Search results for: cement%20admixtures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 769

Search results for: cement%20admixtures

769 Effect of Nano-CaCO₃ Addition on the Nano-Mechanical Properties of Cement Paste

Authors: Muzeyyen Balcikanli, Selma Ozaslan, Osman Sahin, Burak Uzal, Erdogan Ozbay

Abstract:

In this study, the effect of nano-CaCO3 replacement with cement on the nano-mechanical properties of cement paste was investigated. Hydrophobic and hydrophilic characteristics Two types of nano CaCO3 were replaced with Portland cement at 0, 0.5 and 1%. Water to (cement+nano-CaCO3) ratio was kept constant at 0.5 for all mixtures. 36 indentations were applied on each cement paste, and the values of nano-hardness and elastic modulus of cement pastes were determined from the indentation depth-load graphs. Then, by getting the average of them, nano-hardness and elastic modulus were identified for each mixture. Test results illustrate that replacement of hydrophilic n-CaCO3 with cement lead to a significant increase in nano-mechanical properties, however, replacement of hydrophobic n-CaCO3 with cement worsened the nano-mechanical properties considerably.

Keywords: nanoindenter, CaCO3, nano-hardness, nano-mechanical properties

Procedia PDF Downloads 240
768 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars

Authors: Krzysztof Zieliński, Dariusz Kierzek

Abstract:

The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.

Keywords: alumina cement, immediate setting, compression strength, adhesion to substrate

Procedia PDF Downloads 102
767 The Effect of Soil Fractal Dimension on the Performance of Cement Stabilized Soil

Authors: Nkiru I. Ibeakuzie, Paul D. J. Watson, John F. Pescatore

Abstract:

In roadway construction, the cost of soil-cement stabilization per unit area is significantly influenced by the binder content, hence the need to optimise cement usage. This research work will characterize the influence of soil fractal geometry on properties of cement-stabilized soil, and strive to determine a correlation between mechanical proprieties of cement-stabilized soil and the mass fractal dimension Dₘ indicated by particle size distribution (PSD) of aggregate mixtures. Since strength development in cemented soil relies not only on cement content but also on soil PSD, this study will investigate the possibility of reducing cement content by changing the PSD of soil, without compromising on strength, reduced permeability, and compressibility. A series of soil aggregate mixes will be prepared in the laboratory. The mass fractal dimension Dₘ of each mix will be determined from sieve analysis data prior to stabilization with cement. Stabilized soil samples will be tested for strength, permeability, and compressibility.

Keywords: fractal dimension, particle size distribution, cement stabilization, cement content

Procedia PDF Downloads 175
766 The Effects of Different Types of Cement on the Permeability of Deep Mixing Columns

Authors: Mojebullah Wahidy, Murat Olgun

Abstract:

In this study, four different types of cement are used to investigate the permeability of DMC (Deep Mixing Column) in the clay. The clay used in this research is in the kaolin group, and the types of cement are; CEM I 42.5.R. normal portland cement, CEM II/A-M (P-L) pozzolan doped cement, CEM III/A 42.5 N blast furnace slag cement and DMFC-800 fine-grained portland cement. Firstly, some rheological tests are done on every cement, and a 0.9 water/cement ratio is selected as the appropriate ratio. This ratio is used to prepare the small-scale DMCs for all types of cement with %6, %9, %12, and %15, which are determined as the dry weight of the clay. For all the types of cement, three samples were prepared in every percentage and were kept on curing for 7, 14, and 28 days for permeability tests. As a result of the small-scale DMCs, permeability tests, a %12 selected for big-scale DMCs. A total of five big scales DMC were prepared by using a %12-cement and were kept for 28 days curing for permeability tests. The results of the permeability tests show that by increasing the cement percentage and curing time of all DMCs, the permeability coefficient (k) is decreased. Despite variable results in different cement ratios and curing time in general, samples treated by DMFC-800 fine-grained cement have the lowest permeability coefficient. Samples treated with CEM II and CEM I cement types were the second and third lowest permeable samples. The highest permeability coefficient belongs to the samples that were treated with CEM III cement type.

