Search results for: breath acetone concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5064

Search results for: breath acetone concentration

5034 Synthesis of Green Fuel Additive from Waste Bio-Glycerol

Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai

Abstract:

Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-acetone, bio-glycerol, acetylation, solketal

Procedia PDF Downloads 234
5033 Application of Failure Mode and Effects Analysis (FMEA) on the Virtual Process Hazard Analysis of Acetone Production Process

Authors: Princes Ann E. Prieto, Denise F. Alpuerto, John Rafael C. Unlayao, Neil Concibido, Monet Concepcion Maguyon-Detras

Abstract:

Failure Mode and Effects Analysis (FMEA) has been used in the virtual Process Hazard Analysis (PHA) of the Acetone production process through the dehydrogenation of isopropyl alcohol, for which very limited process risk assessment has been published. In this study, the potential failure modes, effects, and possible causes of selected major equipment in the process were identified. During the virtual FMEA mock sessions, the risks in the process were evaluated and recommendations to reduce and/or mitigate the process risks were formulated. The risk was estimated using the calculated risk priority number (RPN) and was classified into four (4) levels according to their effects on acetone production. Results of this study were also used to rank the criticality of equipment in the process based on the calculated criticality rating (CR). Bow tie diagrams were also created for the critical hazard scenarios identified in the study.

Keywords: chemical process safety, failure mode and effects analysis (FMEA), process hazard analysis (PHA), process safety management (PSM)

Procedia PDF Downloads 100
5032 Antimicrobial Activity of Nauclea lotifolia (African Peach) Crude Extracts against Some Pathogenic Microorganism

Authors: Muhammad Isah Legbo

Abstract:

The phytochemical screening and antimicrobial activity of Nauclea lotifolia fruit, leaf and stem-bark extracts at various concentration of (20.0,10.0, 5.0, and 2.5 mg/ml) were evaluated against some pathogenic microorganisms such as Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Staphylococcus aureus, Aspergillus niger and Candida albicans. The antimicrobial activity was assayed using agar well diffusion method. The result obtained show appreciable inhibitory effort of acetone, aqueous and methanolic extracts of Nauclea lotifolia. However, result obtained was less active compared to that of the control antibiotic (Ciprofloxacillin). The minimum inhibitory concentration (MIC) was determined using serial doubling dilution method and ranged from 5.0-10.0mg/ml, while the minimum bactericidal concentration (MBC) was determined by plating various dilution of extracts without turbidity and the result ranged from 5.0-7.5mg/ml. The phytochemical screening revealed the presence of alkaloid, anthraquinones, flavonoids, resin, steroid and saponin. The activities of the plant extract therefore justify their utilization in the treatment of various ailments associated with the test organism.

Keywords: Nauclea, lotifolia, antimicrobial, pathogens, saponin, extract

Procedia PDF Downloads 374
5031 Liquid Phase Catalytic Dehydrogenation of Secondary Alcohols to Ketone

Authors: Anıl Dinçer, Dilek Duranoğlu

Abstract:

Ketones, which are widely used as solvent and chemical intermediates in chemical process industry, are commercially produced by using catalytic dehydrogenation of secondary alcohols at higher temperature (300-500ºC), and pressure (1-5 bar). Although it is possible to obtain high conversion values (60-87%) via gas phase catalytic dehydrogenation, working high temperature and pressure can result in side reactions and shorten the catalyst life. In order to overcome these challenges, catalytic dehydrogenation in the presence of an appropriate liquid solvent has been started to use. Hence, secondary alcohols can be converted to respective ketones at relatively low temperature (150-200ºC) under atmospheric pressure. In this study, methyl ethyl ketone and acetone was produced via catalytic dehydrogenation of appropriate secondary alcohols (isopropyl alcohol and sec-butyl alcohol) in the presence of liquid solvent at 160-190ºC. Obtained methyl ethyl ketone and acetone were analyzed by using FTIR and GC spectrometer. Effects of temperature, amount of catalyst and solvent on conversion and reaction rate were investigated. Optimum process conditions, which gave high conversion and reaction rate, were determined. According to GC results, 70% of secondary butyl alcohol and 42% of isopropyl alcohol was converted to related ketone (methyl ethyl ketone and acetone, respectively) at optimum process conditions. After distillation, 99.13% methyl ethyl ketone and 99.20% acetone was obtained. Consequently, liquid phase dehydrogenation process, which can compete with commercial gas phase process, was developed.

