Search results for: computed tomography (CT)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1016

Search results for: computed tomography (CT)

206 Decisional Regret in Men with Localized Prostate Cancer among Various Treatment Options and the Association with Erectile Functioning and Depressive Symptoms: A Moderation Analysis

Authors: Caren Hilger, Silke Burkert, Friederike Kendel

Abstract:

Men with localized prostate cancer (PCa) have to choose among different treatment options, such as active surveillance (AS) and radical prostatectomy (RP). All available treatment options may be accompanied by specific psychological or physiological side effects. Depending on the nature and extent of these side effects, patients are more or less likely to be satisfied or to struggle with their treatment decision in the long term. Therefore, the aim of this study was to assess and explain decisional regret in men with localized PCa. The role of erectile functioning as one of the main physiological side effects of invasive PCa treatment, depressive symptoms as a common psychological side effect, and the association of erectile functioning and depressive symptoms with decisional regret were investigated. Men with localized PCa initially managed with AS or RP (N=292) were matched according to length of therapy (mean 47.9±15.4 months). Subjects completed mailed questionnaires assessing decisional regret, changes in erectile functioning, depressive symptoms, and sociodemographic variables. Clinical data were obtained from case report forms. Differences among the two treatment groups (AS and RP) were calculated using t-tests and χ²-tests, relationships of decisional regret with erectile functioning and depressive symptoms were computed using multiple regression. Men were on average 70±7.2 years old. The two treatment groups differed markedly regarding decisional regret (p<.001, d=.50), changes in erectile functioning (p<.001, d=1.2), and depressive symptoms (p=.01, d=.30), with men after RP reporting higher values, respectively. Regression analyses showed that after adjustment for age, tumor risk category, and changes in erectile functioning, depressive symptoms were still significantly associated with decisional regret (B=0.52, p<.001). Additionally, when predicting decisional regret, the interaction of changes in erectile functioning and depressive symptoms reached significance for men after RP (B=0.52, p<.001), but not for men under AS (B=-0.16, p=.14). With increased changes in erectile functioning, the association of depressive symptoms with decisional regret became stronger in men after RP. Decisional regret is a phenomenon more prominent in men after RP than in men under AS. Erectile functioning and depressive symptoms interact in their prediction of decisional regret. Screening and treating depressive symptoms might constitute a starting point for interventions aiming to reduce decisional regret in this target group.

Keywords: active surveillance, decisional regret, depressive symptoms, erectile functioning, prostate cancer, radical prostatectomy

Procedia PDF Downloads 184
205 Aeroelastic Analysis of Nonlinear All-Movable Fin with Freeplay in Low-Speed

Authors: Laith K. Abbas, Xiaoting Rui, Pier Marzocca

Abstract:

Aerospace systems, generally speaking, are inherently nonlinear. These nonlinearities may modify the behavior of the system. However, nonlinearities in an aeroelastic system can be divided into structural and aerodynamic. Structural nonlinearities can be subdivided into distributed and concentrated ones. Distributed nonlinearities are spread over the whole structure representing the characteristic of materials and large motions. Concentrated nonlinearities act locally, representing loose of attachments, worn hinges of control surfaces, and the presence of external stores. The concentrated nonlinearities can be approximated by one of the classical structural nonlinearities, namely, cubic, free-play and hysteresis, or by a combination of these, for example, a free-play and a cubic one. Compressibility, aerodynamic heating, separated flows and turbulence effects are important aspects that result in nonlinear aerodynamic behavior. An issue related to the low-speed flutter and its catastrophic/benign character represented by Limit Cycle Oscillation (LCO) of all-movable fin, as well to their control is addressed in the present work. To the approach of this issue: (1) Quasi-Steady (QS) Theory and Computational Fluid Dynamics (CFD) of subsonic flow are implemented, (2) Flutter motion equations of a two-dimensional typical section with cubic nonlinear stiffness in the pitching direction and free play gap are established, (3) Uncoupled bending/torsion frequencies of the selected fin are computed using recently developed Transfer Matrix Method of Multibody System Dynamics (MSTMM), and (4) Time simulations are carried out to study the bifurcation behavior of the aeroelastic system. The main objective of this study is to investigate how the LCO and chaotic behavior are influenced by the coupled aeroelastic nonlinearities and intend to implement a control capability enabling one to control both the flutter boundary and its character. By this way, it may expand the operational envelop of the aerospace vehicle without failure.

