Underground Electric Cable in the Presence of a Short Circuit and Harmonics

Authors: Ahmed Nour El Islam Ayad, Wafa Krika, Abdelghani Ayad, Moulay Larab, Houari Boudjella, Farid Benhamida

Abstract:

The purpose of this study is to evaluate the magnetic emission of underground electric cable of high voltage, because these power lines generate electromagnetic interaction with other objects near to it. The aim of this work shows a numerical simulation of the magnetic field of buried 400 kV line in three cases: permanent and transient states of short circuit and the last case with the presence of the harmonics at different positions as a function of time variation, with finite element resolution using Comsol Multiphysics software. The results obtained showed that the amplitude and distribution of the magnetic flux density change in the transient state and the presence of harmonics. The results of this work calculate the magnetic field generated by the underground lines in order to evaluate and know their impact on ecology and health.

Keywords: underground, electric power cables, cables crossing, harmonic, emission

Procedia PDF Downloads 197
582 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method

Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili

Abstract:

The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.

Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method

Procedia PDF Downloads 168
581 Electromagnetic Energy Harvesting by Using a Rectenna with a Metamaterial Lens

Authors: Ursula D. C. Resende, Fabiano S. Bicalho, Sandro T. M. Gonçalves

Abstract:

The growing demand for cheap and clean energy sources have been motivated by the study and development of distinct technologies and devices able to provide different amounts of energy. In order to supply energy for small loads, the energy from the electromagnetic spectrum can be harvested. This possibility is particularly interesting because this kind of energy is constantly available in the environment and the number of radiofrequency sources is permanently increasing, due to advances in telecommunications services. A rectenna, which is a combination of an antenna and a rectifier circuit, is an equipment that can efficiently perform the electromagnetic energy harvesting. However, since the amount of electromagnetic energy available in the environment is very small, limited values of power can be harvested by the rectenna. Therefore, several technical strategies have been investigated in order to increase this amount of power. In this work, a metamaterial electromagnetic lens is used to improve the electromagnetic energy harvesting. The rectenna investigated was designed and optimized to charge a Li-Ion battery using the electromagnetic energy from an internet Wi-Fi commercial router model TL-WR841HP operating in 2.45 GHz with maximal output power equal to 18 dBm. The rectenna consists of a high directive antenna, a double voltage rectifier circuit and a metamaterial lens. The printed antenna, constituted of two rectangular radiator elements, was projected and optimized by using the Computer Simulation Software (CST) in order to obtain high directivities and values of S11 parameter below -10 dB in 2.45 GHz. The antenna was printed over a double-sided copper fiberglass substrate, FR4, with characterized relative electric permittivity εr = 4.3 and tangent of losses δ = 0.01. The rectifier circuit, which incorporates a circuit for impedance matching and uses the Schottky diode HSMS-2852, was projected and optimized by using Advanced Design Software (ADS) and built over the same FR4 substrate. The metamaterial cell is composed of two Square Split Ring Resonator (S-SRR) and a thin wire in order to operate with negative values of εr and relative magnetic permeability in 2.45 GHz. In order to evaluate the performance of the purposed rectenna two experimental charging tests were performed, one without and other with the metamaterial lens. The result obtained demonstrate that the electromagnetic lens was able to significantly increase the levels of electric current delivered to the battery, approximately 44%.

Keywords: electromagnetic energy harvesting, electromagnetic lens, metamaterial, rectenna

Procedia PDF Downloads 110
580 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables

Authors: M. Hamdi, R. Rhouma, S. Belghith

Abstract:

Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.

Keywords: Random Numbers, Chaotic map, S-box, cryptography, statistical tests

Procedia PDF Downloads 329