Keywords: dehydrogenation, liquid phase, methyl ethyl ketone, secondary alcohol

Procedia PDF Downloads 260
5030 Antioxidant Activity of Aristolochia longa L. Extracts

Authors: Merouani Nawel, Belhattab Rachid

Abstract:

Aristolochia longa L. (Aristolochiacea) is a native plant of Algeria used in traditional medicine. This study was devoted to the determination of polyphenols, flavonoids, and condensed tannins contents of Aristolochia longa L. after their extraction by using various solvents with different polarities (methanol, acetone and distilled water). These extracts were prepared from stem, leaves, fruits and rhizome. The antioxidant activity was determined using three in vitro assays methods: scavenging effect on DPPH, the reducing power assay and ẞ-carotene bleaching inhibition (CBI). The results obtained indicate that the acetone extracts from the aerial parts presented the highest contents of polyphenols. The results of The antioxidant activity showed that all extracts of Aristolochia longa L., prepared using different solvent, have diverse antioxidant capacities. However, the aerial parts methanol extract exhibited the highest antioxidant capacity of DPPH and reducing power (Respectively 55,04ug/ml±1,29 and 0,2 mg/ml±0,019 ). Nevertheless, the aerial parts acetone extract showed the highest antioxidant capacity in the test of ẞ-carotene bleaching inhibition with 57%. These preliminary results could be used to justify the traditional use of this plant and their bioactive substances could be exploited for therapeutic purposes such as antioxidant and antimicrobial.

Keywords: aristolochia longa l., polyphenols, flavonoids, condensed tannins, antioxidant activity

Procedia PDF Downloads 211
5029 Fabricating Method for Complex 3D Microfluidic Channel Using Soluble Wax Mold

Authors: Kyunghun Kang, Sangwoo Oh, Yongha Hwang

Abstract:

PDMS (Polydimethylsiloxane)-based microfluidic device has been recently applied to area of biomedical research, tissue engineering, and diagnostics because PDMS is low cost, nontoxic, optically transparent, gas-permeable, and especially biocompatible. Generally, PDMS microfluidic devices are fabricated by conventional soft lithography. Microfabrication requires expensive cleanroom facilities and a lot of time; however, only two-dimensional or simple three-dimensional structures can be fabricated. In this study, we introduce fabricating method for complex three-dimensional microfluidic channels using soluble wax mold. Using the 3D printing technique, we firstly fabricated three-dimensional mold which consists of soluble wax material. The PDMS pre-polymer is cast around, followed by PDMS casting and curing. The three-dimensional casting mold was removed from PDMS by chemically dissolved with methanol and acetone. In this work, two preliminary experiments were carried out. Firstly, the solubility of several waxes was tested using various solvents, such as acetone, methanol, hexane, and IPA. We found the combination between wax and solvent which dissolves the wax. Next, side effects of the solvent were investigated during the curing process of PDMS pre-polymer. While some solvents let PDMS drastically swell, methanol and acetone let PDMS swell only 2% and 6%, respectively. Thus, methanol and acetone can be used to dissolve wax in PDMS without any serious impact. Based on the preliminary tests, three-dimensional PDMS microfluidic channels was fabricated using the mold which was printed out using 3D printer. With the proposed fabricating technique, PDMS-based microfluidic devices have advantages of fast prototyping, low cost, optically transparence, as well as having complex three-dimensional geometry. Acknowledgements: This research was supported by Supported by a Korea University Grant and Basic Science Research Program through the National Research Foundation of Korea(NRF).

Keywords: microfluidic channel, polydimethylsiloxane, 3D printing, casting

Procedia PDF Downloads 247
5028 Indoor Air Pollution of the Flexographic Printing Environment

Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević

Abstract:

The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.

Keywords: flexographic printing, indoor air, multiple regression analysis, pollution emission

Procedia PDF Downloads 162
5027 Clinical Validation of C-PDR Methodology for Accurate Non-Invasive Detection of Helicobacter pylori Infection

Authors: Suman Som, Abhijit Maity, Sunil B. Daschakraborty, Sujit Chaudhuri, Manik Pradhan

Abstract:

Background: Helicobacter pylori is a common and important human pathogen and the primary cause of peptic ulcer disease and gastric cancer. Currently H. pylori infection is detected by both invasive and non-invasive way but the diagnostic accuracy is not up to the mark. Aim: To set up an optimal diagnostic cut-off value of 13C-Urea Breath Test to detect H. pylori infection and evaluate a novel c-PDR methodology to overcome of inconclusive grey zone. Materials and Methods: All 83 subjects first underwent upper-gastrointestinal endoscopy followed by rapid urease test and histopathology and depending on these results; we classified 49 subjects as H. pylori positive and 34 negative. After an overnight, fast patients are taken 4 gm of citric acid in 200 ml water solution and 10 minute after ingestion of the test meal, a baseline exhaled breath sample was collected. Thereafter an oral dose of 75 mg 13C-Urea dissolved in 50 ml water was given and breath samples were collected upto 90 minute for 15 minute intervals and analysed by laser based high precisional cavity enhanced spectroscopy. Results: We studied the excretion kinetics of 13C isotope enrichment (expressed as δDOB13C ‰) of exhaled breath samples and found maximum enrichment around 30 minute of H. pylori positive patients, it is due to the acid mediated stimulated urease enzyme activity and maximum acidification happened within 30 minute but no such significant isotopic enrichment observed for H. pylori negative individuals. Using Receiver Operating Characteristic (ROC) curve an optimal diagnostic cut-off value, δDOB13C ‰ = 3.14 was determined at 30 minute exhibiting 89.16% accuracy. Now to overcome grey zone problem we explore percentage dose of 13C recovered per hour, i.e. 13C-PDR (%/hr) and cumulative percentage dose of 13C recovered, i.e. c-PDR (%) in exhaled breath samples for the present 13C-UBT. We further explored the diagnostic accuracy of 13C-UBT by constructing ROC curve using c-PDR (%) values and an optimal cut-off value was estimated to be c-PDR = 1.47 (%) at 60 minute, exhibiting 100 % diagnostic sensitivity , 100 % specificity and 100 % accuracy of 13C-UBT for detection of H. pylori infection. We also elucidate the gastric emptying process of present 13C-UBT for H. pylori positive patients. The maximal emptying rate found at 36 minute and half empting time of present 13C-UBT was found at 45 minute. Conclusions: The present study exhibiting the importance of c-PDR methodology to overcome of grey zone problem in 13C-UBT for accurate determination of infection without any risk of diagnostic errors and making it sufficiently robust and novel method for an accurate and fast non-invasive diagnosis of H. pylori infection for large scale screening purposes.