Keywords: deep mixing column, rheological test, DMFC-800, permeability test

Procedia PDF Downloads 35
765 Evaluating Cement Brands in Southwestern Nigeria for Local Construction Industries

Authors: Olonade, K. A., Jaji, M. B., Rasak, S. A., Ojo, B. A., Adefuye, O. E.

Abstract:

Different brands of cement are used in Nigeria by local contractors for various works without prior knowledge of their performance. Qualities of common cement brands in Southwestern Nigeria were investigated. Elephant, Dangote, Gateway, Purechem, Burham and Five Star cements were selected for the study. Fineness, setting times, chemical composition, compressive and flexural strengths of each of the cement brands were determined. The results showed that all the cement brands contained major oxides in amount within the acceptable values except that the sulphite content of Gateway fell outside the range. Strength comparison indicated that Burham had highest flexural and compressive strength, followed by Elephant and then Dangote while Gateway had the lowest strength at 28 days. It was observed that Dangote cement set earlier than other cement brands. The study has shown that there were differences in performance of the selected cement brands and concluded that the choice of cement brand should be based on the expected performance.

Keywords: cement brand, compressive strength, flexural strength, local construction industries

Procedia PDF Downloads 444
764 The Effect of the Incorporation of Glass Powder into Cement Sorel

Authors: Rim Zgueb, Noureddine Yacoubi

Abstract:

The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement.

Keywords: cement sorel, photothermal deflection technique, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 374
763 Oil Palm Shell Ash: Cement Mortar Mixture and Modification of Mechanical Properties

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of seven days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.

Keywords: minerals, additive, flexural strength, compressive strength, modulus of elasticity

Procedia PDF Downloads 324
762 Examining the Impact of Degrees of Slag Replacement on the Carbonation Process of Slag-Blended Cement

Authors: Geta Bekalu Belayneh, Solmoi Park

Abstract:

This study examines the role of slag in the process of hydration and carbonation of carbonation-cured slag cement. Carbonation-cured slag-blended cement paste samples were prepared with varying slag percentages of 0%, 10%, 30%, and 50%. The curing process lasted for a maximum of 28 days. The findings demonstrated that the carbonation depth increased as the curing period was extended, and a larger slag percentage promoted a more extensive penetration of carbonation. The degree of belite reaction was greatly enhanced in the slag-blended cement, resulting in an increased ability to bind CO₂ in the blended cement. These findings enhance comprehension of the behaviour of blended cement produced through carbonation-curing, facilitating the advancement of more environmentally friendly and long-lasting concrete constructions.

Keywords: carbonation curing, blast furnace slag, characterization, Portland cement

Procedia PDF Downloads 27
761 The Increasing of Unconfined Compression Strength of Clay Soils Stabilized with Cement

Authors: Ali̇ Si̇nan Soğanci

Abstract:

The cement stabilization is one of the ground improvement method applied worldwide to increase the strength of clayey soils. The using of cement has got lots of advantages compared to other stabilization methods. Cement stabilization can be done quickly, the cost is low and creates a more durable structure with the soil. Cement can be used in the treatment of a wide variety of soils. The best results of the cement stabilization were seen on silts as well as coarse-grained soils. In this study, blocks of clay were taken from the Apa-Hotamış conveyance channel route which is 125km long will be built in Konya that take the water with 70m3/sec from Mavi tunnel to Hotamış storage. Firstly, the index properties of clay samples were determined according to the Unified Soil Classification System. The experimental program was carried out on compacted soil specimens with 0%, 7 %, 15% and 30 % cement additives and the results of unconfined compression strength were discussed. The results of unconfined compression tests indicated an increase in strength with increasing cement content.

Keywords: cement stabilization, unconfined compression test, clayey soils, unified soil classification system.

