Search results for: coal fly ash
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 348

Search results for: coal fly ash

288 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method

Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.

Abstract:

In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.

Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption

Procedia PDF Downloads 88
287 Measurement of 238U, 232Th and 40K in Soil Samples Collected from Coal City Dhanbad, India

Authors: Zubair Ahmad

Abstract:

Specific activities of the natural radionuclides 238U, 232Th and 40K were measured by using γ - ray spectrometric technique in soil samples collected from the city of Dhanbad, which is located near coal mines. Mean activity values for 238U, 232Th and 40K were found to be 60.29 Bq/kg, 64.50 Bq/kg and 481.0 Bq/kg, respectively. Mean radium equivalent activity, absorbed dose rate, outdoor dose, external hazard index, internal hazard index, for the area under study were determined as 189.53 Bq/kg, 87.21 nGy/h, 0.37 mSv/y, 0.52 and 0.64, respectively. The annual effective dose to the general public was found 0.44 mSv/y. This value lies well below the limit of 1 mSv/y as recommended by International Commission on Radiological Protection. Measured values were found safe for environment and public health.

Keywords: coal city Dhanbad, gamma-ray spectroscopy, natural radioactivity, soil samples

Procedia PDF Downloads 237
286 Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia

Authors: A. Ali, V. Strezov, P. Davies, I. Wright, T. Kan

Abstract:

The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn).

Keywords: coal mine, environmental impact, produced water, sediment quality guidelines value (SQGV)

Procedia PDF Downloads 278
285 Experimental Study on Different Load Operation and Rapid Load-change Characteristics of Pulverized Coal Combustion with Self-preheating Technology

Authors: Hongliang Ding, Ziqu Ouyang

Abstract:

Under the basic national conditions that the energy structure is dominated by coal, it is of great significance to realize deep and flexible peak shaving of boilers in pulverized coal power plants, and maximize the consumption of renewable energy in the power grid, to ensure China's energy security and scientifically achieve the goals of carbon peak and carbon neutrality. With the promising self-preheating combustion technology, which had the potential of broad-load regulation and rapid response to load changes, this study mainly investigated the different load operation and rapid load-change characteristics of pulverized coal combustion. Four effective load-stabilization bases were proposed according to preheating temperature, coal gas composition (calorific value), combustion temperature (spatial mean temperature and mean square temperature fluctuation coefficient), and flue gas emissions (CO and NOx concentrations), on the basis of which the load-change rates were calculated to assess the load response characteristics. Due to the improvement of the physicochemical properties of pulverized coal after preheating, stable ignition and combustion conditions could be obtained even at a low load of 25%, with a combustion efficiency of over 97.5%, and NOx emission reached the lowest at 50% load, with the concentration of 50.97 mg/Nm3 (@6%O2). Additionally, the load ramp-up stage displayed higher load-change rates than the load ramp-down stage, with maximum rates of 3.30 %/min and 3.01 %/min, respectively. Furthermore, the driving force formed by high step load was conducive to the increase of load-change rate. The rates based on the preheating indicator attained the highest value of 3.30 %/min, while the rates based on the combustion indicator peaked at 2.71 %/min. In comparison, the combustion indicator accurately described the system’s combustion state and load changes, whereas the preheating indicator was easier to acquire, with a higher load-change rate, hence the appropriate evaluation strategy should depend on the actual situation. This study verified a feasible method for deep and flexible peak shaving of coal-fired power units, further providing basic data and technical supports for future engineering applications.

Keywords: clean coal combustion, load-change rate, peak shaving, self-preheating

Procedia PDF Downloads 42
284 The Application of Sequence Stratigraphy to the Sajau (Pliocene) Coal Distribution in Berau Basin, Northeast Kalimantan, Indonesia

Authors: Ahmad Helman Hamdani, Diana Putri Hamdiana

Abstract:

The Sajau coal measures of Berau Basin, northeastern Kalimantan were deposited within a range of facies associations spanning a spectrum of settings from fluvial to marine. The transitional to terrestrial coal measures are dominated by siliciclastics, but they also contain three laterally extensive marine bands (mudstone). These bands act as marker horizons that enable correlation between fully marine and terrestrial facies. Examination of this range of facies and their sedimentology has enabled the development of a high-resolution sequence stratigraphic framework. Set against the established backdrop of third-order Sajau transgression, nine fourth-order sequences are recognized. Results show that, in the composite sequences, peat accumulation predominantly correlates in transitional areas with early transgressive sequence sets (TSS) and highstand sequence set (HSS), while in more landward areas it correlates with the middle TSS to late highstand sequence sets (HSS). Differences in peat accumulation regimes within the sequence stratigraphic framework are attributed to variations in subsidence and background siliciclastic input rates in different depositional settings, with these combining to produce differences in the rate of accommodation change. The preservation of coal resources in the middle to late HSS in this area was most likely related to the rise of the regional base level throughout the Sajau.

