Search results for: chemically modified electrode
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3067

Search results for: chemically modified electrode

457 Pathologies in the Left Atrium Reproduced Using a Low-Order Synergistic Numerical Model of the Cardiovascular System

Authors: Nicholas Pearce, Eun-jin Kim

Abstract:

Pathologies of the cardiovascular (CV) system remain a serious and deadly health problem for human society. Computational modelling provides a relatively accessible tool for diagnosis, treatment, and research into CV disorders. However, numerical models of the CV system have largely focused on the function of the ventricles, frequently overlooking the behaviour of the atria. Furthermore, in the study of the pressure-volume relationship of the heart, which is a key diagnosis of cardiac vascular pathologies, previous works often evoke popular yet questionable time-varying elastance (TVE) method that imposes the pressure-volume relationship instead of calculating it consistently. Despite the convenience of the TVE method, there have been various indications of its limitations and the need for checking its validity in different scenarios. A model of the combined left ventricle (LV) and left atrium (LA) is presented, which consistently considers various feedback mechanisms in the heart without having to use the TVE method. Specifically, a synergistic model of the left ventricle is extended and modified to include the function of the LA. The synergy of the original model is preserved by modelling the electro-mechanical and chemical functions of the micro-scale myofiber for the LA and integrating it with the microscale and macro-organ-scale heart dynamics of the left ventricle and CV circulation. The atrioventricular node function is included and forms the conduction pathway for electrical signals between the atria and ventricle. The model reproduces the essential features of LA behaviour, such as the two-phase pressure-volume relationship and the classic figure of eight pressure-volume loops. Using this model, disorders in the internal cardiac electrical signalling are investigated by recreating the mechano-electric feedback (MEF), which is impossible where the time-varying elastance method is used. The effects of AV node block and slow conduction are then investigated in the presence of an atrial arrhythmia. It is found that electrical disorders and arrhythmia in the LA degrade the CV system by reducing the cardiac output, power, and heart rate.

Keywords: cardiovascular system, left atrium, numerical model, MEF

Procedia PDF Downloads 77
456 Quality Assurances for an On-Board Imaging System of a Linear Accelerator: Five Months Data Analysis

Authors: Liyun Chang, Cheng-Hsiang Tsai

Abstract:

To ensure the radiation precisely delivering to the target of cancer patients, the linear accelerator equipped with the pretreatment on-board imaging system is introduced and through it the patient setup is verified before the daily treatment. New generation radiotherapy using beam-intensity modulation, usually associated the treatment with steep dose gradients, claimed to have achieved both a higher degree of dose conformation in the targets and a further reduction of toxicity in normal tissues. However, this benefit is counterproductive if the beam is delivered imprecisely. To avoid shooting critical organs or normal tissues rather than the target, it is very important to carry out the quality assurance (QA) of this on-board imaging system. The QA of the On-Board Imager® (OBI) system of one Varian Clinac-iX linear accelerator was performed through our procedures modified from a relevant report and AAPM TG142. Two image modalities, 2D radiography and 3D cone-beam computed tomography (CBCT), of the OBI system were examined. The daily and monthly QA was executed for five months in the categories of safety, geometrical accuracy and image quality. A marker phantom and a blade calibration plate were used for the QA of geometrical accuracy, while the Leeds phantom and Catphan 504 phantom were used in the QA of radiographic and CBCT image quality, respectively. The reference images were generated through a GE LightSpeed CT simulator with an ADAC Pinnacle treatment planning system. Finally, the image quality was analyzed via an OsiriX medical imaging system. For the geometrical accuracy test, the average deviations of the OBI isocenter in each direction are less than 0.6 mm with uncertainties less than 0.2 mm, while all the other items have the displacements less than 1 mm. For radiographic image quality, the spatial resolution is 1.6 lp/cm with contrasts less than 2.2%. The spatial resolution, low contrast, and HU homogenous of CBCT are larger than 6 lp/cm, less than 1% and within 20 HU, respectively. All tests are within the criteria, except the HU value of Teflon measured with the full fan mode exceeding the suggested value that could be due to itself high HU value and needed to be rechecked. The OBI system in our facility was then demonstrated to be reliable with stable image quality. The QA of OBI system is really necessary to achieve the best treatment for a patient.

Keywords: CBCT, image quality, quality assurance, OBI

Procedia PDF Downloads 265
455 Predictive Value Modified Sick Neonatal Score (MSNS) On Critically Ill Neonates Outcome Treated in Neonatal Intensive Care Unit (NICU)

Authors: Oktavian Prasetia Wardana, Martono Tri Utomo, Risa Etika, Kartika Darma Handayani, Dina Angelika, Wurry Ayuningtyas

Abstract:

Background: Critically ill neonates are newborn babies with high-risk factors that potentially cause disability and/or death. Scoring systems for determining the severity of the disease have been widely developed as well as some designs for use in neonates. The SNAPPE-II method, which has been used as a mortality predictor scoring system in several referral centers, was found to be slow in assessing the outcome of critically ill neonates in the Neonatal Intensive Care Unit (NICU). Objective: To analyze the predictive value of MSNS on the outcome of critically ill neonates at the time of arrival up to 24 hours after being admitted to the NICU. Methods: A longitudinal observational analytic study based on medical record data was conducted from January to August 2022. Each sample was recorded from medical record data, including data on gestational age, mode of delivery, APGAR score at birth, resuscitation measures at birth, duration of resuscitation, post-resuscitation ventilation, physical examination at birth (including vital signs and any congenital abnormalities), the results of routine laboratory examinations, as well as the neonatal outcomes. Results: This study involved 105 critically ill neonates who were admitted to the NICU. The outcome of critically ill neonates was 50 (47.6%) neonates died, and 55 (52.4%) neonates lived. There were more males than females (61% vs. 39%). The mean gestational age of the subjects in this study was 33.8 ± 4.28 weeks, with the mean birth weight of the subjects being 1820.31 ± 33.18 g. The mean MSNS score of neonates with a deadly outcome was lower than that of the lived outcome. ROC curve with a cut point MSNS score <10.5 obtained an AUC of 93.5% (95% CI: 88.3-98.6) with a sensitivity value of 84% (95% CI: 80.5-94.9), specificity 80 % (CI 95%: 88.3-98.6), Positive Predictive Value (PPV) 79.2%, Negative Predictive Value (NPV) 84.6%, Risk Ratio (RR) 5.14 with Hosmer & Lemeshow test results p>0.05. Conclusion: The MSNS score has a good predictive value and good calibration of the outcomes of critically ill neonates admitted to the NICU.

Keywords: critically ill neonate, outcome, MSNS, NICU, predictive value

Procedia PDF Downloads 35
454 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater

Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif

Abstract:

Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.

Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.

Procedia PDF Downloads 54
453 Conductivity-Depth Inversion of Large Loop Transient Electromagnetic Sounding Data over Layered Earth Models

Authors: Ravi Ande, Mousumi Hazari

Abstract:

One of the common geophysical techniques for mapping subsurface geo-electrical structures, extensive hydro-geological research, and engineering and environmental geophysics applications is the use of time domain electromagnetic (TDEM)/transient electromagnetic (TEM) soundings. A large transmitter loop for energising the ground and a small receiver loop or magnetometer for recording the transient voltage or magnetic field in the air or on the surface of the earth, with the receiver at the center of the loop or at any random point inside or outside the source loop, make up a large loop TEM system. In general, one can acquire data using one of the configurations with a large loop source, namely, with the receiver at the center point of the loop (central loop method), at an arbitrary in-loop point (in-loop method), coincident with the transmitter loop (coincidence-loop method), and at an arbitrary offset loop point (offset-loop method), respectively. Because of the mathematical simplicity associated with the expressions of EM fields, as compared to the in-loop and offset-loop systems, the central loop system (for ground surveys) and coincident loop system (for ground as well as airborne surveys) have been developed and used extensively for the exploration of mineral and geothermal resources, for mapping contaminated groundwater caused by hazardous waste and thickness of permafrost layer. Because a proper analytical expression for the TEM response over the layered earth model for the large loop TEM system does not exist, the forward problem used in this inversion scheme is first formulated in the frequency domain and then it is transformed in the time domain using Fourier cosine or sine transforms. Using the EMLCLLER algorithm, the forward computation is initially carried out in the frequency domain. As a result, the EMLCLLER modified the forward calculation scheme in NLSTCI to compute frequency domain answers before converting them to the time domain using Fourier Cosine and/or Sine transforms.

Keywords: time domain electromagnetic (TDEM), TEM system, geoelectrical sounding structure, Fourier cosine

Procedia PDF Downloads 57
452 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: bearing, centrifugal casting, cylinder liners, robot

Procedia PDF Downloads 377
451 Development of Solid Electrolytes Based on Networked Cellulose

Authors: Boor Singh Lalia, Yarjan Abdul Samad, Raed Hashaikeh

Abstract:

Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling.

Keywords: solid polymer electrolyte, ionic conductivity, mechanical properties, lithium ion batteries, cyclic voltammetry

Procedia PDF Downloads 391
450 Surface Water Flow of Urban Areas and Sustainable Urban Planning

Authors: Sheetal Sharma

Abstract:

Urban planning is associated with land transformation from natural areas to modified and developed ones which leads to modification of natural environment. The basic knowledge of relationship between both should be ascertained before proceeding for the development of natural areas. Changes on land surface due to build up pavements, roads and similar land cover, affect surface water flow. There is a gap between urban planning and basic knowledge of hydrological processes which should be known to the planners. The paper aims to identify these variations in surface flow due to urbanization for a temporal scale of 40 years using Storm Water Management Mode (SWMM) and again correlating these findings with the urban planning guidelines in study area along with geological background to find out the suitable combinations of land cover, soil and guidelines. For the purpose of identifying the changes in surface flows, 19 catchments were identified with different geology and growth in 40 years facing different ground water levels fluctuations. The increasing built up, varying surface runoff are studied using Arc GIS and SWMM modeling, regression analysis for runoff. Resulting runoff for various land covers and soil groups with varying built up conditions were observed. The modeling procedures also included observations for varying precipitation and constant built up in all catchments. All these observations were combined for individual catchment and single regression curve was obtained for runoff. Thus, it was observed that alluvial with suitable land cover was better for infiltration and least generation of runoff but excess built up could not be sustained on alluvial soil. Similarly, basalt had least recharge and most runoff demanding maximum vegetation over it. Sandstone resulted in good recharging if planned with more open spaces and natural soils with intermittent vegetation. Hence, these observations made a keystone base for planners while planning various land uses on different soils. This paper contributes and provides a solution to basic knowledge gap, which urban planners face during development of natural surfaces.