Procedia PDF Downloads 385
760 Viability of Eggshells Ash Affecting the Setting Time of Cement

Authors: Fazeera Ujin, Kamran Shavarebi Ali, Zarina Yasmin Hanur Harith

Abstract:

This research paper reports on the feasibility and viability of eggshells ash and its effects on the water content and setting time of cement. An experiment was carried out to determine the quantity of water required in order to follow standard cement paste of normal consistency in accordance with MS EN 196-3:2007. The eggshells ash passing the 90µm sieve was used in the investigation. Eggshells ash with percentage of 0%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% were constituted to replace the cement. Chemical properties of both eggshells ash and cement are compared. From the results obtained, both eggshells ash and cement have the same chemical composition and primary composition which is the calcium compounds. Results from the setting time show that by adding the eggshells ash to the cement, the setting time of the cement decreases. In short, the higher amount of eggshells ash, the faster the rate of setting and apply to all percentage of eggshells ash that were used in this investigation. Both initial and final setting times fulfill the setting time requirements by Malaysian Standard. Hence, it is suggested that eggshells ash can be used as an admixture in concrete mix.

Keywords: construction materials, eggshells ash, solid waste, setting time

Procedia PDF Downloads 351
759 The Mechanical Behavior of a Chemically Stabilized Soil

Authors: I Lamri, L Arabet, M. Hidjeb

Abstract:

The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold.

Keywords: cement, compression strength, shear stress, cohesion, angle of internal friction

Procedia PDF Downloads 449
758 Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin

Authors: M. Boháč, R. Novotný, F. Frajkorová, R. S. Yadav, T. Opravil, M. Palou

Abstract:

Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10 % of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes.

Keywords: calorimetry, cement, metakaolin fineness, rheology, strength

Procedia PDF Downloads 373
757 Characterization of Cement Concrete Pavement

Authors: T. B. Anil Kumar, Mallikarjun Hiremath, V. Ramachandra

Abstract:

The present experimental investigation deals with the quality performance analysis of cement concrete with 0, 15 and 25% fly ash and 0, 0.2, 0.4 and 0.6% of polypropylene fibers by weight of cement. The various test parameters like workability, unit weight, compressive strength, flexural strength, split tensile strength and abrasion resistance are detailed in the analysis. The compressive strength of M40 grade concrete attains higher value by the replacement of cement by 15% fly ash and at 0.4% PP after 28 and 56 days of curing. Higher flexural strength of concrete was observed by the replacement of cement by 15% fly ash with 0.2% PP after 28 and 56 days of curing. Similarly, split tensile strength value also increases and attains higher value by the replacement of cement by 15% fly ash with 0.4% PP after 28 and 56 days of curing. The percentage of wear gets reduced to 30 to 33% by the addition of fibers at 0.2%, 0.4% and 0.6% in cement concrete replaced by 15 and 25% fly ash. Hence, it is found that the pavement thickness gets reduced up to 20% when compared with plain concrete slab by the 15% fly ash treated with 0.2% PP fibers and also reduced up to 27% of surface course cost.

Keywords: cement, fly ash, polypropylene fiber, pavement design, cost analysis

Procedia PDF Downloads 359
756 Effect of Rice Husk Ash and Metakaolin on the Compressive Strengths of Ternary Cement Mortars

Authors: Olubajo Olumide Olu

Abstract:

This paper studies the effect of Metakaolin (MK) and Rice husk ash (RHA) on the compressive strength of ternary cement mortar at replacement level up to 30%. The compressive strength test of the blended cement mortars were conducted using Tonic Technic compression and machine. Nineteen ternary cement mortars were prepared comprising of ordinary Portland cement (OPC), Rice husk ash (RHA) and Metakaolin (MK) at different proportion. Ternary mortar prisms in which Portland cement was replaced by up to 30% were tested at various age; 2, 7, 28 and 60 days. Result showed that the compressive strength of the cement mortars increased as the curing days were lengthened for both OPC and the blended cement samples. The ternary cement’s compressive strengths showed significant improvement compared with the control especially beyond 28 days. This can be attributed to the slow pozzolanic reaction resulting from the formation of additional CSH from the interaction of the residual CH content and the silica available in the Metakaolin and Rice husk ash, thus providing significant strength gain at later age. Results indicated that the addition of metakaolin with rice husk ash kept constant was found to lead to an increment in the compressive strength. This can either be attributed to the high silica/alumina contribution to the matrix or the C/S ratio in the cement matrix. Whereas, increment in the rice husk ash content while metakaolin was held constant led to an increment in the compressive strength, which could be attributed to the reactivity of the rice husk ash followed by decrement owing to the presence of unburnt carbon in the RHA matrix. The best compressive strength results were obtained at 10% cement replacement (5% RHA, 5% MK); 15% cement replacement (10% MK and 5% RHA); 20% cement replacement (15% MK and 5% RHA); 25% cement replacement (20% MK and 5% RHA); 30% cement replacement (10%/20% MK and 20%/10% RHA). With the optimal combination of either 15% and 20% MK with 5% RHA giving the best compressive strength of 40.5MPa.

