Search results for: average grain size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9974

Search results for: average grain size

9824 Impact of Stack Caches: Locality Awareness and Cost Effectiveness

Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang

Abstract:

Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.

Keywords: hit rate, locality of program, stack cache, stack data

Procedia PDF Downloads 272
9823 Grains of Winter Wheat Spelt (Triticum spelta L.) for Save Food Production

Authors: D. Jablonskytė-Raščė, A. Mankevičienė, S. Supronienė, I. Kerienė, S. Maikštėnienė, S. Bliznikas, R. Česnulevičienė

Abstract:

Organic farming does not allow the use of conventional mineral fertilizers and crop protection products. As a result, in our experiments we chose to grow different species of cereals and to see how cereal species affects mycotoxin accumulation. From the phytopathological and entomological viewpoint, the glumes of spelt grain perform a positive role since they protect grain from the infection of pathogenic microorganisms. On the background of the above-mentioned infection, there were more Fusarium–affected grains of spelt than of common wheat. It can be assumed that spelt is more susceptible to the Fusarium fungi infection than common wheat. This study describes the occurrence of DON, ZEA and T2/HT2 toxin in a survey of spelt and common wheat and their bran as well as flour. The analysis was conducted using the enzyme-linked immunosorbent assay (ELISA) method. The concentrations of DON, ZEA, and T2/HT2 in Triticum spelta and Triticum aestivum are influenced by species, cereal type and year interaction. The highest concentration of mycotoxin was found in spelt grain with glumes. The obtained results indicate the significantly higher concentrations of Fusarium toxins in glumes than in dehulled grain which implicate the possible protective effect of spelt wheat glumes. The lowest DON, ZEA, and T2/HT2 concentration was determined in spelt grain without glumes.

Keywords: Fusarium mycotoxins, organic farming, spelt

Procedia PDF Downloads 282
9822 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling

Authors: Shahriar Ghammamy, Maryam Gholipoor

Abstract:

Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.

Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction

Procedia PDF Downloads 365
9821 Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications

Authors: S. V. N. Pammi, Soon-Gil Yoon

Abstract:

In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications.

Keywords: perovskite thin films, chemical vapor deposition, energy harvesting, photovoltaics

Procedia PDF Downloads 274
9820 Multi-Scale Modeling of Ti-6Al-4V Mechanical Behavior: Size, Dispersion and Crystallographic Texture of Grains Effects

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vidal, Farhad Rezai-Aria, Christine Boher

Abstract:

Ti-6Al-4V titanium alloy is one of the most widely used materials in aeronautical and aerospace industries. Because of its high specific strength, good fatigue, and corrosion resistance, this alloy is very suitable for moderate temperature applications. At room temperature, Ti-6Al-4V mechanical behavior is generally controlled by the behavior of alpha phase (beta phase percent is less than 8%). The plastic strain of this phase notably based on crystallographic slip can be hindered by various obstacles and mechanisms (crystal lattice friction, sessile dislocations, strengthening by solute atoms and grain boundaries…). The grains aspect of alpha phase (its morphology and texture) and the nature of its crystallographic lattice (which is hexagonal compact) give to plastic strain heterogeneous, discontinuous and anisotropic characteristics at the local scale. The aim of this work is to develop a multi-scale model for Ti-6Al-4V mechanical behavior using crystal plasticity approach; this multi-scale model is used then to investigate grains size, dispersion of grains size, crystallographic texture and slip systems activation effects on Ti-6Al-4V mechanical behavior under monotone quasi-static loading. Nine representative elementary volume (REV) are built for taking into account the physical elements (grains size, dispersion and crystallographic) mentioned above, then boundary conditions of tension test are applied. Finally, simulation of the mechanical behavior of Ti-6Al-4V and study of slip systems activation in alpha phase is reported. The results show that the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior of Ti-6Al-4V alloy modeled. The grains size influences also on mechanical proprieties of Ti-6Al-4V, especially on the yield stress; by decreasing of the grain size, the yield strength increases. Finally, the grains' distribution which characterizes the morphology aspect (homogeneous or heterogeneous) gives to the deformation fields distribution enough heterogeneity because the crystallographic slip is easier in large grains compared to small grains, which generates a localization of plastic deformation in certain areas and a concentration of stresses in others.