Keywords: runoff, built up, roughness, recharge, temporal changes

Procedia PDF Downloads 251
449 Modification of Titanium Surfaces with Micro/Nanospheres for Local Antibiotic Release

Authors: Burcu Doymus, Fatma N. Kok, Sakip Onder

Abstract:

Titanium and titanium-based materials are commonly used to replace or regenerate the injured or lost tissues because of accidents or illnesses. Hospital infections and strong bond formation at the implant-tissue interface are directly affecting the success of the implantation as weak bonding with the native tissue and hospital infections lead to revision surgery. The purpose of the presented study is to modify the surface of the titanium substrates with nano/microspheres for local drug delivery and to prevent hospital infections. Firstly, titanium surfaces were silanized with APTES (3-Triethoxysilylpropylamine) following the negatively charged oxide layer formation. Then characterization studies using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were done on the modified surfaces. Secondly, microspheres/nanospheres were prepared with chitosan that is a natural polymer and having valuable properties such as non-toxicity, high biocompatibility, low allergen city and biodegradability for biomedical applications. Antibiotic (ciprofloxacin) loaded micro/nanospheres have been fabricated using emulsion cross-linking method and have been immobilized onto the titanium surfaces with different immobilization techniques such as covalent bond and entrapment. Optimization studies on size and drug loading capacities of micro/nanospheres were conducted before the immobilization process. Light microscopy and SEM were used to visualize and measure the size of the produced micro/nanospheres. Loaded and released drug amounts were determined by using UV- spectrophotometer at 278 nm. Finally, SEM analysis and drug release studies on the micro/nanospheres coated Ti surfaces were done. As a conclusion, it was shown that micro/nanospheres were immobilized onto the surfaces successfully and drug release from these surfaces was in a controlled manner. Moreover, the density of the micro/nanospheres after the drug release studies was higher on the surfaces where the entrapment technique was used for immobilization. Acknowledgement: This work is financially supported by The Scientific and Technological Research Council Of Turkey (Project # 217M220)

Keywords: chitosan, controlled drug release, nanosphere, nosocomial infections, titanium

Procedia PDF Downloads 97
448 Comparison between the Roller-Foam and Neuromuscular Facilitation Stretching on Flexibility of Hamstrings Muscles

Authors: Paolo Ragazzi, Olivier Peillon, Paul Fauris, Mathias Simon, Raul Navarro, Juan Carlos Martin, Oriol Casasayas, Laura Pacheco, Albert Perez-Bellmunt

Abstract:

Introduction: The use of stretching techniques in the sports world is frequent and widely used for its many effects. One of the main benefits is the gain in flexibility, range of motion and facilitation of the sporting performance. Recently the use of Roller-Foam (RF) has spread in sports practice both at elite and recreational level for its benefits being similar to those observed in stretching. The objective of the following study is to compare the results of the Roller-Foam with the proprioceptive neuromuscular facilitation stretching (PNF) (one of the stretchings with more evidence) on the hamstring muscles. Study design: The design of the study is a single-blind, randomized controlled trial and the participants are 40 healthy volunteers. Intervention: The subjects are distributed randomly in one of the following groups; stretching (PNF) intervention group: 4 repetitions of PNF stretching (5seconds of contraction, 5 second of relaxation, 20 second stretch), Roller-Foam intervention group: 2 minutes of Roller-Foam was realized on the hamstring muscles. Main outcome measures: hamstring muscles flexibility was assessed at the beginning, during (30’’ of intervention) and the end of the session by using the Modified Sit and Reach test (MSR). Results: The baseline results data given in both groups are comparable to each other. The PNF group obtained an increase in flexibility of 3,1 cm at 30 seconds (first series) and of 5,1 cm at 2 minutes (the last of all series). The RF group obtained a 0,6 cm difference at 30 seconds and 2,4 cm after 2 minutes of application of roller foam. The results were statistically significant when comparing intragroups but not intergroups. Conclusions: Despite the fact that the use of roller foam is spreading in the sports and rehabilitation field, the results of the present study suggest that the gain of flexibility on the hamstrings is greater if PNF type stretches are used instead of RF. These results may be due to the fact that the use of roller foam intervened more in the fascial tissue, while the stretches intervene more in the myotendinous unit. Future studies are needed, increasing the sample number and diversifying the types of stretching.

Keywords: hamstring muscle, stretching, neuromuscular facilitation stretching, roller foam

Procedia PDF Downloads 161
447 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: human motion recognition, motion representation, Laban Movement Analysis, Discrete Hidden Markov Model

Procedia PDF Downloads 172
446 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes

Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker

Abstract:

The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.