Keywords: metakaolin, rice husk ash, compressive strength, ternary mortar, curing days

Procedia PDF Downloads 304
755 Influence of Gum Acacia Karroo on Some Mechanical Properties of Cement Mortars and Concrete

Authors: Mbugua R. N., Salim R. W., Ndambuki J. M.

Abstract:

Natural admixtures provide concrete with enhanced properties but their processing end up making them very expensive resulting in increase to cost of concrete. In this study the effect of Gum from Acacia Karroo (GAK) as set-retarding admixture in cement pastes was studied. The possibility of using GAK as water reducing admixture both in cement mortar concrete was also investigated. Cement pastes with different dosages of GAK were prepared to measure the setting time using different dosages. Compressive strength of cement mortars with 0.7, 0.8 and 0.9% weight of cement and w/c ratio of 0.5 were compared to those with water cement (w/c) ratio of 0.44 but same dosage of GAK. Concrete samples were prepared using higher dosages of GAK (1, 2 and 3\% wt of cement) and a water bidder (w/b) of 0.61 were compared to those with the same GAK dosage but with reduced w/b ratio. There was increase in compressive strength of 9.3% at 28 days for cement mortar samples with 0.9% dosage of GAK and reduced w/c ratio.

Keywords: compressive strength, Gum Acacia Karroo, retarding admixture, setting time, water-reducing admixture

Procedia PDF Downloads 274
754 Investigation of the Decisive Factors on the Slump Loss: A Case Study of Cement Factors (Portland Cement Type 2)

Authors: M. B. Ahmadi, A. A. Kaffash B., B. Mobaraki

Abstract:

Slump loss, which refers to the gradual reduction of workability and the amount of slump in fresh concrete over time, is one of the significant challenges in the ready-mixed concrete industry. Therefore, having accurate knowledge of the factors affecting slump loss is a crucial solution in this field. In this paper, an attempt was made to investigate the effect of cement produced by different units on the slump of concrete in a laboratory setting. For this purpose, 12 cement samples were prepared from 6 different production units. Physical and chemical tests were performed on the cement samples. Subsequently, a laboratory concrete mix with a slump of 13 ± 1 cm was prepared with each cement sample, and the slump was measured at 0, 15, 30, 45, and 60 minutes. Although the environmental factors, mix design specifications, and execution conditions—factors that significantly influence the slump loss trend—were constant in all 12 laboratory concrete mixes, the slump loss trends differed among them. These trends were categorized based on the results, and the relationship between the slump loss percentage in 60 minutes, the water-cement ratio, and the LOI and K2O values of different cements were introduced.

Keywords: concrete, slump loss, portland cement, efficiency

Procedia PDF Downloads 12
753 Experimental Investigations on Ultimate Bearing Capacity of Soft Soil Improved by a Group of End-Bearing Column

Authors: Mamata Mohanty, J. T. Shahu

Abstract:

The in-situ deep mixing is an effective ground improvement technique which involves columnar inclusion into soft ground to increase its bearing capacity and reduce settlement. The first part of the study presents the results of unconfined compression on cement-admixed clay prepared at different cement content and subjected to varying curing periods. It is found that cement content is a prime factor controlling the strength of the cement-admixed clay. Besides cement content, curing period is important parameter that adds to the strength of cement-admixed clay. Increase in cement content leads to significant increase in Unconfined Compressive Strength (UCS) values especially at cement contents greater than 8%. The second part of the study investigated the bearing capacity of the clay ground improved by a group of end-bearing column using model tests under plain-strain condition. This study mainly focus to examine the effect of cement contents on the ultimate bearing capacity and failure stress of the improved clay ground. The study shows that the bearing capacity of the improved ground increases significantly with increase in cement contents of the soil-cement columns. A considerable increase in the stiffness of the model ground and failure stress was observed with increase in cement contents.