Keywords: multi-scale modeling, Ti-6Al-4V alloy, crystal plasticity, grains size, crystallographic texture

Procedia PDF Downloads 133
9819 Preparation of Ceramic Membranes from Syrian Sand Loaded with Silver Nanoparticles for Water Treatment

Authors: Abdulrazzaq Hammal

Abstract:

In this study, Syrian sand was used to create ceramic membranes. The process of preparing the membranes involved several steps, starting with the purification of the studied sand using hydrochloric acid, sorting according to granular size, and mixing the sand with liquid sodium silicates as a binder. Next, the effects of binder ratio, pressure formation, treatment temperature, and sand grain size were studied. Further, nanoparticles of silver were added to the formed membranes to improve their ability to purify bacterially polluted water. Prepared membranes were quite successful in removing bacteria and chemicals from water, and the water's requirements were brought up to level with Syrian drinking water standards.

Keywords: ceramic, membrane, water, wastewater

Procedia PDF Downloads 35
9818 Microstructure and Mechanical Properties of A201 Alloys with Additions of Si

Authors: Suzan Abd El Majid, Menachem Bamberger, Alexander Katsman

Abstract:

Two Al-4 wt. % Cu based alloys, A201 and A201+Si were investigated in the as-cast, solution treated and aged conditions. The addition of Si was used to improve the castability of the basic alloy. The all investigated alloys in the as-cast condition contained a eutectic structure along grain boundaries (GBs) with the composition Al-50at. %Cu that was found by HRSEM EDS. Addition of Si refined the grain structure and changed the amount of the eutectic regions, their size and shape. Additionally, the A201+Si microstructure contained Si rods and small amount of Al6Mn4Cu3Fe2Si-phase. Solution treatment (ST) at 550°C for ~ 20 hours resulted in a slight dissolution of the eutectic structure in the A201 alloy while substantial dissolution and change of the eutectic composition was detected in the A201+Si alloy. After ST, the A201alloy contained θ-Al2Cu, Al5Cu2Mn3 and Al9Cu7Mn3(Fe) phases associated to the GBs, while the ST A201+Si alloy contained θ-Al2Cu, Al6Mn4Cu3(Fe,Si) and Si94Mn3Al2Cu phases. Precipitation hardening during aging at 170°C was investigated for both alloys. The microhardness of the ST A201alloy increased during aging and reached the maximum value ~ 140 HV after 2 h of aging. Initial microhardness of the ST A201+Si alloy was distinctly higher than one of the ST A201 alloy, but it decreased during the first hour of aging, then increased and reached the same maximum value ~ 140 HV after ~ 4 h of aging. It was concluded that the Si addition influenced the precipitation sequence and slowed down the age hardening process. The Si induced grain refining and evolution of the eutectic structure during the heat treatments applied are discussed.

Keywords: A201 alloys, castability, microstructure, micro-hardness

Procedia PDF Downloads 263
9817 Contention Window Adjustment in IEEE 802.11-based Industrial Wireless Networks

Authors: Mohsen Maadani, Seyed Ahmad Motamedi

Abstract:

The use of wireless technology in industrial networks has gained vast attraction in recent years. In this paper, we have thoroughly analyzed the effect of contention window (CW) size on the performance of IEEE 802.11-based industrial wireless networks (IWN), from delay and reliability perspective. Results show that the default values of CWmin, CWmax, and retry limit (RL) are far from the optimum performance due to the industrial application characteristics, including short packet and noisy environment. An adaptive CW algorithm (payload-dependent) has been proposed to minimize the average delay. Finally a simple, but effective CW and RL setting has been proposed for industrial applications which outperforms the minimum-average-delay solution from maximum delay and jitter perspective, at the cost of a little higher average delay. Simulation results show an improvement of up to 20%, 25%, and 30% in average delay, maximum delay and jitter respectively.