Keywords: aeroelasticity, CFD, MSTMM, flutter, freeplay, fin

Procedia PDF Downloads 336
204 Ecological Ice Hockey Butterfly Motion Assessment Using Inertial Measurement Unit Capture System

Authors: Y. Zhang, J. Perez, S. Marnier

Abstract:

To date, no study on goaltending butterfly motion has been completed in real conditions, during an ice hockey game or training practice, to the author's best knowledge. This motion, performed to save score, is unnatural, intense, and repeated. The target of this research activity is to identify representative biomechanical criteria for this goaltender-specific movement pattern. Determining specific physical parameters may allow to will identify the risk of hip and groin injuries sustained by goaltenders. Four professional or academic goalies were instrumented during ice hockey training practices with five inertial measurement units. These devices were inserted in dedicated pockets located on each thigh and shank, and the fifth on the lumbar spine. A camera was also installed close to the ice to observe and record the goaltenders' activities, especially the butterfly motions, in order to synchronize the captured data and the behavior of the goaltender. Each data recorded began with a calibration of the inertial units and a calibration of the fully equipped goaltender on the ice. Three butterfly motions were recorded out of the training practice to define referential individual butterfly motions. Then, a data processing algorithm based on the Madgwick filter computed hip and knee joints joint range of motion as well as angular specific angular velocities. The developed algorithm software automatically identified and analyzed all the butterfly motions executed by the four different goaltenders. To date, it is still too early to show that the analyzed criteria are representative of the trauma generated by the butterfly motion as the research is only at its beginning. However, this descriptive research activity is promising in its ecological assessment, and once the criteria are found, the tools and protocols defined will allow the prevention of as many injuries as possible. It will thus be possible to build a specific training program for each goalie.

Keywords: biomechanics, butterfly motion, human motion analysis, ice hockey, inertial measurement unit

Procedia PDF Downloads 92
203 Energy Interaction among HVAC and Supermarket Environment

Authors: Denchai Woradechjumroen, Haorong Li, Yuebin Yu

Abstract:

Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easy-to-use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions). The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study FDD research for supermarkets in future.

Keywords: energy interaction, HVAC, R-value, supermarket buildings

Procedia PDF Downloads 386
202 Maximizing the Community Services of Multi-Location Public Facilities in Urban Residential Areas by the Use of Constructing the Accessibility Index and Spatial Buffer Zone

Authors: Yen-Jong Chen, Jei-An Su

Abstract:

Public use facilities provide the basic infrastructure supporting the needs of urban sustainable development. These facilities include roads (streets), parking areas, green spaces, public schools, and city parks. However, how to acquire land with the proper location and size still remains uncertain in a capitalist economy where land is largely privately owned, such as in cities in Taiwan. The issue concerning the proper acquisition of reserved land for local public facilities (RLPF) policies has been continuously debated by the Taiwanese government for more than 30 years. Lately, the government has been re-evaluating projects connected with existing RLPF policies from the viewpoints of the needs of local residents, including the living environments of older adults. This challenging task includes addressing the requests of official bureau administrators, citizens whose property rights and current use status are affected, and other stakeholders, along with the means of development. To simplify the decision to acquire or release public land, we selected only public facilities that are needed for living in the local community, including parks, green spaces, plaza squares, and land for kindergartens, schools, and local stadiums. This study categorized these spaces as the community’s “leisure public facilities” (LPF). By constructing an accessibility index of the services of such multi-function facilities, we computed and produced a GIS map of spatial buffer zones for each LPF. Through these procedures, the service needs provided by each LPF were clearly identified. We then used spatial buffer zone envelope mapping to evaluate these service areas. The results obtained can help decide which RLPF should be acquired or released so that community services can be maximized under a limited budget.

Keywords: urban public facilities, community demand, accessibility, spatial buffer zone, Taiwan

Procedia PDF Downloads 34
201 Detecting Hate Speech And Cyberbullying Using Natural Language Processing

Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão

Abstract:

Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.

Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning

Procedia PDF Downloads 187
200 Group Attachment Based Intervention® Reduces Toddlers' Fearfulness

Authors: Kristin Lewis, Howard Steele, Anne Murphy, Miriam Steele, Karen Bonuck, Paul Meissner

Abstract:

The present study examines data collected during the randomized control trial (RCT) of the Group Attachment-Based Intervention (GABI©), a trauma-informed, attachment-based intervention aimed at promoting healthy parent-child relationships that support child development. Families received treatment at Treatment Center and were randomly assigned to either the GABI condition or the treatment as usual condition, a parenting class called Systematic Training for Effective Parenting (STEP). Significant improvements in the parent-child relationship have been reported for families participating in GABI, but not in the STEP control group relying on Coding Interactive Behavior (CIB) as applied to 5-minute video-films of mothers and their toddlers in a free play context. This report considers five additional attachment-relevant 'clinical codes' that were also applied to the 5-minute free play sessions. Seventy-two parent-child dyads (38 in GABI and 34 in STEP) were compared to one another at intake and end-of-treatment, on these five-point dimensions: two-parent codes—the dissociation and ignoring; two child codes—simultaneous display of contradictory behavior and fear; and one parent-child code, i.e., role reversal. Overall, scores were low for these clinical codes; thus, a binary measure was computed contrasting no evidence with some evidence of each clinical code. Crosstab analyses indicate that child fear at end-of-treatment was significantly lower among children who participated in GABI (7% or 3 children) as compared to those whose mothers participated in STEP (29% or 10 children) Chi Sq= 6.57 (1), p < .01. Discussion focuses on the potential for GABI to reduce childhood fearfulness and so enhance the child's health.

Keywords: coding interactive behavior, clinical codes, group attachment based intervention, GABI, attachment, fear

Procedia PDF Downloads 85
199 Linkage between a Plant-based Diet and Visual Impairment: A Systematic Review and Meta-Analysis

Authors: Cristina Cirone, Katrina Cirone, Monali S. Malvankar-Mehta

Abstract:

Purpose: An increased risk of visual impairment has been observed in individuals lacking a balanced diet. The purpose of this paper is to characterize the relationship between plant-based diets and specific ocular outcomes among adults. Design: Systematic review and meta-analysis. Methods: This systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines. The databases MEDLINE, EMBASE, Cochrane, and PubMed, were systematically searched up until May 27, 2021. Of the 503 articles independently screened by two reviewers, 21 were included in this review. Quality assessment and data extraction were performed by both reviewers. Meta-analysis was conducted using STATA 15.0. Fixed-effect and random-effect models were computed based on heterogeneity. Results: A total of 503 studies were identified which then underwent duplicate removal and a title and abstract screen. The remaining 61 studies underwent a full-text screen, 21 progressed to data extraction and fifteen were included in the quantitative analysis. Meta-analysis indicated that regular consumption of fish (OR = 0.70; CI: [0.62-0.79]) and skim milk, poultry, and non-meat animal products (OR = 0.70; CI: [0.61-0.79]) is positively correlated with a reduced risk of visual impairment (age-related macular degeneration, age-related maculopathy, cataract development, and central geographic atrophy) among adults. Consumption of red meat [OR = 1.41; CI: [1.07-1.86]) is associated with an increased risk of visual impairment. Conclusion: Overall, a pescatarian diet is associated with the most favorable visual outcomes among adults, while the consumption of red meat appears to negatively impact vision. Results suggest a need for more local and government-led interventions promoting a healthy and balanced diet.

Keywords: plant-based diet, pescatarian diet, visual impairment, systematic review, meta-analysis

Procedia PDF Downloads 145
198 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter

Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott

Abstract:

Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.

Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM

Procedia PDF Downloads 355
197 Medial Temporal Tau Predicts Memory Decline in Cognitively Unimpaired Elderly

Authors: Angela T. H. Kwan, Saman Arfaie, Joseph Therriault, Zahra Azizi, Firoza Z. Lussier, Cecile Tissot, Mira Chamoun, Gleb Bezgin, Stijn Servaes, Jenna Stevenon, Nesrine Rahmouni, Vanessa Pallen, Serge Gauthier, Pedro Rosa-Neto

Abstract:

Alzheimer’s disease (AD) can be detected in living people using in vivo biomarkers of amyloid-β (Aβ) and tau, even in the absence of cognitive impairment during the preclinical phase. [¹⁸F]-MK-6420 is a high affinity positron emission tomography (PET) tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early AD symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the Translational Biomarkers in Aging and Dementia (TRIAD) study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau PET with [¹⁸F]-MK-6420 and Aβ PET with [¹⁸F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke, or other neurological disorders. There were 111 eligible participants who were chosen based on the availability of Aβ PET, tau PET, magnetic resonance imaging (MRI), and APOEε4 genotyping. Among these participants, the mean (SD) age was 70.1 (8.6) years; 20 (18%) were tau PET positive, and 71 of 111 (63.9%) were women. A significant association between baseline Braak I-II [¹⁸F]-MK-6240 SUVR positivity and change in composite memory score was observed at the 12-month follow-up, after correcting for age, sex, and years of education (Logical Memory and RAVLT, standardized beta = -0.52 (-0.82-0.21), p < 0.001, for dichotomized tau PET and -1.22 (-1.84-(-0.61)), p < 0.0001, for continuous tau PET). Moderate cognitive decline was observed for A+T+ over the follow-up period, whereas no significant change was observed for A-T+, A+T-, and A-T-, though it should be noted that the A-T+ group was small.Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [¹⁸F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [¹⁸F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of AD defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [¹⁸F]-MK-6420 PET provides us with the hope that living patients with AD may be diagnosed during the preclinical phase before it is too late.