Keywords: sequence stratigraphy, coal, Pliocene, Berau basin

Procedia PDF Downloads 433
283 Techno-Economic Study on the Potential of Dimethyl Ether (DME) as a Substitute for LPG

Authors: Widya Anggraini Pamungkas, Rosana Budi Setyawati, Awaludin Fitroh Rifai, Candra Pangesti Setiawan, Anatta Wahyu Budiiman, Inayati, Joko Waluyo, Sunu Herwi Pranolo

Abstract:

The increase in LPG consumption in Indonesia is not balanced with the amount of supply. The high demand for LPG due to the success of the government's kerosene-to-LPG conversion program and the Covid-19 pandemic in 2020 led to an increase in LPG consumption in the household sector and caused Indonesia's trade balance to experience a deficit. The high consumption of LPG encourages the need for alternative fuels as a substitute or which aims to substitute LPG; one of the materials that can be used is Dimethyl Ether (DME). Dimethyl ether (DME) is an organic compound with the chemical formula CH 3. OCH 3 has a high cetane number and has characteristics similar to LPG. DME can be produced from various sources, such as coal, biomass and natural gas. Based on the economic analysis conducted at 10% IRR, coal has the largest NPV of Rp. 20,034,837,497,241 with a payback period of 3.86 years, then biomass with an NPV of Rp. 10,401,526,072,850 and a payback period of 5.16. the latter is natural gas with an NPV of IDR 7,401,272,559,191 and a payback period of 6.17 years. Of the three sources of raw materials used, if the sensitivity is calculated using the selling price of DME equal to the selling price of LPG, it will get an NPV value that is greater than the NPV value when using the current DME price. The advantages of coal as a raw material for DME are not only because it is profitable, namely: low price and abundant resources, but has high greenhouse gas emissions.

Keywords: LPG, DME, coal, biomass, natural gas

Procedia PDF Downloads 78
282 Comparisons of Surveying with Terrestrial Laser Scanner and Total Station for Volume Determination of Overburden and Coal Excavations in Large Open-Pit Mine

Authors: B. Keawaram, P. Dumrongchai

Abstract:

The volume of overburden and coal excavations in open-pit mine is generally determined by conventional survey such as total station. This study aimed to evaluate the accuracy of terrestrial laser scanner (TLS) used to measure overburden and coal excavations, and to compare TLS survey data sets with the data of the total station. Results revealed that, the reference points measured with the total station showed 0.2 mm precision for both horizontal and vertical coordinates. When using TLS on the same points, the standard deviations of 4.93 cm and 0.53 cm for horizontal and vertical coordinates, respectively, were achieved. For volume measurements covering the mining areas of 79,844 m2, TLS yielded the mean difference of about 1% and the surface error margin of 6 cm at the 95% confidence level when compared to the volume obtained by total station.

Keywords: mine, survey, terrestrial laser scanner, total station

Procedia PDF Downloads 349
281 Production of Pig Iron by Smelting of Blended Pre-Reduced Titaniferous Magnetite Ore and Hematite Ore Using Lean Grade Coal

Authors: Bitan Kumar Sarkar, Akashdeep Agarwal, Rajib Dey, Gopes Chandra Das

Abstract:

The rapid depletion of high-grade iron ore (Fe2O3) has gained attention on the use of other sources of iron ore. Titaniferous magnetite ore (TMO) is a special type of magnetite ore having high titania content (23.23% TiO2 present in this case). Due to high TiO2 content and high density, TMO cannot be treated by the conventional smelting reduction. In this present work, the TMO has been collected from high-grade metamorphic terrain of the Precambrian Chotanagpur gneissic complex situated in the eastern part of India (Shaltora area, Bankura district, West Bengal) and the hematite ore has been collected from Visakhapatnam Steel Plant (VSP), Visakhapatnam. At VSP, iron ore is received from Bailadila mines, Chattisgarh of M/s. National Mineral Development Corporation. The preliminary characterization of TMO and hematite ore (HMO) has been investigated by WDXRF, XRD and FESEM analyses. Similarly, good quality of coal (mainly coking coal) is also getting depleted fast. The basic purpose of this work is to find how lean grade coal can be utilised along with TMO for smelting to produce pig iron. Lean grade coal has been characterised by using TG/DTA, proximate and ultimate analyses. The boiler grade coal has been found to contain 28.08% of fixed carbon and 28.31% of volatile matter. TMO fines (below 75 μm) and HMO fines (below 75 μm) have been separately agglomerated with lean grade coal fines (below 75 μm) in the form of briquettes using binders like bentonite and molasses. These green briquettes are dried first in oven at 423 K for 30 min and then reduced isothermally in tube furnace over the temperature range of 1323 K, 1373 K and 1423 K for 30 min & 60 min. After reduction, the reduced briquettes are characterized by XRD and FESEM analyses. The best reduced TMO and HMO samples are taken and blended in three different weight percentage ratios of 1:4, 1:8 and 1:12 of TMO:HMO. The chemical analysis of three blended samples is carried out and degree of metallisation of iron is found to contain 89.38%, 92.12% and 93.12%, respectively. These three blended samples are briquetted using binder like bentonite and lime. Thereafter these blended briquettes are separately smelted in raising hearth furnace at 1773 K for 30 min. The pig iron formed is characterized using XRD, microscopic analysis. It can be concluded that 90% yield of pig iron can be achieved when the blend ratio of TMO:HMO is 1:4.5. This means for 90% yield, the maximum TMO that could be used in the blend is about 18%.

Keywords: briquetting reduction, lean grade coal, smelting reduction, TMO

Procedia PDF Downloads 288
280 An Energy Integration Study While Utilizing Heat of Flue Gas: Sponge Iron Process

Authors: Venkata Ramanaiah, Shabina Khanam

Abstract:

Enormous potential for saving energy is available in coal-based sponge iron plants as these are associated with the high percentage of energy wastage per unit sponge iron production. An energy integration option is proposed, in the present paper, to a coal based sponge iron plant of 100 tonnes per day production capacity, being operated in India using SL/RN (Stelco-Lurgi/Republic Steel-National Lead) process. It consists of the rotary kiln, rotary cooler, dust settling chamber, after burning chamber, evaporating cooler, electrostatic precipitator (ESP), wet scrapper and chimney as important equipment. Principles of process integration are used in the proposed option. It accounts for preheating kiln inlet streams like kiln feed and slinger coal up to 170ᴼC using waste gas exiting ESP. Further, kiln outlet stream is cooled from 1020ᴼC to 110ᴼC using kiln air. The working areas in the plant where energy is being lost and can be conserved are identified. Detailed material and energy balances are carried out around the sponge iron plant, and a modified model is developed, to find coal requirement of proposed option, based on hot utility, heat of reactions, kiln feed and air preheating, radiation losses, dolomite decomposition, the heat required to vaporize the coal volatiles, etc. As coal is used as utility and process stream, an iterative approach is used in solution methodology to compute coal consumption. Further, water consumption, operating cost, capital investment, waste gas generation, profit, and payback period of the modification are computed. Along with these, operational aspects of the proposed design are also discussed. To recover and integrate waste heat available in the plant, three gas-solid heat exchangers and four insulated ducts with one FD fan for each are installed additionally. Thus, the proposed option requires total capital investment of $0.84 million. Preheating of kiln feed, slinger coal and kiln air streams reduce coal consumption by 24.63% which in turn reduces waste gas generation by 25.2% in comparison to the existing process. Moreover, 96% reduction in water is also observed, which is the added advantage of the modification. Consequently, total profit is found as $2.06 million/year with payback period of 4.97 months only. The energy efficient factor (EEF), which is the % of the maximum energy that can be saved through design, is found to be 56.7%. Results of the proposed option are also compared with literature and found in good agreement.

Keywords: coal consumption, energy conservation, process integration, sponge iron plant

Procedia PDF Downloads 120
279 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices

Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes

Abstract:

Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves

Procedia PDF Downloads 433
278 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study

Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes

Abstract:

The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.