Keywords: automation, battery production, carrier, advanced process control, cyber-physical system

Procedia PDF Downloads 299
445 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 354
444 New Coating Materials Based on Mixtures of Shellac and Pectin for Pharmaceutical Products

Authors: M. Kumpugdee-Vollrath, M. Tabatabaeifar, M. Helmis

Abstract:

Shellac is a natural polyester resin secreted by insects. Pectins are natural, non-toxic and water-soluble polysaccharides extracted from the peels of citrus fruits or the leftovers of apples. Both polymers are allowed for the use in the pharmaceutical industry and as a food additive. SSB Aquagold® is the aqueous solution of shellac and can be used for a coating process as an enteric or controlled drug release polymer. In this study, tablets containing 10 mg methylene blue as a model drug were prepared with a rotary press. Those tablets were coated with mixtures of shellac and one of the pectin different types (i.e. CU 201, CU 501, CU 701 and CU 020) mostly in a 2:1 ratio or with pure shellac in a small scale fluidized bed apparatus. A stable, simple and reproducible three-stage coating process was successfully developed. The drug contents of the coated tablets were determined using UV-VIS spectrophotometer. The characterization of the surface and the film thickness were performed with the scanning electron microscopy (SEM) and the light microscopy. Release studies were performed in a dissolution apparatus with a basket. Most of the formulations were enteric coated. The dissolution profiles showed a delayed or sustained release with a lagtime of at least 4 h. Dissolution profiles of coated tablets with pure shellac had a very long lagtime ranging from 13 to 17.5 h and the slopes were quite high. The duration of the lagtime and the slope of the dissolution profiles could be adjusted by adding the proper type of pectin to the shellac formulation and by variation of the coating amount. In order to apply a coating formulation as a colon delivery system, the prepared film should be resistant against gastric fluid for at least 2 h and against intestinal fluid for 4-6 h. The required delay time was gained with most of the shellac-pectin polymer mixtures. The release profiles were fitted with the modified model of the Korsmeyer-Peppas equation and the Hixson-Crowell model. A correlation coefficient (R²) > 0.99 was obtained by Korsmeyer-Peppas equation.

Keywords: shellac, pectin, coating, fluidized bed, release, colon delivery system, kinetic, SEM, methylene blue

Procedia PDF Downloads 378
443 Hypertensive Response to Maximal Exercise Test in Young and Middle Age Hypertensive on Blood Pressure Lowering Medication: Monotherapy vs. Combination Therapy

Authors: James Patrick A. Diaz, Raul E. Ramboyong

Abstract:

Background: Hypertensive response during maximal exercise test provides important information on the level of blood pressure control and evaluation of treatment. Method: A single center retrospective descriptive study was conducted among 117 young (aged 20 to 40) and middle age (aged 40 to 65) hypertensive patients, who underwent treadmill stress test. Currently on maintenance frontline medication either monotherapy (Angiotensin-converting enzyme inhibitor/Angiotensin receptor blocker [ACEi/ARB], Calcium channel blocker [CCB], Diuretic - Hydrochlorthiazide [HCTZ]) or combination therapy (ARB+CCB, ARB+HCTZ), who attained a maximal exercise on treadmill stress test (TMST) with hypertensive response (systolic blood pressure: male >210 mm Hg, female >190 mm Hg, diastolic blood pressure >100 mmHg, or increase of >10 mm Hg at any time during the test), on Bruce and Modified Bruce protocol. Exaggerated blood pressure response during exercise (systolic [SBP] and diastolic [DBP]), peak exercise blood pressure (SBP and DBP), recovery period (SBP and DBP) and test for ischemia and their antihypertensive medication/s were investigated. Analysis of variance and chi-square test were used for statistical analysis. Results: Hypertensive responses on maximal exercise test were seen mostly among female population (P < 0.000) and middle age (P < 0.000) patients. Exaggerated diastolic blood pressure responses were significantly lower in patients who were taking CCB (P < 0.004). A longer recovery period that showed a delayed decline in SBP was observed in patients taking ARB+HCTZ (P < 0.036). There were no significant differences in the level of exaggerated systolic blood pressure response and during peak exercise (both systolic and diastolic) in patients using either monotherapy or combination antihypertensives. Conclusion: Calcium channel blockers provided lower exaggerated diastolic BP response during maximal exercise test in hypertensive middle age patients. Patients on combination therapy using ARB+HCTZ exhibited a longer recovery period of systolic blood pressure.

Keywords: antihypertensive, exercise test, hypertension, hyperytensive response

Procedia PDF Downloads 248
442 Emerging Issues of Non-Communicable Diseases among Older Persons in India

Authors: Dhananjay W. Bansod, Santosh Phad

Abstract:

Non-Communicable Diseases (NCD) are major contributing factors to the disease burden in the world as well as in India. With a growing proportion of older persons in India gives rise to several challenges. With the advancement of age, elderly is exposed to various kinds of health problems more specifically NCDs. Therefore, an effort has been made to examine the prevalence of NCDs among older persons and its treatment-seeking behaviour, also it is tried to explore the association between the NCDs and its effect on the overall wellbeing of older persons. Data used from “Building Knowledge Base of Population Ageing Survey” conducted in 2011 in seven states of India. Six chronic diseases used (non-communicable diseases) namely Arthritis, Hypertension, Cataract, Diabetes, Asthma and Heart diseases to understand the issues related to NCDs. Also seen the effect of NCDs on the wellbeing of the elderly, the subjective well-being consists of nine questions from which SUBI score generated for mental health status, which ranges from 9 to 27. This Index indicates that lower the score better is the mental health status. Further, this index modified and generated three categories of Better (9-15), Average (16-20) and Worse (21-27). The reliability analysis is carried out with the coefficient (Cronbach’s alpha) of the scale was 0.8884. The result shows that Orthopedic / musculoskeletal ailments involving arthritis, rheumatism and osteoarthritis are the most common type of ailment followed by hypertension. Two-thirds of the elderly reported suffering from at least one chronic ailment. Most chronic illness conditions received some form of treatment and mainly depend on public health facilities. Financial insecurity is the primary obstruction in seeking treatment for most of the chronic ailments which typically require a longer duration of medication and repeated medical consultations, both having significant economic implications. According to SUBI index, only 15 per cent of the elderly are in Better mental health status, and one-third of the elderly are with the worse score. Elderly with the ailments like Cataract, Asthma and Arthritis have worse mental health. It depicts that the burden of disease is more among the elderly and it is directly affecting the overall wellbeing of older persons.