Keywords: average delay, contention window, distributed coordination function (DCF), jitter, industrial wireless network (IWN), maximum delay, reliability, retry limit

Procedia PDF Downloads 385
9816 Effect of Hot Extrusion on the Mechanical and Corrosion Properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn Alloys for Medical Application

Authors: V. E. Bazhenov, A. V. Li, A. A. Komissarov, A. V. Koltygin, S. A. Tavolzhanskii, O. O. Voropaeva, A. M. Mukhametshina, A. A. Tokar, V. A. Bautin

Abstract:

Magnesium-based alloys are considered as effective materials in the development of biodegradable implants. The magnesium alloys containing Mg, Zn, Ca as an alloying element are the subject of the particular interest. These elements are the nutrients for the human body, which provide their high biocompatibility. In this work, we investigated the effect of severe plastic deformation (SPD) on the mechanical and corrosion properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn alloys containing from 2 to 4 wt.% Zn; 0.7 wt.% Ca and up to 1 wt.% Mn. Hot extrusion was used as a method of intensive plastic deformation. The temperature of hot extrusion was set to 220 °C and 300 °C. Metallographic analysis after hot extrusion shows that the grain size in the studied alloys depends on the deformation temperature. The grain size for all of investigated alloys is in the range from 3 to 7 microns, and 3 μm corresponds to the extrusion temperature of 220 °C. Analysis of mechanical properties after extrusion shows that extrusion at a temperature of 220 °C and alloying with Mn increase the strength characteristics and decrease the ductility of studied alloys. A slight anisotropy of properties in the longitudinal and transverse directions was also observed. Measurements of corrosion properties revealed that the addition of Mn to Mg-Zn-Ca alloys reduces the corrosion rate. On the other hand, increasing the Zn content in alloys increases the corrosion rate. The extrusion temperature practically does not affect the corrosion rate. Acknowledgement: The authors gratefully acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No K2-2019-008), implemented by a governmental decree dated 16th of March 2013, N 211.

Keywords: biocompatibility, hot extrusion, magnesium alloys, severe plastic deformation, properties

Procedia PDF Downloads 77
9815 Continuous Synthesis of Nickel Nanoparticles by Hydrazine Reduction

Authors: Yong-Su Jo, Seung-Min Yang, Seok Hong Min, Tae Kwon Ha

Abstract:

The synthesis of nickel nanoparticles by the reduction of nickel chloride with hydrazine in an aqueous solution. The effect of hydrazine concentration on batch-processed particle characteristics was investigated using Field Emission Scanning Electron Microscopy (FESEM). Both average particle size and geometric standard deviation (GSD) were decreasing with increasing hydrazine concentration. The continuous synthesis of nickel nanoparticles by microemulsion method was also studied using FESEM and X-ray Diffraction (XRD). The average size and geometric standard deviation of continuous-processed particles were 87.4 nm and 1.16, respectively. X-ray diffraction revealed continuous-processed particles were pure nickel crystalline with a face-centered cubic (fcc) structure.

Keywords: nanoparticle, hydrazine reduction, continuous process, microemulsion method

Procedia PDF Downloads 419
9814 Burnback Analysis of Star Grain Using Level-Set Technique

Authors: Ali Yasin, Ali Kamran, Muhammad Safdar

Abstract:

In order to reduce the hefty cost involved in terms of time and project cost, the development and application of advanced numerical tools to address the burn-back analysis problem in solid rocket motor design and development is the need of time. Several advanced numerical schemes have been developed in recent times, but their usage in the design of propellant grain of solid rocket motors is very rare. In this paper, an advanced numerical technique named the Level-Set method has been utilized for the burn-back analysis of star grain to study the effect of geometrical parameters on ballistic performance indicators such as solid loading, neutrality, and sliver percentage. In the level set technique, simple finite difference methods may fail quickly and require more sophisticated non-oscillatory schemes for feasible long-time simulation. For internal ballistic calculations, a simplified equilibrium pressure method is utilized. Preliminary results of the operative conditions, for all the combustion time, of star grain burn-back using level set techniques are compared with published results using CAD technique to test the developed numerical model.