Keywords: bearing capacity, cement content, curing time, unconfined compressive strength, undrained shear strength

Procedia PDF Downloads 138
752 Stabilization of Medical Waste Incineration Fly Ash in Cement Mortar Matrix

Authors: Tanvir Ahmed, Musfira Rahman, Rumpa Chowdhury

Abstract:

We performed laboratory experiments to assess the suitability of using medical waste incineration fly ash in cement as a construction material based on the engineering properties of fly ash-cement matrix and the leaching potential of toxic heavy metals from the stabilized mix. Fly ash-cement samples were prepared with different proportions of fly ash (0%, 5%, 10%, 15% and 20% by weight) in the laboratory controlled conditions. The solidified matrix exhibited a compressive strength from 3950 to 4980 psi when fly ash is mixed in varying proportions. The 28-day compressive strength has been found to decrease with the increase in fly ash content, but it meets the minimum requirement of compressive strength for cement-mortar. Soundness test results for cement-mortar mixes having up to 15% fly ash. Final and initial setting times of cement have been found to generally increase with fly ash content. Water requirement (for normal consistency) also increased with the increase in fly ash content in cement. Based on physical properties of the cement-mortar matrix it is recommended that up to 10% (by weight) medical waste incineration fly ash can be incorporated for producing cement-mortar of optimum quality. Leaching behaviours of several targeted heavy metals (As, Cu, Ni, Cd, Pb, Hg and Zn) were analyzed using Toxicity Characteristics Leaching Procedure (TCLP) on fly ash and solidified fly ash-cement matrix. It was found that the leached concentrations of As, Cu, Cd, Pb and Zn were reduced by 80.13%, 89.47%, 33.33% and 23.9% respectively for 10% fly ash incorporated cement-mortar matrix compared to that of original fly ash. The leached concentrations of heavy metals were from the matrix were far below the EPA land disposal limits. These results suggest that the solidified fly ash incorporated cement-mortar matrix can effectively confine and immobilize the heavy metals contained in the fly ash.

Keywords: cement-mortar, fly ash, leaching, waste management

Procedia PDF Downloads 127
751 The Use of Secondary Crystallization in Cement-Based Composites

Authors: Nikol Žižková, Šárka Keprdová, Rostislav Drochytka

Abstract:

The paper focuses on the study of the properties of cement-based composites produced using secondary crystallization (crystalline additive). In this study, cement mortar made with secondary crystallization was exposed to an aggressive environment and the influence of secondary crystallization on the degradation of the cementitious composite was investigated. The results indicate that the crystalline additive contributed to increasing the resistance of the cement-based composite to the attack of the selected environments (sodium sulphate solution and ammonium chloride solution).

Keywords: secondary crystallization, cement-based composites, durability, degradation of the cementitious composite

Procedia PDF Downloads 358
750 Characteristics of Clayey Subgrade Soil Mixed with Cement Stabilizer

Authors: Manju, Praveen Aggarwal

Abstract:

Clayey soil is considered weakest subgrade soil from civil engineering point of view under moist condition. These swelling soils attract and absorb water and losses their strength. Certain inherent properties of these clayey soils need modification for their bulk use in the construction of highways/runways pavements and embankments, etc. In this paper, results of clayey subgrade modified with cement stabilizer is presented. Investigation includes evaluation of specific gravity, Atterberg’s limits, grain size distribution, maximum dry density, optimum moisture content and CBR value of the clayey soil and cement treated clayey soil. A series of proctor compaction and CBR tests (un-soaked and soaked) are carried out on clayey soil and clayey soil mixed with cement stabilizer in 2%, 4% & 6% percentages to the dry weight of soil. In CBR test, under soaked condition best results are obtained with 6% of cement. However, the difference between the CBR value by addition of 4% and 6% cement is not much. Therefore from economical consideration addition of 4% cement gives the best result after soaking period of 90 days.