Keywords: 13C-Urea breath test, c-PDR methodology, grey zone, Helicobacter pylori

Procedia PDF Downloads 271
5026 Antifungal Activity of Medicinal Plants Used Traditionally for the Treatment of Fungal Infections and Related Ailments in South Africa

Authors: T. C. Machaba, S. M. Mahlo

Abstract:

The current study investigates the antifungal properties of crude plant extracts from selected medicinal plant species. Eight plant species used by the traditional healers and local people to treat fungal infections were selected for further phytochemical analysis and biological assay. The selected plant species were extracted with solvent of various polarities such as acetone, methanol, ethanol, hexane, dichloromethane, ethyl acetate and water. Leaf, roots and bark extracts of Maerua juncea Pax, Albuca seineri (Engl & K. Krause) J.C Manning & Goldblatt, Senna italica Mill., Elephantorrhiza elephantina (Burch.) Skeels, Indigofera circinata Benth., Schinus molle L., Asparagus buchananii Bak., were screened for antifungal activity against three animal fungal pathogens (Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans). All plant extracts were active against the tested microorganisms. Acetone, dichloromethane, hexane and ethanol extracts of Senna italica and Elephantorrhiza elephantine had excellent activity against Candida albicans and A. fumigatus with the lowest MIC value of 0.02 mg/ml. Bioautography assay was used to determine the number of antifungal compounds presence in the plant extracts. No active compounds were observed in plant extracts of Indigofera circinnata, Schinus molle and Pentarrhinum insipidum with good antifungal activity against C. albicans and A. fumigatus indicating possible synergism between separated metabolites.

Keywords: antifungal activity, bioautography, ethnobotanical survey, minimum inhibitory concentration

Procedia PDF Downloads 316
5025 Counteract Heat Stress on Broiler Chicks by Adding Anti-Heat Stress Vitamins (Vitamin C and E) with Organic Zinc

Authors: Omnia Y. Shawky, Asmaa M. Megahed, Alaa E. ElKomy, A. E. Abd-El-Hamid, Y. A. Attia

Abstract:

This study was carried out to elevate the broilers physiological response against heat stress and reduce this impact by adding vitamin C (VC), vitamin E (VE) alone/or with organic zinc (Zn) to chicks’ rations. A total of 192, 26-day-old Arbor Acers male chicks were randomly divided into equal 8 groups (4 replicates for each). All experimental groups were treated as follow: Group 2 was served as a heat stress control that reared at 37ºC with relative humidity 53 ± 8% for 6 hours/day for three successive days/week and fed the basal diet only. Groups 3-8 were heat stressed in a like manner to group 2 and fed basal diet inclusion 200mg VC (group 3), 200mg VE (group 4), 200mg VC+200mg VE (group 5), 200mg VC+30mg Zn (group 6), 200mg VE+30mg Zn (group 7) and 200mg VC+200mg VE+30mg Zn (group 8) /kg feed, while Group 1 was served as a positive control that reared on a neutral temperature (NT) (approximately 21ºC) and fed the basal diet only. Respiration rate and rectal temperature were boosted of HS chicks (80.8 breath/min and 41.97ºC) compared to NT group (60.12 breath/min and 40.9ºC), while, adding VC alone and with VE or Zn resulted in decrease these measurements. Heat stress had a significantly negative effect on chicks body weight gain, feed consumption and feed conversion ratio compared to the NT group, this harmful effect could be overcome by adding VC and VE individually or with Zn. Chicks exposed to heat stress showed slightly increase hemoglobin concentration compared to NT group, while, adding VC, VE individually or with Zn alleviated this effect. Plasma glucose concentration was significantly increased in HS group than the NT group, but adding VC, VE individually or with Zn resulted in a reduction plasma glucose level, which it was still higher than the NT group. Heat stress caused an increase in plasma total lipids and cholesterol concentration compared to the NT group and inclusion VC or VE alone or with Zn was not able to reduce this effect. The increased liver enzymes activities (AST and ALT) that observed in HS group compared to NT group were removed by adding VC and VE individually or with Zn. As well, exposure of broiler chicks to heat stress resulted in a slightly decrease in plasma total antioxidant capacity level (TAC) superoxide dismutase and catalase enzymes activities, while inclusion VC and VE individually or with Zn in chicks rations caused an increased in these measurements. Broiler chicks that exposed to HS revealed a significant increase in heat shock protein (Hsp 70) compared to the NT group, while, adding VC or VE individually or with Zn resulted in a significant decrease in Hsp70 than the HS group and VE alone or with VC had the greatest effect. In conclusion, it could be overcome the harmful and the negative effect of heat stress on broiler chicks’ productive performance and physiological status by inclusion VC (200mg) or VE (200mg) individual or in a combination with organic zinc (30 mg) in chicks’ rations.