Keywords: NCD, well-being, older person, India

Procedia PDF Downloads 117
441 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells

Authors: Mohanapriya Subramanian, V. Raj

Abstract:

Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.

Keywords: biopolymers, fuel cells, nanocomposite, methanol crossover

Procedia PDF Downloads 104
440 Laboratory Investigation of the Pavement Condition in Lebanon: Implementation of Reclaimed Asphalt Pavement in the Base Course and Asphalt Layer

Authors: Marinelle El-Khoury, Lina Bouhaya, Nivine Abbas, Hassan Sleiman

Abstract:

The road network in the north of Lebanon is a prime example of the lack of pavement design and execution in Lebanon.  These roads show major distresses and hence, should be tested and evaluated. The aim of this research is to investigate and determine the deficiencies in road surface design in Lebanon, and to propose an environmentally friendly asphalt mix design. This paper consists of several parts: (i) evaluating pavement performance and structural behavior, (ii) identifying the distresses using visual examination followed by laboratory tests, (iii) deciding the optimal solution where rehabilitation or reconstruction is required and finally, (iv) identifying a sustainable method, which uses recycled material in the proposed mix. The asphalt formula contains Reclaimed Asphalt Pavement (RAP) in the base course layer and in the asphalt layer. Visual inspection of the roads in Tripoli shows that these roads face a high level of distress severity. Consequently, the pavement should be reconstructed rather than simply rehabilitated. Coring was done to determine the pavement layer thickness. The results were compared to the American Association of State Highway and Transportation Officials (AASHTO) design methodology and showed that the existing asphalt thickness is lower than the required asphalt thickness. Prior to the pavement reconstruction, the road materials were tested according to the American Society for Testing and Materials (ASTM) specification to identify whether the materials are suitable. Accordingly, the ASTM tests that were performed on the base course are Sieve analysis, Atterberg limits, modified proctor, Los Angeles, and California Bearing Ratio (CBR) tests. Results show a CBR value higher than 70%. Hence, these aggregates could be used as a base course layer. The asphalt layer was also tested and the results of the Marshall flow and stability tests meet the ASTM specifications. In the last section, an environmentally friendly mix was proposed. An optimal RAP percentage of 30%, which produced a well graded base course and asphalt mix, was determined through a series of trials.

Keywords: asphalt mix, reclaimed asphalt pavement, California bearing ratio, sustainability

Procedia PDF Downloads 93
439 Posterior Circulation Ischemic Strokes in Olympic and Division 1 Wrestlers

Authors: Christen Kutz

Abstract:

Objective: The aim of this study is to review a case series of 4 high-level Olympic and Division 1 wrestlers who experienced debilitating posterior circulation ischemic strokes during or after a competitive wrestling event and to identify risk factors, etiology and outcomes of stroke in young, healthy elite wrestlers. Background: Stroke occurs in one in 10,000 people under age 64. In young adults, the most common causes of stroke are cardiac embolism, hypercoagulable state, and vasculopathy. One-third of these strokes occur in young, fit individuals. There is little published literature about ischemic strokes that occur in wrestlers. Based on the nature of wrestling, the risk of injury or dissection to neurovascular structures may be a possible theory, but very few case reports exist. Methodology: 4 wrestlers under the age of 44 with a known history of ischemic stroke participated in individual interviews either in person or virtually. Each of the wrestlers provided their demographic information, wrestling background, clinical presentation at the time of stroke, imaging results, identification of potential risk factors, acute treatment and recovery. Results: 3 white male Division 1 wrestlers (2 Lehigh University, 1 Lock Haven University) and 1 black male 2008 Olympian experienced posterior circulation strokes. Case #1 felt a “pop” while wrestling (lateral medullary infarct, possible vertebral artery dissection); Case #2 awoke with severe vertigo, sweating, and vomiting after wrestling the previous day (left cerebellar infarct, (+) protein S deficiency); Case #3 severe vertigo, ataxia, and sensation of impending doom after wrestling earlier that week (left cerebellar infarct, hypoplastic left vertebral artery (+) anti-cardiolipin antibodies). Case #4 severe dizziness, confusion (left cerebellar stroke, vertebral artery dissection, small PFO). Conclusion: 3 wrestlers were started on anti-platelet therapy, risk factors were modified, and returned to their sport. 1 wrestler was placed on anti-coagulation and retired from competition.