Keywords: clayey soil, cement, maximum dry density, optimum moisture content, California bearing ratio

Procedia PDF Downloads 299
749 Correlation between Initial Absorption of the Cover Concrete, the Compressive Strength and Carbonation Depth

Authors: Bouzidi Yassine

Abstract:

This experimental work was aimed to characterize the porosity of the concrete cover zone using the capillary absorption test, and establish the links between open porosity characterized by the initial absorption, the compressive strength and carbonation depth. Eight formulations of workability similar made from ordinary Portland cement (CEM I 42.5) and a compound cement (CEM II/B 42.5) four of each type are studied. The results allow us to highlight the effect of the cement type. Indeed, concretes-based cement CEM II/B 42.5 carbonatent approximately faster than concretes-based cement CEM I 42.5. This effect is attributed in part to the lower content of portlandite Ca(OH)2 of concretes-based cement CEM II/B 42.5, but also the impact of the cement type on the open porosity of the cover concrete. The open porosity of concretes-based cement CEM I 42.5 is lower than that of concretes-based cement CEM II/B 42.5. The carbonation depth is a decreasing function of the compressive strength at 28 days and increases with the initial absorption. Through the results obtained, correlations between the quantity of water absorbed in 1 h, the carbonation depth at 180 days and the compressive strength at 28 days were performed in an acceptable manner.

Keywords: initial absorption, cover concrete, compressive strength, carbonation depth

Procedia PDF Downloads 296
748 Mechanical Study Material on Low Environmental Impact

Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche

Abstract:

Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).

Keywords: FAD, porthland, flexural strength, compressive strength, DRX

Procedia PDF Downloads 304
747 Chemical Analysis of Available Portland Cement in Libyan Market Using X-Ray Fluorescence

Authors: M. A. Elbagermia, A. I. Alajtala, M. Alkerzab

Abstract:

This study compares the quality of different brands of Portland Cement (PC) available in Libyan market. The amounts of chemical constituents like SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, and Lime Saturation Factor (LSF) were determined in accordance with Libyan (L.S.S) and Amrican (A.S.S) Standard Specifications. All the cement studies were found to be good for concrete work especially where no special property is required. The chemical and mineralogical analyses for studied clinker samples show that the dominant phases composition are C3S and C2S while the C3A and C4AF are less abundant.

Keywords: Portland cement, chemical composition, Libyan market, X-Ray fluorescence

Procedia PDF Downloads 310
746 The Use of Cement Dust in the Glass Industry

Authors: Magda Kosmal, Anna A. Kuśnierz, Joanna Rybicka-Łada

Abstract:

In the case of waste glass cullet, a fully functioning recycling system for individual glass industries was developed, while recycling of cement dust encounters a number of difficulties and is conducted to a limited extent in the packaging and flat glass industry. The aim of the project was to examine the possibility of using dust arising in cement plants in the process of melting various types of glasses. Dust management has a positive effect on the aspect of environmental protection and ecology. Sets have been designed, and the parameters of the melting process have been optimized. Glasses were obtained with the addition of selected cement dust on a laboratory scale, using DTA, XRD, SEM tests, and a gradient furnace was conducted to check the tendency to crystallization.

Keywords: cement dust, crystallization, glass, XRD, SEM

Procedia PDF Downloads 26
745 Comparison of the Hydration Products of Commercial and Experimental Calcium Silicate Cement: The Preliminary Observational Study

Authors: Seok Woo Chang

Abstract:

Aim: The objective of this study was to compare and evaluate the hydration products of commercial and experimental calcium silicate cement. Materials and Methods: The commercial calcium silicate cement (ProRoot MTA, Dentsply) and experimental calcium silicate cement (n=10) were mixed with distilled water (water/powder ratio = 20 w/w) and stirred at room temperature for 10 hours. These mixtures were dispersed on wafer and dried for 12 hours at room temperature. Thereafter, the dried specimens were examined with Scanning Electron Microscope (SEM). Electron Dispersive Spectrometry (EDS) was also carried out. Results: The commercial calcium silicate cement (ProRoot MTA) and experimental calcium silicate cement both showed precipitation of rod-like and globule-like crystals. Based on EDS analysis, these precipitates were supposed to be calcium hydroxide or calcium silicate hydrates. The degree of formation of these precipitates was higher in commercial MTA. Conclusions: Based on the results, both commercial and experimental calcium silicate cement had ability to produce calcium hydroxide or calcium silicate hydrate precipitates.