Keywords: coal ash, mine tailings, paste blends, surface disposal

Procedia PDF Downloads 266
277 Impact of Collieries on Groundwater in Damodar River Basin

Authors: Rajkumar Ghosh

Abstract:

The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.

Keywords: coal mining, groundwater, soil subsidence, water table, damodar river

Procedia PDF Downloads 48
276 Spectral Responses of the Laser Generated Coal Aerosol

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki

Abstract:

Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.

Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation

Procedia PDF Downloads 318
275 The Implementation of Corporate Social Responsibility to Contribute the Isolated District and the Drop behind District to Overcome the Poverty, Study Cases: PT. Kaltim Prima Coal (KPC) Sanggata, East Borneo, Indonesia

Authors: Sri Suryaningsum

Abstract:

The achievement ‘Best Practice Model’ holds by the government on behalf of the success implementation corporate social responsibility program that held on PT. Kaltim Prima Coal which had operation located in the isolated district in Sanggata, it could be the reference for the other companies to improve the social welfare in surrounding area, especially for the companies that have operated in the isolated area in Indonesia. The rule of Kaltim Prima Coal as the catalyst in the development progress to push up the independence of district especially for the district which has located in surrounding mining operation from village level to the regency level, those programs had written in the 7 field program in Corporate Social Responsibility, it was doing by stakeholders. The stakeholders are village government, sub-district government, Regency and citizen. One of the best programs that implement at PT. Kaltim Prima Coal is Regarding Resettlement that was completed based on Asian Development Bank Resettlement Best Practice and International Financial Corporation Resettlement Action Plan. This program contributed on the resettlement residences to develop the isolated and the neglected district.

Keywords: CSR, isolated, neglected, poverty, mining industry

Procedia PDF Downloads 213
274 Report of Gangamopteris cyclopteroides from the Rajmahal Basin, India: An Evidence for Coal Forming Vegetation in the Area

Authors: Arun Joshi

Abstract:

The present study deals with the report of Gangamopteriscyclopteroides from the Barakar Formation of Simlong Open Cast Mine, Rajmahal Area, Rajmahal Basin, Jharkhand, India. The genus Gangamopteriscomprises leaves which are simple, entire, symmetrical or asymmetrical, linear, lanceolate, elliptical, obovate in shape, apex broadly rounded, obtuse, acute, acuminate or mucronate, base petiolate or contracted, midrib absent. Median region occupied by subparallel veins with anastomoses of elongate or hexagonal outline. Secondary veins arise from median veins by repeated dichotomy, arched, bifurcating and anasotomosing network. The present work is significant as it represents the presence of Glossopteris flora (250- 290 ma) which is mainly responsible for the formation of coal. Coal is one of the major fuels for power production through thermal power plants. The Glossopteris flora is one of the major floras that occupied the southern continent during Carboniferous- Permian time. This southern continent is also known as Gondwana comprising Australia, South Africa, Antarctica, Madagascar and India. There is a vast geological reserve of coal with favorable stripping ratio available at the Simlong Block but the area comes under the most naxalite prone area and thus the mine has been running in an unplanned manner. It has got the potential of becoming a big project with higher capacity and is well suited for enhancing production which can be helpful in the economic growth of the country. Though, the present record is scanty, it shows the presence of Glossopteris flora responsible for the formation of coal in the Coalmine. However, there are fears of fossils disappearing from this area as the state government of Jharkhand has given out a mining lease in the area to private companies. Therefore, it is very necessary to study such coal forming vegetation and their systematic study from the area to generate a new palaeobotanical database, palaeoenvironmental interpretation, basinal correlation and for the understanding of evolutionary perspectives.

Keywords: Barakar formation, coal, Glossopteris flora, Gondwana, India, Naxalite, Rajmahal Basin

Procedia PDF Downloads 116
273 Effect of Minerals in Middlings on the Reactivity of Gasification-Coke by Blending a Large Proportion of Long Flame Coal

Authors: Jianjun Wu, Fanhui Guo, Yixin Zhang

Abstract:

In this study, gasification-coke were produced by blending the middlings (MC), and coking coal (CC) and a large proportion of long flame coal (Shenfu coal, SC), the effects of blending ratio were investigated. Mineral evolution and crystalline order obtained by XRD methods were reproduced within reasonable accuracy. Structure characteristics of partially gasification-coke such as surface area and porosity were determined using the N₂ adsorption and mercury porosimetry. Experimental data of gasification-coke was dominated by the TGA results provided trend, reactivity differences between gasification-cokes are discussed in terms of structure characteristic, crystallinity, and alkali index (AI). The first-order reaction equation was suitable for the gasification reaction kinetics of CO₂ atmosphere which was represented by the volumetric reaction model with linear correlation coefficient above 0.985. The differences in the microporous structure of gasification-coke and catalysis caused by the minerals in parent coals were supposed to be the main factors which affect its reactivity. The addition of MC made the samples enriched with a large amount of ash causing a higher surface area and a lower crystalline order to gasification-coke which was beneficial to gasification reaction. The higher SiO₂ and Al₂O₃ contents, causing a decreasing AI value and increasing activation energy, which reduced the gasification reaction activity. It was found that the increasing amount of MC got a better performance on the coke gasification reactivity by blending > 30% SC with this coking process.

Keywords: low-rank coal, middlings, structure characteristic, mineral evolution, alkali index, gasification-coke, gasification kinetics

Procedia PDF Downloads 127
272 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil

Authors: Juliana A. Galhardi, Daniel M. Bonotto

Abstract:

Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.

Keywords: radon, radium, acid mine drainage, coal

Procedia PDF Downloads 403
271 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.

Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system

Procedia PDF Downloads 274
270 Perspective for the Creation of Molecular Imprinted Polymers from Coal Waste

Authors: Alma Khasenovna Zhakina, Arnt Oxana Vasilievna, Vasilets Evgeny Petrovich

Abstract:

The aim of this project is to develop methods for obtaining new molecularly imprinted polymers from coal waste to study their structure, structural and morphological features and properties. Recently, the development of molecularly imprinted polymers has become one of the hot topics for researchers. Modern research indicates the broad prospects of rapidly developing molecular imprinting technologies for creating a new generation of sorption materials. The attractiveness of this area of research lies in the fact that the use of imprinted polymers is not limited to scientific research; they are already being introduced in the chemical, pharmaceutical and biotechnological industries, primarily at the stages of purification of the final product. For the use of molecularly imprinted polymers in the development of sorption material, their ability to selectively remove pollutants, including trace concentrations, is of fundamental importance, and the exceptional stability of polymeric materials under harsh conditions makes it possible to simplify the process of water purification as a whole. The scientific and technical effect is associated with the development of technologies for the production of new molecularly imprinted polymers, the establishment of optimal conditions for their production and the creation of effective imprinted sorbents on their basis for wastewater treatment from heavy metals. The social effect is due to the fact that the use of coal waste as a feedstock for the production of imprinted sorbents will make it possible in the future to create new industries with additional jobs and obtain competitive multi-purpose products. The economic and multiplier effect is associated with the low cost of the final product due to the involvement of local coal waste in the production, reduction of transport, customs and other costs.

Keywords: imprinted polymers, coal waste, polymerization, template, customized sorbents

Procedia PDF Downloads 31
269 Economic Evaluation of Varying Scenarios to Fulfill the Regional Electricity Demand in Pakistan

Authors: Muhammad Shahid, Kafait Ullah, Kashif Imran, Arshad Mahmood, Maarten Arentsen

Abstract:

Poor planning and governance in the power sector of Pakistan have generated several issues ranging from gradual reliance on thermal-based expensive energy mix, supply shortages, unrestricted demand, subsidization, inefficiencies at different levels of the value chain and resultantly, the circular debt. This situation in the power sector has also hampered the growth of allied economic sectors. This study uses the Long-range Energy Alternative Planning (LEAP) system for electricity modelling of Pakistan from the period of 2016 to 2040. The study has first time in Pakistan forecasted the electricity demand at the provincial level. At the supply side, five scenarios Business as Usual Scenario (BAUS), Coal Scenario (CS), Gas Scenario (GS), Nuclear Scenario (NS) and Renewable Scenario (RS) have been analyzed based on the techno-economic and environmental parameters. The study has also included environmental externality costs for evaluating the actual costs and benefits of different scenarios. Contrary to the expectations, RS has a lower output than even BAUS. The study has concluded that the generation from RS has five times lesser costs than BAUS, CS, and GS. NS can also be an alternative for the sustainable future of Pakistan. Generation from imported coal is not a good option, however, indigenous coal with clean coal technologies should be promoted. This paper proposes energy planners of the country to devise incentives for the utilization of indigenous energy resources including renewables on priority and then clean coal to reduce the energy crises of Pakistan.