Keywords: heat stress, broiler, vitamin C, vitamin E, organic zinc

Procedia PDF Downloads 167
5024 Evaluation of Antioxidant Activity and Total Phenolic Content of Lens Esculenta Moench, Seeds

Authors: Vivek Kumar Gupta, Kripi Vohra, Monika Gupta

Abstract:

Pulses have been a vital ingredient of the balanced human diet in India. Lentil (Lens culinaris Medikus or Lens esculenta Moench.) is a common legume known since biblical times. Lentil seeds, with or without hulls, are cooked as dhal and this has been the main dish for millennia in the South Asian region. Oxidative stress can damage lipids, proteins, enzymes, carbohydrates and DNA in cells and tissues, resulting in membrane damage, fragmentation or random cross linking of molecules like DNA, enzymes and structural proteins and even lead to cell death induced by DNA fragmentation and lipid peroxidation. These consequences of oxidative stress construct the molecular basis in the development of cancer, neurodegenerative disorders, cardiovascular diseases, diabetes and autoimmune. The aim of the present work is to assess the antioxidant potential of the peteroleum ether, acetone, methanol and water extract of the Lens esculenta seeds. In vitro antioxidant assessment of the extracts was carried out using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay. The quantitative estimation of total phenolic content, total flavonoid content in extracts and in plant material, total saponin content, total alkaloid content, crude fibre content, total volatile content, fat content and mucilage content in drug material was also carried out. Though all the extracts exhibited dose dependent reducing power activity the acetone extract was found to possess significant hydrogen donating ability in DPPH (45.83%-93.13%) and hydroxyl radical scavenging system (28.7%-46.41%) than the peteroleum ether, methanol and water extracts. Total phenolic content in the acetone and methanol extract was found to be 608 and 188 mg gallic acid equivalent of phenol/g of sample respectively. Total flavonoid content of acetone and methanol extract was found to be 128 and 30.6 mg quercetin equivalent/g of sample respectively. It is evident that acetone extract of Lentil seeds possess high levels of polyphenolics and flavonoids that could be utilized as antioxidants and neutraceuticals.

Keywords: antioxidant, flavanoids, Lens esculenta, polyphenols

Procedia PDF Downloads 447
5023 Effects of Swimming Exercise Training on Persistent Pain in Rats after Thoracotomy

Authors: Shao-Cyuan Yewang, Yu-Wen Chen

Abstract:

Background: Exercise training is well known to alleviate chronic pain syndromes improve of chronic pain. This study investigated the effect of swimming exercise training on thoracotomy and rib retraction-induced allodynia. Methods: Male Sprague Dawley rats that received animal model of persistent postthoracotomy pain. All rats were divided into three groups: sham operations group (Sham), thoracotomy and rib retraction group (TRR), and TRR with swimming exercise training for 90min/day, 7 days a week for 4 weeks (TRR-SEW). The sham group did not receive retraction of the ribs. Thus, they received a pleural incision. The levels of mechanical and cold allodynia were measured by von Frey and acetone test. Results: In von Frey test, the level of mechanical allodynia in the TRR group was significantly higher than the sham group. The level of mechanical allodynia in the TRR-SEW group was significantly lower than the TRR group. In acetone test, the level of cold allodynia in the TRR group was significantly higher than the sham group. The level of cold allodynia in the TRR-SEW group was significantly lower than the TRR group. Conclusions: These results suggest that swimming exercise training decreases persistent postthoracotomy pain caused by TRR surgery. It may provide one of the new therapeutic effects of swimming exercise training could alleviate persistent postthoracotomy pain.

Keywords: chronic pain, thoracotomy pain, swimming, von Frey test, acetone test

Procedia PDF Downloads 176
5022 Biosensor Design through Molecular Dynamics Simulation

Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang

Abstract:

The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structure-process-property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.