Keywords: stroke, wrestling, Olympic, posterior circulation

Procedia PDF Downloads 33
438 Estimation of Snow and Ice Melt Contributions to Discharge from the Glacierized Hunza River Basin, Karakoram, Pakistan

Authors: Syed Hammad Ali, Rijan Bhakta Kayastha, Danial Hashmi, Richard Armstrong, Ahuti Shrestha, Iram Bano, Javed Hassan

Abstract:

This paper presents the results of a semi-distributed modified positive degree-day model (MPDDM) for estimating snow and ice melt contributions to discharge from the glacierized Hunza River basin, Pakistan. The model uses daily temperature data, daily precipitation data, and positive degree day factors for snow and ice melt. The model is calibrated for the period 1995-2001 and validated for 2002-2013, and demonstrates close agreements between observed and simulated discharge with Nash–Sutcliffe Efficiencies of 0.90 and 0.88, respectively. Furthermore, the Weather Research and Forecasting model projected temperature, and precipitation data from 2016-2050 are used for representative concentration pathways RCP4.5 and RCP8.5, and bias correction was done using a statistical approach for future discharge estimation. No drastic changes in future discharge are predicted for the emissions scenarios. The aggregate snow-ice melt contribution is 39% of total discharge in the period 1993-2013. Snow-ice melt contribution ranges from 35% to 63% during the high flow period (May to October), which constitutes 89% of annual discharge; in the low flow period (November to April) it ranges from 0.02% to 17%, which constitutes 11 % of the annual discharge. The snow-ice melt contribution to total discharge will increase gradually in the future and reach up to 45% in 2041-2050. From a sensitivity analysis, it is found that the combination of a 2°C temperature rise and 20% increase in precipitation shows a 10% increase in discharge. The study allows us to evaluate the impact of climate change in such basins and is also useful for the future prediction of discharge to define hydropower potential, inform other water resource management in the area, to understand future changes in snow-ice melt contribution to discharge, and offer a possible evaluation of future water quantity and availability.

Keywords: climate variability, future discharge projection, positive degree day, regional climate model, water resource management

Procedia PDF Downloads 256
437 Towards Intercultural Competence in EFL Textbook: the Case of ‘New Prospects’

Authors: Kamilia Mebarki

Abstract:

The promotion of intercultural competence plays an important role in foreign language education. The outcome of intercultural educationalists‟ studies was the adoption of intercultural language learning and a modified version of the Communicative Competence that encompasses an intercultural component enabling language learners to communicate successfully interculturally. Intercultural Competencehas an even more central role in teaching English as a foreign language (EFL) since efforts are critical to preparing learners for intercultural communisation in our global world. In these efforts, EFL learning materials are a crucial stimulus for developing learners’ intercultural competence. There has been a continuous interest in the analysis of EFL textbooks by researcher all over the world. One specific area that has received prominent attention in recent years is a focus on how the cultural content of EFL materials promote intercultural competence. In the Algerian context, research on the locally produced EFL textbooks tend to focus on investigating the linguistic and communicative competence. The cultural content of the materials has not yet been systematically researched. Therefore, this study contributes to filling this gap by evaluating the locally published EFL textbook ‘New Prospects’ used at the high school level as well as investigating teachers’ views and attitudes on the cultural content of ‘New Prospects’ alongside two others locally produced EFL textbooks ‘Getting Through’ and ‘At the Crossroad’ used at high school level. To estimate the textbook’s potential of developing intercultural competence, mixed methods, a combination of quantitative and qualitative data collection, was used in the material evaluation analysed via content analysis and in the survey questionnaire and interview with teachers.Data collection and analysis were supported by the frameworks developed by the researcher for analysing the textbook, questionnaire, and interview. Indeed, based on the literature, three frameworks/ models are developed in this study to analyse, on one hand, the cultural contexts and themes discussed in the material that play an important role in fostering learners’ intercultural awareness. On the other hand, to evaluate the promotion of developing intercultural competence.

Keywords: intercultural communication, intercultural communicative competence, intercultural competence, EFL materials

Procedia PDF Downloads 61
436 Formula Student Car: Design, Analysis and Lap Time Simulation

Authors: Rachit Ahuja, Ayush Chugh

Abstract:

Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car.

Keywords: aerodynamic performance, front wing, laptime simulation, t-wing

Procedia PDF Downloads 167
435 Development of R³ UV Exposure for the UV Dose-Insensitive and Cost-Effective Fabrication of Biodegradable Polymer Microneedles

Authors: Sungmin Park, Gyungmok Nam, Seungpyo Woo, Young Choi, Sangheon Park, Sang-Hee Yoon

Abstract:

Puncturing human skin with microneedles is critically important for microneedle-mediate drug delivery. Despite of extensive efforts in the past decades, the scale-up fabrication of sharp-tipped and high-aspect-ratio microneedles, especially made of biodegradable polymers, is still a long way off. Here, we present a UV dose insensitive and cost-effective microfabrication method for the biodegradable polymer microneedles with sharp tips and long lengths which can pierce human skin with low insertion force. The biodegradable polymer microneedles are fabricated with the polymer solution casting where a poly(lactic-co-glycolic acid) (PLGA, 50:50) solution is coated onto a SU-8 mold prepared with a reverse, ramped, and rotational (R3) UV exposure. The R3 UV exposure is modified from the multidirectional UV exposure both to suppress UV reflection from the bottom surface without anti-reflection layers and to optimize solvent concentration in the SU-8 photoresist, therefore achieving robust (i.e., highly insensitive to UV dose) and cost-effective fabrication of biodegradable polymer microneedles. An optical model for describing the spatial distribution of UV irradiation dose of the R3 UV exposure is also developed to theoretically predict the microneedle geometry fabricated with the R3 UV exposure and also to demonstrate the insensitiveness of microneedle geometry to UV dose. In the experimental characterization, the microneedles fabricated with the R3 UV exposure are compared with those fabricated with a conventional method (i.e., multidirectional UV exposure). The R3 UV exposure-based microfabrication reduces the end-tip radius by a factor of 5.8 and the deviation from ideal aspect ratio by 74.8%, compared with conventional method-based microfabrication. The PLGA microneedles fabricated with the R3 UV exposure pierce full-thickness porcine skins successfully and are demonstrated to completely dissolve in PBS (phosphate-buffered saline). The findings of this study will lead to an explosive growth of the microneedle-mediated drug delivery market.

Keywords: R³ UV exposure, optical model, UV dose, reflection, solvent concentration, biodegradable polymer microneedle

Procedia PDF Downloads 137
434 Remediation of Dye Contaminated Wastewater Using N, Pd Co-Doped TiO₂ Photocatalyst Derived from Polyamidoamine Dendrimer G1 as Template

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N, Pt) co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. The resultant photocatalysts were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), UV‐Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), thermal gravimetric analysis (TGA). The results showed that the calcination atmosphere played an important role in the morphology, crystal structure, spectral absorption, oxygen vacancy concentration, and visible light photocatalytic performance of the catalysts. Anatase phase particles ranging between 9- 20 nm were also confirmed by TEM, SEM, and analysis. The origin of the visible light photocatalytic activity was attributed to both the elemental N and Pd dopants and the existence of oxygen vacancies. Co-doping imparted a shift in the visible region of the solar spectrum. The visible light photocatalytic activity of the samples was investigated by monitoring the photocatalytic degradation of brilliant black dye. Co-doped TiO₂ showed greater photocatalytic brilliant black degradation efficiency compared to singly doped N-TiO₂ or Pd-TiO₂ under visible light irradiation. The highest reaction rate constant of 3.132 x 10-2 min⁻¹ was observed for N, Pd co-doped TiO₂ (2% Pd). The results demonstrated that the N, Pd co-doped TiO₂ (2% Pd) sample could completely degrade the dye in 3 h, while the commercial TiO₂ showed the lowest dye degradation efficiency (52.66%).

Keywords: brilliant black, Co-doped TiO₂, polyamidoamine generation 1 (PAMAM G1), photodegradation

Procedia PDF Downloads 145
433 A Basic Understanding of Viral Disease and Education Level Influences Disease Risk Perception, Disease Severity Perception, and Mask Wearing Behavior During the COVID-19 Pandemic

Authors: Ilse Kreme

Abstract:

To the best of this author’s knowledge, no studies have been identified on the connection between a refusal to engage in health-protective behaviors and a basic understanding of viral biology among community college students, faculty, and staff during the COVID-19 pandemic. Lack of scientific knowledge could prevent understanding of why these behaviors are important to prevent the community spread of COVID-19, even when they are not shown to offer much individual protection. In this study, a possible correlation was examined between a basic knowledge level of viral disease that comes from having taken a college biology course and disease perceptions of COVID-19. In particular, disease risk perception, disease severity percept and mask-wearing behaviors were examined as they correlated with having taken an undergraduate biology course. The effect of covariates of age, gender, and education level were investigated along with the main dependent variables. A representative sample of the population included students, faculty, and staff at Paradise Valley Community College (PVCC) in Phoenix, Arizona. Participants were recruited by an email sent to all students, faculty, and staff at PVCC using an all-college email distribution. Disease risk and severity perception were assessed with the Brief Illness Perception Questionnaire 5 (BIP-Q5), which was modified to include questions measuring participant age, education level, and whether they took or ever took a college biology course. Two additional questions measured compliance of willingness to wear a face mask. The results showed an effect of gender on mask-wearing behavior and a correlation between having taken a biology course and disease severity perception. No differences were seen in mask-wearing behavior and disease risk perception as a result of having taken a biology course. These findings suggest that taking an undergraduate biology course leads to a greater awareness of COVID-19 disease severity through an understanding of the basic biological principles of viral disease transmission. The results can be used to modify existing health education strategies. Further research is needed on how to best reach target audiences in all education brackets.

Keywords: COVID-19, education, gender, mask wearing, disease risk perception, disease severity perception

Procedia PDF Downloads 69
432 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption

Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad

Abstract:

Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.

Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly

Procedia PDF Downloads 31
431 New Environmentally Friendly Material for the Purification of the Fresh Water from Oil Pollution

Authors: M. A. Ashour

Abstract:

As it is known Egypt is one of the countries having oldest sugarcane industry, which goes back to the year 710 AD. Cane plantations are the main agricultural product in five governorates in Upper Egypt (El-Menia, Sohag, Qena, Luxor, and Aswan), producing not less than 16 million tons a year. Eight factories (Abou-korkas, Gena, Nagaa-Hamadi, Deshna, Kous, Armant, Edfuo, and Komombo), located in such upper Egypt governorates generates huge amount of wastes during the manufacturing stage, the so called bagasse which is the fibrous, and cellulosic materials remaining after the era of the sugarcane and the juice extraction, presents about 30% of such wastes. The amount of bagasse generated yearly through the manufacturing stage of the above mentioned 8 factories is approximately about 2.8 million tons, getting red safely of such huge amount, presents a serious environmental problem. Storage of that material openly in the so hot climate in upper Egypt, may cause its self-ignition under air temperature reaches 50 degrees centigrade in summer, due to the remained residual content of sugar. At the same time preparing places for safely storage for such amount is very expensive with respect to the valueless of it. So the best way for getting rid of bagasse is converting it into an added value environmentally friendly material, especially till now the utilization of it is so limited. Since oil pollution became a serious concern, the issue of environmental cleaning arises. With the structure of sugarcane bagasse, which contains fiber and high content of carbon, it can be an adsorbent to adsorb the oil contamination from the water. The present study is a trail to introduce a new material for the purification of water systems to score two goals at once, the first is getting rid of that harmful waste safely, the second is converting it to a commercial valuable material for cleaning, and purifying the water from oil spills, and petroleum pollution. Introduced the new material proved very good performance, and higher efficiency than other similar materials available in the local market, in both closed and open systems. The introduced modified material can absorb 10 times its weight of oil, while don't absorb any water.

Keywords: environment, water resources, agricultural wastes, oil pollution control, sugarcane

Procedia PDF Downloads 164
430 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering

Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola

Abstract:

Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.

Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials

Procedia PDF Downloads 20
429 In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintain Within the Gut Microbiota and Its Potential Pathogenicity

Authors: Jordan Chamarande, Lisiane Cunat, Corentine Alauzet, Catherine Cailliez-Grimal

Abstract:

Gut microbiota (GM) is now considered a new organ mainly due to the microorganism’s specific biochemical interaction with its host. Although mechanisms underlying host-microbiota interactions are not fully described, it is now well-defined that cell surface molecules and structures of the GM play a key role in such relation. The study of surface structures of GM members is also fundamental for their role in the establishment of species in the versatile and competitive environment of the digestive tract and as a potential virulence factor. Among these structures are capsular polysaccharides (CPS), fimbriae, pili and lipopolysaccharides (LPS), all well-described for their central role in microorganism colonization and communication with host epithelium. The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and as a new potential biotherapeutic product. However, to the best of the authors’ knowledge, the cell surface molecules and structures of P. distasonis that allow its maintain within the GM are not identified. Moreover, although P. distasonis is strongly recognized as intestinal commensal species with benefits for its host, it has also been recognized as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of the capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-Typing classification in order to better understand and characterize the beneficial/pathogenic behaviour related to P. distasonis strains. In context, 2 different types of fimbriae, 3 of pilus and up to 14 capsular polysaccharide loci, have been identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-Type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed in P. distasonis adhesion capacities and its potential pathogenicity.

Keywords: gut microbiota, Parabacteroides distasonis, capsular polysaccharide, fimbriae, pilus, O-antigen, pathogenicity, probiotic, comparative genomics

Procedia PDF Downloads 63
428 Relationships of Functional Status and Subjective Health Status among Stable Chronic Obstructive Pulmonary Disease Patients Residing in the Community

Authors: Hee-Young Song

Abstract:

Background and objectives: In 2011, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) recommendations proposed a multidimensional assessment of patients’ conditions that included both functional parameters and patient-reported outcomes, with the aim to provide a comprehensive assessment of the disease, thus meeting both the needs of the patient and the role of the physician. However, few studies have evaluated patient-reported outcomes as well as objective functional assessments among individuals with chronic obstructive pulmonary disease (COPD) in clinical practice in Korea. This study was undertaken to explore the relationship between functional status assessed by the 6-minute walking distance (MWD) test and subjective health status reported by stable patients with COPD residing in community. Methods: A cross-sectional descriptive study was conducted with 118 stable COPD patients aged 69.4 years old and selected by a convenient sampling from an outpatient department of pulmonology in a tertiaryhospitals. The 6-MWD test was conducted according to standardized instructions. Participants also completed a constructed questionnaire including general characteristics, smoking history, dyspnea by modified medical research council (mMRC) scale, and health status by COPD assessment test (CAT). Anthropometric measurements were performed for body mass index (BMI). Medical records were reviewed to obtain disease-related characteristics including duration of the disease and forced expiratory volume in 1 second (FEV1). Data were analyzed using PASW statistics 20.0. Results: Mean FEV1% of participants was 63.51% and mean 6-MWD and CAT scores were 297.54m and 17.7, respectively. The 6-MWD and CAT showed significant negative correlations (r= -.280, p=.002); FEV1 and CAT did as well correlations (r= -.347, p < .001). Conclusions: Findings suggest that the better functional status an individual with COPD has, the better subjective health status is, and provide the support for using patient-reported outcomes along with functional parameters to facilitate comprehensive assessment of COPD patients in real clinical practices.

Keywords: chronic obstructive pulmonary disease, COPD assessment test, functional status, patient-reported outcomes

Procedia PDF Downloads 324