Keywords: alzheimer’s disease, braak I-II, in vivo biomarkers, memory, PET, tau

Procedia PDF Downloads 46
196 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters

Authors: Bekir Turedi

Abstract:

Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.

Keywords: perovskite, solar cell, single crystal, diffusion length

Procedia PDF Downloads 17
195 Application of Stochastic Models on the Portuguese Population and Distortion to Workers Compensation Pensioners Experience

Authors: Nkwenti Mbelli Njah

Abstract:

This research was motivated by a project requested by AXA on the topic of pensions payable under the workers compensation (WC) line of business. There are two types of pensions: the compulsorily recoverable and the not compulsorily recoverable. A pension is compulsorily recoverable for a victim when there is less than 30% of disability and the pension amount per year is less than six times the minimal national salary. The law defines that the mathematical provisions for compulsory recoverable pensions must be calculated by applying the following bases: mortality table TD88/90 and rate of interest 5.25% (maybe with rate of management). To manage pensions which are not compulsorily recoverable is a more complex task because technical bases are not defined by law and much more complex computations are required. In particular, companies have to predict the amount of payments discounted reflecting the mortality effect for all pensioners (this task is monitored monthly in AXA). The purpose of this research was thus to develop a stochastic model for the future mortality of the worker’s compensation pensioners of both the Portuguese market workers and AXA portfolio. Not only is past mortality modeled, also projections about future mortality are made for the general population of Portugal as well as for the two portfolios mentioned earlier. The global model was split in two parts: a stochastic model for population mortality which allows for forecasts, combined with a point estimate from a portfolio mortality model obtained through three different relational models (Cox Proportional, Brass Linear and Workgroup PLT). The one-year death probabilities for ages 0-110 for the period 2013-2113 are obtained for the general population and the portfolios. These probabilities are used to compute different life table functions as well as the not compulsorily recoverable reserves for each of the models required for the pensioners, their spouses and children under 21. The results obtained are compared with the not compulsory recoverable reserves computed using the static mortality table (TD 73/77) that is currently being used by AXA, to see the impact on this reserve if AXA adopted the dynamic tables.

Keywords: compulsorily recoverable, life table functions, relational models, worker’s compensation pensioners

Procedia PDF Downloads 131
194 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 302
193 Liquefaction Potential Assessment Using Screw Driving Testing and Microtremor Data: A Case Study in the Philippines

Authors: Arturo Daag

Abstract:

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) is enhancing its liquefaction hazard map towards a detailed probabilistic approach using SDS and geophysical data. Target sites for liquefaction assessment are public schools in Metro Manila. Since target sites are in highly urbanized-setting, the objective of the project is to conduct both non-destructive geotechnical studies using Screw Driving Testing (SDFS) combined with geophysical data such as refraction microtremor array (ReMi), 3 component microtremor Horizontal to Vertical Spectral Ratio (HVSR), and ground penetrating RADAR (GPR). Initial test data was conducted in liquefaction impacted areas from the Mw 6.1 earthquake in Central Luzon last April 22, 2019 Province of Pampanga. Numerous accounts of liquefaction events were documented areas underlain by quaternary alluvium and mostly covered by recent lahar deposits. SDS estimated values showed a good correlation to actual SPT values obtained from available borehole data. Thus, confirming that SDS can be an alternative tool for liquefaction assessment and more efficient in terms of cost and time compared to SPT and CPT. Conducting borehole may limit its access in highly urbanized areas. In order to extend or extrapolate the SPT borehole data, non-destructive geophysical equipment was used. A 3-component microtremor obtains a subsurface velocity model in 1-D seismic shear wave velocity of the upper 30 meters of the profile (Vs30). For the ReMi, 12 geophone array with 6 to 8-meter spacing surveys were conducted. Microtremor data were computed through the Factor of Safety, which is the quotient of Cyclic Resistance Ratio (CRR) and Cyclic Stress Ratio (CSR). Complementary GPR was used to study the subsurface structure and used to inferred subsurface structures and groundwater conditions.