Keywords: economic evaluation, externality cost, penetration of renewable energy, regional electricity supply-demand planning

Procedia PDF Downloads 86
268 Application of Acid Base Accounting to Predict Post-Mining Drainage Quality in Coalfields of the Main Karoo Basin and Selected Sub-Basins, South Africa

Authors: Lindani Ncube, Baojin Zhao, Ken Liu, Helen Johanna Van Niekerk

Abstract:

Acid Base Accounting (ABA) is a tool used to assess the total amount of acidity or alkalinity contained in a specific rock sample, and is based on the total S concentration and the carbonate content of a sample. A preliminary ABA test was conducted on 14 sandstone and 5 coal samples taken from coalfields representing the Main Karoo Basin (Highveld, Vryheid and Molteno/Indwe Coalfields) and the Sub-basins (Witbank and Waterberg Coalfields). The results indicate that sandstone and coal from the Main Karoo Basin have the potential of generating Acid Mine Drainage (AMD) as they contain sufficient pyrite to generate acid, with the final pH of samples relatively low upon complete oxidation of pyrite. Sandstone from collieries representing the Main Karoo Basin are characterised by elevated contents of reactive S%. All the studied samples were characterised by an Acid Potential (AP) that is less than the Neutralizing Potential (NP) except for two samples. The results further indicate that the sandstone from the Main Karoo Basin is prone to acid generation as compared to the sandstone from the Sub-basins. However, the coal has a relatively low potential of generating any acid. The application of ABA in this study contributes to an understanding of the complexities governing water-rock interactions. In general, the coalfields from the Main Karoo Basin have much higher potential to produce AMD during mining processes than the coalfields in the Sub-basins.

Keywords: Main Karoo Basin, sub-basin, coal, sandstone, acid base accounting (ABA)

Procedia PDF Downloads 400
267 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 241
266 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal

Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.

Keywords: alternative ironmaking, coal gasification, extent of reduction, nugget making, syngas based DRI, solid state reduction

Procedia PDF Downloads 232
265 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid

Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty

Abstract:

Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.

Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction

Procedia PDF Downloads 256
264 Designing Supplier Partnership Success Factors in the Coal Mining Industry

Authors: Ahmad Afif, Teuku Yuri M. Zagloel

Abstract:

Sustainable supply chain management is a new pattern that has emerged recently in industry and companies. The procurement process is one of the key factors for efficiency in supply chain management practices. Partnership is one of the procurement strategies for strategic items. The success factors of the partnership must be determined to avoid things that endanger the financial and operational status of the company. The current supplier partnership research focuses on the selection of general criteria and sustainable supplier selection. Currently, there is still limited research on the success factors of supplier partnerships that focus on strategic items in the coal mining industry. Meanwhile, the procurement of coal mining has its own characteristics, and there are regulations related to the procurement of goods. Therefore, this research was conducted to determine the categories of goods that are included in the strategic items and to design the success factors of supplier partnerships. The main factors studied are general, financial, production, reputation, synergies, and sustainable. The research was conducted using the Kraljic method to determine the categories of goods that are included in the strategic items. To design a supplier partnership success factor using the Hybrid Multi Criteria Decision Making method. Integrated Fuzzy AHP-Fuzzy TOPSIS is used to determine the weight of the success factors of supplier partnerships and to rank suppliers on the factors used.

Keywords: supplier, partnership, strategic item, success factors, and coal mining industry

Procedia PDF Downloads 104
263 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis

Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh

Abstract:

In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.

Keywords: coal fired power plants, environmental performance, data envelopment analysis, operational performance

Procedia PDF Downloads 421
262 Investigation of the Composition and Structure of Tar by Lignite Pyrolysis Using Thermogravimetry, Gas Chromatography and Mass Spectrum Coupled Instrument System

Authors: Li Feng, Cheng Zhang, Chuanzhou Yuang

Abstract:

Understanding the macromolecular structure of low-rank coal is very important for its gasification and liquefaction. The pyrolysis is one of the methods of analyzing the macromolecular structure of coal. The gaseous products decomposed directly by the raw lignite at 500 °C and indirectly by tar products from raw lignite pyrolysis at 500 °C were investigated and compared by thermogravimetry, gas chromatography and mass spectrum coupled instrument system (TG/GC/MS) in this paper. The results show that 52 kinds of products were found from the raw lignite and 70 kinds of products from the tar. The pyrolysis products directly from the lignite appear more monocyclic aromatic hydrocarbons and less substituent groups or branch chain, compared with the products from the tar. There is less linear chain and double bonds structure in the tar, which can be speculated that linear chain and double bonds structure took part in the generation of condensed rings and other reactions. There are more kinds of phenol and furan in the tar, which indicate that these products may be generated from the secondary reaction. The formation process of phenol, phenol naphthalene, naphthene and furan are discussed.