Keywords: biosensor, DNA, biomarker, molecular dynamics simulation

Procedia PDF Downloads 422
5021 Crude Palm Oil Antioxidant Extraction and the Antioxidation Activity

Authors: Supriyono Supriyono, Sumardiyono Sumardiyono, Peni Pujiastuti, Dian Indriana Hapsari

Abstract:

Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. The productivity of the oil is 12 ton/hectare/year. Thus palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish-red color on CPO was come from carotenoid. Carotenoid is one of the antioxidants that could be extracted. Carotenoid could be used as functional food and other purposes. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. In this research work, antioxidant was extracted by a mixture of acetone and n.hexane, while the activity of the antioxidant extract was determined by DPPH method. Antioxidant activity of the extracted compound about 46% compared to pure tocopherol. While the solvent mixture compose by 90% acetone and 10% n. hexane meet the best on the antioxidant activity.

Keywords: antioxidant, beta carotene, crude palm oil, DPPH, tocopherol

Procedia PDF Downloads 171
5020 GSM and GPS Based Smart Helmet System for Sudden Accidental Rescue Operation

Authors: A. B. M. Aftabuzzaman, Md. Mahin Hossain, Md. Ifran Sharif Imthi, Md. Razu Ahmed, A. Z. M. Imran

Abstract:

The goals of the study are to develop a safety system that is combined with a smart helmet to reduce the likelihood of two-wheeler bike accidents and cases of drunk driving. The smart helmet and the limit switch both verify when a biker is wearing a helmet. The presence of alcohol in the rider's breath is detected using alcohol sensors. The bike remains turned off if the rider is not wearing a helmet or if the rider's breath contains alcohol. The bike will not start until the rider is wearing a helmet and there is no alcoholic substance present, indicating that the bike rider has not consumed alcohol. When the rider faces in an accident, instantly the smart helmet hits the ground and respective sensors detect the movement and tilt of the protective helmet and instantly sending the information about the location of accident to the rider's relatives and the crisis contact numbers which are introduced in the smart helmet respective device. So this project finding will ensure safe bike journey and improve safe commercial bike services in Bangladesh.

Keywords: smart helmet, GSM, GPS, bike, biker accident

Procedia PDF Downloads 64
5019 Antimicrobial Activity of Ilex paraguariensis Sub-Fractions after Liquid-Liquid Partitioning

Authors: Sabah El-Sawalhi, Elie Fayad, Roula M. Abdel-Massih

Abstract:

Ilex paraguariensis (Yerba Mate) is a medium to large tree commonly consumed by South Americans. Its leaves and stems are associated with different biological activities. The purpose of this study was to evaluate the antibacterial activity of Yerba Mate against Gram-positive and Gram-negative bacterial strains and its action against some resistant bacteria with different resistance profiles. Yerba Mate aqueous extracts were prepared at 70°C for 2 hrs, and the microdilution method was used to determine the minimum inhibitory concentration (MIC). Gram-positive bacteria exhibited a stronger antibacterial activity (MIC ranged between 0.468 mg/mL and 15 mg/mL) than Gram-negative bacteria. Yerba Mate was also extracted with acetone: water (1:1) and then further sub-fractionated with hexane, chloroform, and ethyl acetate. MIC values against Staphylococcus aureus ranged from 0.78 to 2.5 mg/ml for the chloroform fraction, from 1.56 to 3.75 mg/ml for the ethyl acetate fraction, and 0.78 to 1.87 mg/ml for the water fraction. The water fraction also exhibited antibacterial activity against Salmonella species (MIC ranged from 1.56 mg/ml to 3.12 mg/ml). The water fraction exhibited the highest antibacterial activity among all the fractions obtained. More studies are needed to determine the molecule or molecules responsible for this activity.

Keywords: antibacterial activity, bacterial resistance, minimum inhibitory concentration, yerba mate

Procedia PDF Downloads 105
5018 Antioxidant Activity and Correlation of Free Phenolic Content with the DPPH Radical Scavenging and Reducing Power Activity of Date Palm (Phoenix dactylifera L.) from Algeria

Authors: Cheyma Bensaci, Mokhtar Saidi, Zineb Ghiaba

Abstract:

The first objective of this study is to determine the phenolic contents and antioxidant capacities of three different varieties of date palm (Phoenix dactylifera L.) fruit (DPF) from Algeria were using three different solvents. As for the second objective is to find the correlation of phenolic contents with the both DPPH radical scavenging and reducing power activity. These results showed that date had strongly scavenging activity on DPPH .The IC50 value for DPPH radical scavenging activity was 0.15 mg/ml in acetone/H2O extract from Gh. And also, acetone/H2O extract from Gh showed the best AEAC value for reducing power was 8,48 mM. The results also showed that there are a positive correlation, so confined values between 0.153 and 0.972.