Keywords: screw drive testing, microtremor, ground penetrating RADAR, liquefaction

Procedia PDF Downloads 154
192 Molecular Topology and TLC Retention Behaviour of s-Triazines: QSRR Study

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

Quantitative structure-retention relationship (QSRR) analysis was used to predict the chromatographic behavior of s-triazine derivatives by using theoretical descriptors computed from the chemical structure. Fundamental basis of the reported investigation is to relate molecular topological descriptors with chromatographic behavior of s-triazine derivatives obtained by reversed-phase (RP) thin layer chromatography (TLC) on silica gel impregnated with paraffin oil and applied ethanol-water (φ = 0.5-0.8; v/v). Retention parameter (RM0) of 14 investigated s-triazine derivatives was used as dependent variable while simple connectivity index different orders were used as independent variables. The best QSRR model for predicting RM0 value was obtained with simple third order connectivity index (3χ) in the second-degree polynomial equation. Numerical values of the correlation coefficient (r=0.915), Fisher's value (F=28.34) and root mean square error (RMSE = 0.36) indicate that model is statistically significant. In order to test the predictive power of the QSRR model leave-one-out cross-validation technique has been applied. The parameters of the internal cross-validation analysis (r2CV=0.79, r2adj=0.81, PRESS=1.89) reflect the high predictive ability of the generated model and it confirms that can be used to predict RM0 value. Multivariate classification technique, hierarchical cluster analysis (HCA), has been applied in order to group molecules according to their molecular connectivity indices. HCA is a descriptive statistical method and it is the most frequently used for important area of data processing such is classification. The HCA performed on simple molecular connectivity indices obtained from the 2D structure of investigated s-triazine compounds resulted in two main clusters in which compounds molecules were grouped according to the number of atoms in the molecule. This is in agreement with the fact that these descriptors were calculated on the basis of the number of atoms in the molecule of the investigated s-triazine derivatives.

Keywords: s-triazines, QSRR, chemometrics, chromatography, molecular descriptors

Procedia PDF Downloads 357
191 Variations in Heat and Cold Waves over Southern India

Authors: Amit G. Dhorde

Abstract:

It is now well established that the global surface air temperatures have increased significantly during the period that followed the industrial revolution. One of the main predictions of climate change is that the occurrences of extreme weather events will increase in future. In many regions of the world, high-temperature extremes have already started occurring with rising frequency. The main objective of the present study is to understand spatial and temporal changes in days with heat and cold wave conditions over southern India. The study area includes the region of India that lies to the south of Tropic of Cancer. To fulfill the objective, daily maximum and minimum temperature data for 80 stations were collected for the period 1969-2006 from National Data Center of India Meteorological Department. After assessing the homogeneity of data, 62 stations were finally selected for the study. Heat and cold waves were classified as slight, moderate and severe based on the criteria given by Indias' meteorological department. For every year, numbers of days experiencing heat and cold wave conditions were computed. This data was analyzed with linear regression to find any existing trend. Further, the time period was divided into four decades to investigate the decadal frequency of the occurrence of heat and cold waves. The results revealed that the average annual temperature over southern India shows an increasing trend, which signifies warming over this area. Further, slight cold waves during winter season have been decreasing at the majority of the stations. The moderate cold waves also show a similar pattern at the majority of the stations. This is an indication of warming winters over the region. Besides this analysis, other extreme indices were also analyzed such as extremely hot days, hot days, very cold nights, cold nights, etc. This analysis revealed that nights are becoming warmer and days are getting warmer over some regions too.