Keywords: calcium silicate cement, ProRoot MTA, precipitation, calcium hydroxide, calcium silicate hydrate

Procedia PDF Downloads 224
744 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon Nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of Multiwall Carbon Nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28, and 35 days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.

Keywords: carbon nanotubes, Portland cement, composite, compressive strength

Procedia PDF Downloads 388
743 Production Cement Mortar and Concrete by Using Nano Clay

Authors: Mohammad Ashraf, Kawther Mohamed

Abstract:

This research tackles a new kind of additions (Nano Clay) and its effect on the features of concrete and both fresh and hardened cement mortar, as well as setting an optimal percentage of adding it to achieve the desired results and obtain on a strong concrete and mortar can be used for skyscrapers. The cementations additions are mineral materials in the form of a fine powder, added to concrete or cement mortar as partly cement substitutes, which means to be added instead of an equivalent amount of cement in order to improve and enhance some features of concrete or both the newly made and hardened cementations materials.

Keywords: nano clay in structure engineering, nanotechnology in construction industry, advanced additions in concrete, special concrete for skyscrapers

Procedia PDF Downloads 286
742 Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry

Authors: Azadeh Askarinejad, Parham Hayati, Reza Parchami, Parisa Hayati

Abstract:

One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs.

Keywords: nanofabrication, cement replacement materials, activation, concrete

Procedia PDF Downloads 570
741 Experimental Investigation of Cementitious Materials in Low Strength Range for Sustainability and Affordability

Authors: Mulubrhan Berihu, Supratic Gupta, Adisu Demmewoz

Abstract:

Due to the design versatility, availability, and cost-efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix, is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economic and environmental benefits besides the reduction of CO2 emission from cement production. This paper aims to document the effect on the strength property of concrete due to the use of low cement by maximizing supplementary cementitious materials like fly ash. The amount of cement content was below 250 kg/m3 and in all the mixes, the quantity powder (cement + fly ash) is almost kept at about 500 kg. According to this seven different cement content (250 kg/m3, 195 kg/m3, 150 kg/m3, 125 kg/m3, 100 kg/m3, 85 kg/m3, 70 kg/m3) with different amount of replacement of SCMs was conducted. The mix proportion was prepared by keeping the water content constant and varying the cement content, SCMs and water to binder ratio. Based on the different mix proportions of pozzolana (Fly ash), a range of mix designs was formulated. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicate that strength is a function of w/b.

Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs

Procedia PDF Downloads 143
740 Investigating the Effect of Using Amorphous Silica Ash Obtained from Rice Husk as a Partial Replacement of Ordinary Portland Cement on the Mechanical and Microstructure Properties of Cement Paste and Mortar

Authors: Aliyu Usman, Muhaammed Bello Ibrahim, Yusuf D. Amartey, Jibrin M. Kaura

Abstract:

This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the mechanical and microstructure properties of cement paste and mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 3 percent, 5 percent, 8 percent and 10 percent. These partial replacements were used to produce Cement-ASA paste and Cement-ASA mortar. ASA was found to contain all the major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. Consistency of Cement-ASA paste was found to increase with increase in ASA replacement. Likewise, the setting time and soundness of the Cement-ASA paste also increases with increase in ASA replacements. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) at 2, 7, 14 and 28 days curing and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel platens) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days. There is an increase in the drying shrinkage of Cement-ASA mortar with curing time, it was also observed that the drying shrinkages for all the curing ages were greater than the control specimen all of which were greater than the code recommendation of less than 0.03%. The scanning electron microscope (SEM) was used to study the Cement-ASA mortar microstructure and to also look for hydration product and morphology.

Keywords: amorphous silica ash, cement mortar, cement paste, scanning electron microscope

Procedia PDF Downloads 384