Keywords: phoenix dactylifera, antioxidant activity, correlation, reducing power

Procedia PDF Downloads 347
5017 Synthesis of Oxygenated Fuel Additive from Bio-Glycerol

Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent, and it is odorless organic liquid used as a fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-glycerol, catalyst, green additive, biomass

Procedia PDF Downloads 208
5016 Synthesis of Biopolymeric Nanoparticles of Starch for Packaging Reinforcement Applications

Authors: Yousof Farrag, Sara Malmir, Rebeca Bouza, Maite Rico, Belén Montero, Luís Barral

Abstract:

Biopolymers are being extensively studied in the last years as a replacement of the conventional petroleum derived polymers, especially in packaging industry. They are natural, biodegradable materials. However, the lack of good mechanical and barrier properties is a problem in the way of this replacement. One of the most abundant biopolymers in the nature is the starch, its renewable, biocompatible low cost polysaccharide, it can be obtained from wide variety of plants, it has been used in food, packaging and other industries. This work is focusing on the production a high yield of starch nanoparticles via nanoprecipitation, to be used as reinforcement filling of biopolymer packaging matrices made of different types of starch improving their mechanical and barrier properties. Wheat and corn starch solutions were prepared in different concentrations. Absolute ethanol, acetone and different concentrations of hydrochloric acid were added as antisolvents dropwise under different amplitudes of sonication and different speeds of stirring, the produced particles were analyzed with dynamic light scattering DLS and scanning electron microscope SEM getting the morphology and the size distribution to study the effect of those factors on the produced particles. DLS results show that we have nanoparticles using low concentration of corn starch (0.5%) using 0.1M HCl as antisolvent, [Z average: 209 nm, PDI: 0,49], in case of wheat starch, we could obtain nanoparticles [Z average: 159 nm, PDI: 0,45] using the same starch solution concentration together with absolute ethanol as antisolvent.

Keywords: biopolymers, nanoparticles, DLS, starch

Procedia PDF Downloads 292
5015 Antimicrobial, Antioxidant Activities and Phytochemical Screening of Five Species from Acacia Used in Sudanese Ethnomedicine

Authors: Hajir Abdllha, Alaa Mohamed, Khansa Almoniem, Naga Adam, Wdeea Alhaadi, Ahmed Elshikh, Ahmed Ali, Ismail Makuar, Anas Elnazeer, Nagat Elrofaei, Samir Abdoelftah, Monier Hemidan

Abstract:

The present study was designed to investigate antimicrobial, and antioxidant activities of five species from Acacia (Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var. seyal and Acacia tortilis). Phytochemical study was piloted to detect the bioactive compounds, which have been responsible from the biological activities. The ethanol, chloroform and acetone plant extracts were seasoned against standard bacteria strains of gram +ve bacteria Staphylococcus aureus (ATCC 25923), Gram -ve bacteria Pseudomonas aeruginosa (ATCC 27853) and standard fungi Candida albicans (ATCC 90028), using cup-plate method. The antioxidant activities were conducted via DPPH radical scavenging and metal chelating assays. Prospective activity against the five species was observed in acetone extract. Ethanol extract showed highest activities against Staphylococcus aureus, and Candida albicans. Potential antioxidant activity was presented by ethanol. Cholorophorm and acetone extracts via DPPH, the radical scavenging activities were found to be 91±0.03, 88±0.01 and 85±0.04 respectively. The results of phytochemical screening showed that all extracts of studied plant contain flavonoids, saponins, terpenoids, steroids, alkaloids, phenols and tannins. This study gives rise to antioxidant, antimicrobial properties of studied plant, and showed interesting correlation with the phytochemical constituents and biological activities.

Keywords: antimicrobial, antioxidant, Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var. seyal, Acacia tortilis

Procedia PDF Downloads 357
5014 Comparative Studies on the Concentration of Some Heavy Metal in Urban Particulate Matter, Bangkok, Thailand

Authors: Sivapan Choo-In

Abstract:

The main objective of this study was investigate particulate matter concentration on main and secondary roadside in urban area. And studied on the concentration of some heavy metal including lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in particulate matter in Bangkok area. The averaged particle concentration for main roadside are higher than secondary roadside. The particulate matter less than 10 micron concentration contribute the majority of the Total Suspended Particulate for main road and zinc concentration were higher than copper and lead for both site.

Keywords: air pollution, air quality, polution, monitoring

Procedia PDF Downloads 286
5013 Antimicrobial, Antioxidant Activities, and Phytochemical Screening of Five Species from Acacia Used in Sudanese Ethnomedicine

Authors: Hajir, B. Abdllha, , Alaa, I. Mohamed, Khansa, A. Almoniem, Naga, I. Adam, Wdeea, Alhaadi, Ahmed, A. Elshikh, Ahmed, J. Ali, Ismail, G. Makuar, Anas, M. Elnazeer, Nagat, A. Elrofaei, Samir, F. Abdoelftah, Monier, N. Hemidan

Abstract:

The present study was designed to investigate antimicrobial, and antioxidant activities of five species from Acacia (Acacia albidia, Acacia mellifera, Acacia nubica, Acacia seyal var.seyal and Acacia tortilis). Phytochemical study was piloted to detect the bioactive compounds, which have been responsible from the biological activities. The ethanol, chloroform and acetone plant extracts were seasoned against standard bacteria strains of gram +ve bacteria Staphylococcus aureus (ATCC 25923) ,Gram -ve bacteria Pseudomonas aeruginosa (ATCC 27853) and standard fungi Candida albicans (ATCC 90028), using cup-plate method. The antioxidant activities were conducted via DPPH radical scavenging and metal chelating assays. Prospective activity against the five species was observed in acetone extract. Ethanol extract showed highest activities against Staphylococcus aureus, and Candida albicans. Potential antioxidant activity was presented by ethanol. Cholorophorm and acetone extracts via DPPH, the radical scavenging activities were found to be 91±0.03, 88±0.01 and 85±0.04 respectively. The results of phytochemical screening showed that all extracts of studied plant contain flavonoids, saponins, terpenoids, steroids, alkaloids, phenols and tannins. This study give rise to antioxidant, antimicrobial properties of studied plant, and showed interesting correlation with the phytochemical constituents and biological activities.

Keywords: antimicrobial, Antioxidant, Acacia albidia, Acacia mellifera, acacia nubica, acacia seyal var.seyal, Acacia tortilis

Procedia PDF Downloads 520
5012 The Chewing Gum Confectionary Development for Oral Hygiene with Nine Hour Oral Antibacterial Activity

Authors: Yogesh Bacchaw, Ashish Dabade

Abstract:

Nowadays oral health is raising concern in society. Acid producing microorganisms changes the oral pH and creates a favorable environment for microbial growth. This growth not only promotes dental decay but also bad breath. Generally Recognized As Safe (GRAS) listed component was incorporated in chewing gum as an antimicrobial agent. The chewing gum produced exhibited up to 9 hours of antimicrobial activity against oral microflora. The toxicity of GRAS component per RACC value of chewing gum was negligible as compared to actual toxicity level of GRAS component. The antibacterial efficiency of chewing gum was tested by using total plate count (TPC) and colony forming unit (CFU). Nine hours were required to microflora to reach TPC/CFU of before chewing gum consumption. This chewing gum not only provides mouth freshening activity but also helps in lowering dental decay, bad breath, and enamel whitening.

Keywords: colony forming unit (CFU), chewing gum, generally recognized as safe (GRAS), microbial growth, microorganisms, oral health, RACC, total plate count (TPC), antimicrobial agent, enamel whitening, oral pH

Procedia PDF Downloads 266
5011 Production and Characterisation of Lipase from a Novel Streptomyces.sp - Its Molecular Identification

Authors: C. Asha Poorna, N. S. Pradeep

Abstract:

The biological function of lipase is to catalyze the hydrolysis of triacylglycerols to give free fatty acid, diacylglycerols, mono-acylglycerols and glycerol. They constitute the most important group of biocatalysts for biotechnological applications. The aim of the present study was to identify the lipolytic activity of Streptomyces sp. From soil sample collected from the sacred groves of southern Kerala. The culture conditions of the isolate were optimised and the enzyme was purified and characterised. The purification was attempted with acetone precipitation. The isolate observed to have high lipolytic activity and identified to be of Streptomyces strain. The purification was attempted with acetone precipitation. The purified enzyme observed to have an apparent molecular mass of ~60kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed maximum activity at 60oC and pH-8. The lipase showed tolerance towards different organic solvents like ethanol and methanol that are commonly used in transesterification reactions to displace alcohol from triglycerides contained in renewable resources to yield fatty acid alkyl esters known as biodiesel.

Keywords: lipase, Streptomyces, biodiesel, fatty acid, transesterification

Procedia PDF Downloads 291
5010 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application

Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas

Abstract:

The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces the thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm2.

Keywords: electric vehicle, flat-plate loop heat pipe, lithium-ion battery, thermal management system

Procedia PDF Downloads 311
5009 Alterations in Esterases and Phosphatases of Three Economically Important Stored Grain Insect Pests Exposed to Botanical Extracts, Nicotiana tabacum and Eucalyptus globulus

Authors: Kazam Ali, Muhammad Sagheer, Mansoor-Ul- Hasan, Abdul Rashid, Chaudhary Muhammad Shahid Hanif, Fawad Zafar Ahmad Khan, Hafiz Muhammad Aatif

Abstract:

Natural extracts of two medicinal plants Nicotiana tabacum and Eucalyptus globulus were tested for their toxic and enzyme inhibition effects against three insects species of stored grains Tribolium castaneum, Trogoderma granarium and Sitophilus granarius. Responses of insects varied with exposure periods and dilution levels of acetone extracts of plants. Both plant extracts were lethal to insects but the crude leaf extract of N. tabacum evidenced strong toxic action against three tested insect species. Maximum mortality 36.30% in S. granarius, 25.96% in T. castaneum, and 21.88% in T. granarium were found at 20% dilution level, after 10 days exposure to botanical extract of N. tabacum. The impact of N. tabacum and E. globulus on the activity of esterases; acetylcholinesterase (AChE), α-carboxylesterase (α-CE), β-carboxylesterase (β-CE) and phosphatses; acid phosphatase (AcP), alkaline phosphatase (AlP) of three stored grain insect species were also studied in the survivors of toxicity assay. Whole body homogenates of insects were used for enzyme determination and consumption of high dose rate N. tabacum extract containing diet resulted in maximum 55.33% inhibition of AChE and 26.17% AlP inhibition in T. castaneum, while 44.17% of α-CE and 31.67% inhibition of β-CE activity were noted in S. granarius. Maximum inhibition 23.44% of AcP activity was found in T. granarium exposed to diet treated with the extract of E. globulus. The findings indicate that acetone extracts of N. tabacum and E. globulus are naturally occurring pesticide and facts of the enzyme inhibition relations specify that their effect changes with the insect species.

Keywords: natural extract, medicinal plant, toxic effects, enzyme inhibition, acetone extract

Procedia PDF Downloads 219
5008 Effect of Initial pH and Fermentation Duration on Total Phenolic Content and Antioxidant Activity of Carob Kibble Fermented with Saccharomyces cerevisiae

Authors: Thi Huong Vu, Haelee Fenton, Thi Huong Tra Nguyen, Gary Dykes

Abstract:

In the present study, a submerged fermentation of carob kibble with Saccharomyces cerevisiae (S. cerevisiae) was performed. The total phenolic content and antioxidant activity in fermented carob kibble were determined by Folin–Ciocalteu method and scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study showed that S. cerevisiae improved total phenolic content by 45 % and 50 % in acetone and water extracts respectively. Similarly, the antioxidant capacity of water extracts increased by 25 % and 41%, while acetone extracts indicated by 70% and 80% in DPPH and ABTS respectively. It is also found that initial pH 7.0 was more effective in improvement of total phenolic content and antioxidant activity. The efficiency of treatment was recorded at 15 h. This report suggested that submerged fermentation with S. cerevisiae is a potential and cost effective manner to further increase bioactive compounds in carob kibble, which are in use for food, cosmetic and pharmaceutical industries.

Keywords: antioxidant activity, carob kibble, saccharomyces cerevisiae, submerged fermentation, total phenolics

Procedia PDF Downloads 269
5007 Growth Performance and Critical Supersaturation of Heterogeneous Condensation for High Concentration of Insoluble Sub-Micron Particles

Authors: Jie Yin, Jun Zhang

Abstract:

Measuring the growth performance and critical supersaturation of particle group have a high reference value for constructing a supersaturated water vapor environment that can improve the removal efficiency of the high-concentration particle group. The critical supersaturation and the variation of the growth performance with supersaturation for high-concentration particles were measured by a flow cloud chamber. Findings suggest that the influence of particle concentration on the growth performance will reduce with the increase of supersaturation. Reducing residence time and increasing particle concentration have similar effects on the growth performance of the high-concentration particle group. Increasing particle concentration and shortening residence time will increase the critical supersaturation of the particle group. The critical supersaturation required to activate a high-concentration particle group is lower than that of the single-particle when the minimum particle size in the particle group is the same as that of a single particle.

Keywords: sub-micron particles, heterogeneous condensation, critical supersaturation, nucleation

Procedia PDF Downloads 122
5006 Determination of Concentrated State Using Multiple EEG Channels

Authors: Tae Jin Choi, Jong Ok Kim, Sang Min Jin, Gilwon Yoon

Abstract:

Analysis of EEG brainwave provides information on mental or emotional states. One of the particular states that can have various applications in human machine interface (HMI) is concentration. 8-channel EEG signals were measured and analyzed. The concentration index was compared during resting and concentrating periods. Among eight channels, locations the frontal lobe (Fp1 and Fp2) showed a clear increase of the concentration index during concentration regardless of subjects. The rest six channels produced conflicting observations depending on subjects. At this time, it is not clear whether individual difference or how to concentrate made these results for the rest six channels. Nevertheless, it is expected that Fp1 and Fp2 are promising locations for extracting control signal for HMI applications.

Keywords: concentration, EEG, human machine interface, biophysical

Procedia PDF Downloads 451
5005 Stress Concentration around Countersunk Hole in Isotropic Plate under Transverse Loading

Authors: Parveen K. Saini, Tarun Agarwal

Abstract:

An investigation into the effect of countersunk depth, plate thickness, countersunk angle and plate width on the stress concentration around countersunk hole is carried out with the help of finite element analysis. The variation of stress concentration with respect to these parameters is studied for three types of loading viz. uniformly distributed load, uniformly varying load and functionally distributed load. The results of the finite element analysis are interpreted and some conclusions are drawn. The distribution of stress concentration around countersunk hole in isotropic plates simply supported at all the edges is found similar and is independent of loading. The maximum stress concentration also occurs at a particular point irrespective of the loading conditions.

Keywords: stress concentration factor, countersunk hole, finite element, ANSYS

Procedia PDF Downloads 412