Keywords: heat wave, cold wave, southern India, decadal frequency

Procedia PDF Downloads 93
190 Exploring the Design of Prospective Human Immunodeficiency Virus Type 1 Reverse Transcriptase Inhibitors through a Comprehensive Approach of Quantitative Structure Activity Relationship Study, Molecular Docking, and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Sanchaita Rajkhowa, Hatim Soufi, Said Belaaouad

Abstract:

The objective of this paper is to address the challenging task of targeting Human Immunodeficiency Virus type 1 Reverse Transcriptase (HIV-1 RT) in the treatment of AIDS. Reverse Transcriptase inhibitors (RTIs) have limitations due to the development of Reverse Transcriptase mutations that lead to treatment resistance. In this study, a combination of statistical analysis and bioinformatics tools was adopted to develop a mathematical model that relates the structure of compounds to their inhibitory activities against HIV-1 Reverse Transcriptase. Our approach was based on a series of compounds recognized for their HIV-1 RT enzymatic inhibitory activities. These compounds were designed via software, with their descriptors computed using multiple tools. The most statistically promising model was chosen, and its domain of application was ascertained. Furthermore, compounds exhibiting comparable biological activity to existing drugs were identified as potential inhibitors of HIV-1 RT. The compounds underwent evaluation based on their chemical absorption, distribution, metabolism, excretion, toxicity properties, and adherence to Lipinski's rule. Molecular docking techniques were employed to examine the interaction between the Reverse Transcriptase (Wild Type and Mutant Type) and the ligands, including a known drug available in the market. Molecular dynamics simulations were also conducted to assess the stability of the RT-ligand complexes. Our results reveal some of the new compounds as promising candidates for effectively inhibiting HIV-1 Reverse Transcriptase, matching the potency of the established drug. This necessitates further experimental validation. This study, beyond its immediate results, provides a methodological foundation for future endeavors aiming to discover and design new inhibitors targeting HIV-1 Reverse Transcriptase.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation, reverse transcriptase inhibitors, HIV type 1

Procedia PDF Downloads 44
189 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks

Authors: Ahmed Abdullah Ahmed

Abstract:

The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.

Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments

Procedia PDF Downloads 473
188 Waist Circumference-Related Performance of Tense Indices during Varying Pediatric Obesity States and Metabolic Syndrome

Authors: Mustafa Metin Donma

Abstract:

Obesity increases the risk of elevated blood pressure, which is a metabolic syndrome (MetS) component. Waist circumference (WC) is accepted as an indispensable parameter for the evaluation of these health problems. The close relationship of height with blood pressure values revealed the necessity of including height in tense indices. The association of tense indices with WC has also become an increasingly important topic. The purpose of this study was to develop a tense index that could contribute to differential diagnosis of MetS more than the indices previously introduced. One hundred and ninety-four children, aged 06-11 years, were considered to constitute four groups. The study was performed on normal weight (Group 1), overweight+obese (Group 2), morbid obese [without (Group 3) and with (Group 4) MetS findings] children. Children were included in the groups according to the recommendations of World Health Organization based on age- and gender dependent body mass index percentiles. For MetS group, MetS components well-established before were considered. Anthropometric measurements, as well as blood pressure values were taken. Tense indices were computed. The formula for the first tense index was (SP+DP)/2. The second index was Advanced Donma Tense Index (ADTI). The formula for this index was [(SP+DP)/2] * Height. Statistical calculations were performed. 0.05 was accepted as the p value indicating statistical significance. There were no statistically significant differences between the groups for pulse pressure, systolic-to-diastolic pressure ratio and tense index. Increasing values were observed from Group 1 to Group 4 in terms of mean arterial blood pressure and advanced Donma tense index (ADTI), which was highly correlated with WC in all groups except Group 1. Both tense index and ADTI exhibited significant correlations with WC in Group 3. However, in Group 4, ADTI, which includes height parameter in the equation, was unique in establishing a strong correlation with WC. In conclusion, ADTI was suggested as a tense index while investigating children with MetS.

Keywords: blood pressure, child, height, metabolic syndrome, waist circumference

Procedia PDF Downloads 25
187 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data

Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali

Abstract:

The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.

Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors

Procedia PDF Downloads 23
186 Real-Time Kinetic Analysis of Labor-Intensive Repetitive Tasks Using Depth-Sensing Camera

Authors: Sudip Subedi, Nipesh Pradhananga

Abstract:

The musculoskeletal disorders, also known as MSDs, are common in construction workers. MSDs include lower back injuries, knee injuries, spinal injuries, and joint injuries, among others. Since most construction tasks are still manual, construction workers often need to perform repetitive, labor-intensive tasks. And they need to stay in the same or an awkward posture for an extended time while performing such tasks. It induces significant stress to the joints and spines, increasing the risk of getting into MSDs. Manual monitoring of such tasks is virtually impossible with the handful of safety managers in a construction site. This paper proposes a methodology for performing kinetic analysis of the working postures while performing such tasks in real-time. Skeletal of different workers will be tracked using a depth-sensing camera while performing the task to create training data for identifying the best posture. For this, the kinetic analysis will be performed using a human musculoskeletal model in an open-source software system (OpenSim) to visualize the stress induced by essential joints. The “safe posture” inducing lowest stress on essential joints will be computed for different actions involved in the task. The identified “safe posture” will serve as a basis for real-time monitoring and identification of awkward and unsafe postural behaviors of construction workers. Besides, the temporal simulation will be carried out to find the associated long-term effect of repetitive exposure to such observed postures. This will help to create awareness in workers about potential future health hazards and encourage them to work safely. Furthermore, the collected individual data can then be used to provide need-based personalized training to the construction workers.