Keywords: composition and structure, lignite, pyrolysis of coal, tar, TG/GC/MS

Procedia PDF Downloads 113
261 Reduction of Plants Biodiversity in Hyrcanian Forest by Coal Mining Activities

Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch

Abstract:

Considering that coal mining is one of the important industrial activities, it may cause damages to environment. According to the author’s best knowledge, the effect of traditional coal mining activities on plant biodiversity has not been investigated in the Hyrcanian forests. Therefore, in this study, the effect of coal mining activities on vegetation and tree diversity was investigated in Hyrcanian forest, North Iran. After filed visiting and determining the mine, 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity, and it is considered as the control area. In each plot, the data about trees such as number and type of species were recorded. The biodiversity of vegetation cover was considered 5 square sub-plots (1 m2) in each plot. PAST software and Ecological Methodology were used to calculate Biodiversity indices. The value of Shannon Wiener and Simpson diversity indices for tree cover in control area (1.04±0.34 and 0.62±0.20) was significantly higher than mining area (0.78±0.27 and 0.45±0.14). The value of evenness indices for tree cover in the mining area was significantly lower than that of the control area. The value of Shannon Wiener and Simpson diversity indices for vegetation cover in the control area (1.37±0.06 and 0.69±0.02) was significantly higher than the mining area (1.02±0.13 and 0.50±0.07). The value of evenness index in the control area was significantly higher than the mining area. Plant communities are a good indicator of the changes in the site. Study about changes in vegetation biodiversity and plant dynamics in the degraded land can provide necessary information for forest management and reforestation of these areas.

Keywords: vegetation biodiversity, species composition, traditional coal mining, Caspian forest

Procedia PDF Downloads 146
260 Changes in Serum Neopterin in Workers Exposed to Different Mineral Dust

Authors: Gospodinka Prakova, Pavlina Gidikova, Gergana Sandeva, Kamelia Haracherova, Emil Slavov

Abstract:

Neopterin was demonstrated to be a sensitive marker of cell-mediated immune reactions which plays a key role in the interaction of monocyte / macrophage activation. The purpose of this work was to investigate changes in serum neopterin in workers exposed to different composition of mineral dust. Material and Methods: Serum neopterin was studied in 193 exposed workers, divided into three groups, depending on the mineral dust and content of the quartz in the respirable fraction. The I-st group-coal dust containing less than 2% free crystalline silica (n=44), II-nd group-coal dust containing over 2% free crystalline silica (n=94) and the III-rd group-mixed dust with corundum and carborundum (n=55). The control group was composed of 21 individuals without exposure to dust. Serum neopterin was investigated by Elisa method in ng/ml according to the instructions of the manufacturer. Results and Discussion: It was found significantly higher level of serum neopterin in exposed workers of mineral dust (2,10 ± 0,62 ng / ml), compared with that of the control group (1,10 ± 0,85 ng/ml; p < 0,05). Neopterin levels in workers exposed to coal dust (1,87 ± 0,42 ng / ml-I-st and 3,32 ± 0,77 ng / ml-II-nd group) were significantly higher compared with those exposed to a mixed dust (1,31±0,68 mg / ml-third) and control group (p < 0,05). No significant difference in serum neopterin when exposed to a mixed dust composed of corundum and carborundum (III-rd) and a control group. Conclusion: The results of this study indicate activates a cell-mediated immune response when exposed to a mineral dust. The level of that activation depends mainly on the composition of the dust and is significantly highest in workers exposed to coal dust.

Keywords: mineral dust, neopterin, occupational exposure, respirable crystalline silica

Procedia PDF Downloads 238
259 Flue Gas Characterisation for Conversion to Chemicals and Fuels

Authors: Adesola O. Orimoloye, Edward Gobina

Abstract:

Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever-present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors.

Keywords: flue gas, carbon dioxide, membrane, catalyst, syngas

Procedia PDF Downloads 488