Keywords: construction workers’ safety, depth sensing camera, human body kinetics, musculoskeletal disorders, real time monitoring, repetitive labor-intensive tasks

Procedia PDF Downloads 96
185 Analysis of the Contribution of Coastal and Marine Physical Factors to Oil Slick Movement: Case Study of Misrata, Libya

Authors: Abduladim Maitieg, Mark Johnson

Abstract:

Developing a coastal oil spill management plan for the Misratah coast is the motivating factor for building a database for coastal and marine systems and energy resources. Wind direction and speed, currents, bathymetry, coastal topography and offshore dynamics influence oil spill deposition in coastal water. Therefore, oceanographic and climatological data can be used to understand oil slick movement and potential oil deposits on shoreline area and the behaviour of oil spill trajectories on the sea surface. The purpose of this study is to investigate the effects of the coastal and marine physical factors under strong wave conditions and various bathymetric and coastal topography gradients in the western coastal area of Libya on the movement of oil slicks. The movement of oil slicks was computed using a GNOME simulation model based on current and wind speed/direction. The results in this paper show that (1) Oil slick might reach the Misratah shoreline area in two days in the summer and winter. Seasons. (2 ) The North coast of Misratah is the potential oil deposit area on the Misratah coast. (3) Tarball pollution was observed along the North coast of Misratah. (4) Two scenarios for the summer and the winter season were run, along the western coast of Libya . (5) The eastern coast is at a lower potential risk due to the influence of wind and current energy in the Gulf of Sidra. (6) The Misratah coastline is more vulnerable to oil spill movement in the summer than in winter seasons. (7) Oil slick takes from 2 to 5 days to reach the saltmarsh in the eastern Misratah coast. (8) Oil slick moves 300 km in 30 days from the spill resource location near the Libyan western border to the Misratah coast.(9) Bathymetric features have a profound effect on oil spill movement. (9)Oil dispersion simulations using GNOME are carried out taking into account high-resolution wind and current data.

Keywords: oil spill movement, coastal and marine physical factors, coast area, Libyan

Procedia PDF Downloads 190
184 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model

Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine

Abstract:

A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price

Procedia PDF Downloads 337
183 Evaluating the Impact of Urban Green Spaces on Urban Microclimate of Lahore: A Rapidly Urbanizing Metropolis of the Punjab-Pakistan

Authors: Muhammad Nasar-U-Minallah, Dagmar Haase, Salman Qureshi, Safdar Ali Shirazi

Abstract:

Urban green spaces (UGS) play a key role in the urban ecology of an area since they provide significant ecological services to compensate for natural environment functions damaged by the rapid growth of urbanization. The transformation of urban green specs to impervious landscapes has been recognized as a key factor prompting the distinctive urban heat and associated microclimatic changes. There is no doubt that urban green spaces offer a range of ecosystem services that can help to mitigate the ill effects of urbanization, heat anomalies, and climate change. The present study attempts to appraise the impact of urban green spaces on the urban thermal environment for the development of the microclimatic conditions in Lahore, Pakistan. The influence of urban heat has been studied through Landsat 8 data. The land surface temperature (LST) of Lahore was computed through the Radiative transfer method (RTM). The spatial variation of land surface temperature is retrieved to describe their local heat effect on urban microclimate. The association between the LST, normalized difference vegetation index, and the normalized difference built-up index are investigated to explore the impact of the urban green spaces and impervious surfaces on urban microclimate. The results of this study show significant changes in (impervious land surface 18% increase) land use within the study area. However, conversion of natural green cover to commercial and residential uses considerably increases the LST. Furthermore, results show that green spaces were the major heat sinks while impervious landscapes were the major heat source in the study area. Urban green spaces reveal 1 to 3℃ lower LST associated with their surrounding urban built-up area. This study shows that urban green spaces will help to mitigate the effect of urban microclimate and it is significant for the sustainable urban environment as well as to improve the quality of life of the urban inhabitants.

Keywords: thermal environmental, urban green space, cooling effect, microclimate, Lahore

Procedia PDF Downloads 73
182 Comparison of Receiver Operating Characteristic Curve Smoothing Methods

Authors: D. Sigirli

Abstract:

The Receiver Operating Characteristic (ROC) curve is a commonly used statistical tool for evaluating the diagnostic performance of screening and diagnostic test with continuous or ordinal scale results which aims to predict the presence or absence probability of a condition, usually a disease. When the test results were measured as numeric values, sensitivity and specificity can be computed across all possible threshold values which discriminate the subjects as diseased and non-diseased. There are infinite numbers of possible decision thresholds along the continuum of the test results. The ROC curve presents the trade-off between sensitivity and the 1-specificity as the threshold changes. The empirical ROC curve which is a non-parametric estimator of the ROC curve is robust and it represents data accurately. However, especially for small sample sizes, it has a problem of variability and as it is a step function there can be different false positive rates for a true positive rate value and vice versa. Besides, the estimated ROC curve being in a jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve. Since the true ROC curve is assumed to be smooth, several smoothing methods have been explored to smooth a ROC curve. These include using kernel estimates, using log-concave densities, to fit parameters for the specified density function to the data with the maximum-likelihood fitting of univariate distributions or to create a probability distribution by fitting the specified distribution to the data nd using smooth versions of the empirical distribution functions. In the present paper, we aimed to propose a smooth ROC curve estimation based on the boundary corrected kernel function and to compare the performances of ROC curve smoothing methods for the diagnostic test results coming from different distributions in different sample sizes. We performed simulation study to compare the performances of different methods for different scenarios with 1000 repetitions. It is seen that the performance of the proposed method was typically better than that of the empirical ROC curve and only slightly worse compared to the binormal model when in fact the underlying samples were generated from the normal distribution.

Keywords: empirical estimator, kernel function, smoothing, receiver operating characteristic curve

Procedia PDF Downloads 112
181 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model

Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka

Abstract:

The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.

Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing

Procedia PDF Downloads 269
180 Milling Simulations with a 3-DOF Flexible Planar Robot

Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden

Abstract:

Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.

Keywords: control, milling, multibody, robotic, simulation

Procedia PDF Downloads 216
179 Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling

Authors: Aamna Lawrence, Ashutosh Mishra

Abstract:

Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies.

Keywords: demyelination, Hodgkin-Huxley model, non-invasive electrical stimulation, tremor

Procedia PDF Downloads 95
178 The Role of Group Dynamics in Creativity: A Study Case from Italy

Authors: Sofya Komarova, Frashia Ndungu, Alessia Gavazzoli, Roberta Mineo

Abstract:

Modern society requires people to be flexible and to develop innovative solutions to unexpected situations. Creativity refers to the “interaction among aptitude, process, and the environment by which an individual or group produces a perceptible product that is both novel and useful as defined within a social context”. It allows humans to produce novel ideas, generate new solutions, and express themselves uniquely. Only a few scientific studies have examined group dynamics' influence on individuals' creativity. There exist some gaps in the research on creative thinking, such as the fact that collaborative effort frequently results in the enhanced production of new information and knowledge. Therefore, it is critical to evaluate creativity via social settings. The study aimed at exploring the group dynamics of young adults in small group settings and the influence of these dynamics on their creativity. The study included 30 participants aged 20 to 25 who were attending university after completing a bachelor's degree. The participants were divided into groups of three, in gender homogenous and heterogeneous groups. The groups’ creative task was tied to the Lego mosaic created for the Scintillae laboratory at the Reggio Children Foundation. Group dynamics were operationalized into patterns of behaviors classified into three major categories: 1) Social Interactions, 2) Play, and 3) Distraction. Data were collected through audio and video recording and observation. The qualitative data were converted into quantitative data using the observational coding system; then, they were analyzed, revealing correlations between behaviors using median points and averages. For each participant and group, the percentages of represented behavior signals were computed. The findings revealed a link between social interaction, creative thinking, and creative activities. Other findings revealed that the more intense the social interaction, the lower the amount of creativity demonstrated. This study bridges the research gap between group dynamics and creativity. The approach calls for further research on the relationship between creativity and social interaction.

Keywords: group dynamics, creative thinking, creative action, social interactions, group play

Procedia PDF Downloads 82
177 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour

Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo

Abstract:

The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².

Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River

Procedia PDF Downloads 413