Keywords: solid rocket motor, internal ballistic, level-set technique, star grain

Procedia PDF Downloads 83
9813 Effect of Nitrogen Management on Nitrogen Uptake, Dry Matter Production and Some Yield Parameters

Authors: Mandana Tayefe, Ebrahim Amiri, Azin Nasrollah Zade

Abstract:

Effect of nitrogen (N) fertilizer levels on nitrogen uptake, dry matter production, yield and some yield components of rice (Hashemi, Kazemi, Khazar) was investigated in an experiment as factorial in RCBD with 3 replications in a paddy light soil at Guilan province, Iran, 2008-2009. In this experiment, four treatments including: N1-control (no N fertilizer); N2- 30 kgN/ha; N3- 60 kgN/ha; N4- 90 kgN/ha were compared. Results showed that total biomass (8386 kg/ha), grain yield (3662 kg/ha), panicles m-2 (235.8) and total grain per panicle (103.8) were reached the highest value at high nitrogen level. Among the varieties the highest total biomass (7734 kg/ha), grain yield (3414 kg/ha) and total grain per panicle (78.2) belonged to Khazar. Dry matter, total N uptake was varied in different cultivars significantly and Khazar variety had the highest contents. Total biomass and total N uptake was varied significantly with the increasement of the amount of nitrogen applied. As total biomass and total N uptake increased with increasing in N fertilizing.

Keywords: rice, nitrogen, nitrogen uptake, dry matter

Procedia PDF Downloads 381
9812 RAPD Analysis of Genetic Diversity of Castor Bean

Authors: M. Vivodík, Ž. Balážová, Z. Gálová

Abstract:

The aim of this work was to detect genetic variability among the set of 40 castor genotypes using 8 RAPD markers. Amplification of genomic DNA of 40 genotypes, using RAPD analysis, yielded in 66 fragments, with an average of 8.25 polymorphic fragments per primer. Number of amplified fragments ranged from 3 to 13, with the size of amplicons ranging from 100 to 1200 bp. Values of the polymorphic information content (PIC) value ranged from 0.556 to 0.895 with an average of 0.784 and diversity index (DI) value ranged from 0.621 to 0.896 with an average of 0.798. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared and analyzed genotypes were grouped into two main clusters and only two genotypes could not be distinguished. Knowledge on the genetic diversity of castor can be used for future breeding programs for increased oil production for industrial uses.

Keywords: dendrogram, polymorphism, RAPD technique, Ricinus communis L.

Procedia PDF Downloads 437
9811 The Effects of Fungicide and Genetics on Fungal Diseases on Wheat in Nebraska With Emphasis on Stem Rust

Authors: Javed Sidiqi, Stephen Baezinger, Stephen Wegulo

Abstract:

Wheat (Triticum aestivum L.) production continues to be challenged by foliar fungal diseases although significant improvement has been made to manage the diseases through developing resistant varieties and the fungicide use to ensure sufficient wheat is produced to meet the growing population’s need. Significant crop losses have been recorded in the history of grain production and yield losses due to fungal diseases, and the trend continues to threat food security in the world and particularly in the less developed countries. The impact of individual fungal diseases on grain yield has been studied extensively to determine crop losses. However, there is limited research available to find out the combined effects of fungal diseases on grain yield and the ways to effectively manage the diseases. Therefore, the objectives of this research were to study the effect of fungal pathogens on grain yield of pre-released winter wheat genotypes in fungicide treated and untreated plots, and to determine whether S7b gene was present in ‘Gage’ wheat as previously hypothesized. Sixty winter wheat genotypes in fungicide treated and untreated plots were studied across four environments. There was a significant effect of fungicide on grain yield consistently across four environments in three years. Fungicide treated wheat lines demonstrated (4,496 kg/ ha-1) grain yield compared to (3,147 kg/ ha-1) grain yield in untreated wheat lines indicating 43% increased grain yield due to severity of foliar fungal diseases. Furthermore, fungicide application also caused an increase in protein concentration from 153 (g kg-1) to 164 (g kg-1) in treated plots in along with test weight from 73 to 77 (kg hL-1) respectively. Gage wheat variety and ISr7b-Ra were crossed to determine presence of Sr7b in Gage. The F2 and F2:3 segregating families were screened and evaluated for stem rust resistance. The segregation of families fell within 15:1 ratio for two separate resistance genes suggesting that Sr7b segregates independently from an unknown resistance gene in Gage that needs to be characterized for its use in the future wheat breeding program to develop resistant wheat varieties.

Keywords: funicide, genetics, foliar diseases, grain

Procedia PDF Downloads 90
9810 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method

Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad

Abstract:

ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.

Keywords: Gd doped ZnO, electric, optics, microstructure

Procedia PDF Downloads 434
9809 The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22

Authors: Adnan I. O. Zaid

Abstract:

Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index.

Keywords: addition, grain refinement, mechanical characteristics, microstructure, rare earth elements, ZA-22, Zinc- aluminum alloy

Procedia PDF Downloads 482
9808 A Novel Bio-ceramic Using Hyperthermia for Bone Cancer Therapy, Ferro-substituted Silicate Calcium Materials

Authors: hassan gheisari

Abstract:

Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder, as prepared, is annealed at three different temperatures (900 ºC, 1000 ºC, and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks, and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic, which is desirable for practical applications such as hyperthermia bone cancer therapy.

Keywords: hyperthermia, bone cancer, bio ceramic; magnetic materials; sol– gel, silicate calcium

Procedia PDF Downloads 44
9807 Ferro-Substituted Silicate Calcium Materials, a Novel Bio-Ceramic Using Hyperthermia for Bone Cancer Therapy

Authors: Hassan Gheisari

Abstract:

Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder as prepared is annealed at three different temperatures (900 ºC, 1000 ºC and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic which is desirable for practical applications such as hyperthermia bone cancer therapy.

Keywords: hyperthermia, bone cancer, bio ceramic, magnetic materials, sol– gel, silicate calcium

Procedia PDF Downloads 278
9806 Microwave Sintering and Its Application on Cemented Carbides

Authors: Rumman M. D. Raihanuzzaman, Lee Chang Chuan, Zonghan Xie, Reza Ghomashchi

Abstract:

Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research.

Keywords: cemented carbides, consolidation, microwave sintering, mechanical properties

Procedia PDF Downloads 562
9805 Structural Magnetic Properties of Multiferroic (BiFeO3)1−x(PbTiO3)x Ceramics

Authors: Mohammad Shariq, Davinder Kaur

Abstract:

A series of multiferroic (BiFeO3)1−x(PbTiO3)x [x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5] solid solution ceramics were synthesised by conventional solid-state reaction method. Well crystalline phase has been optimized at sintering temperature of 950°C for 2 hours. X rays diffraction studies of these ceramics revealed the existence of a morphotropic phase boundary (MPB) region in this system, which exhibits co-existence of rhombohedral and tetragonal phase with a large tetragonality (c/a ratio) in the tetragonal phase region. The average grain size of samples was found to be between 1-1.5 µm. The M-H curve revealed the BiFeO3 (BFO) as antiferromanetic material whereas, induced weak ferromagnetism was observed for (BiFeO3)1−x(PbTiO3)x composites with x=0.1, 0.2, 0.3, 0.4 and 0.5 at temperature of 5 K. The results evidenced the destruction of a space-modulated spin structure in bulk materials, via substituent effects, releasing a latent magnetization locked within the cycloid. Relative to unmodified BiFeO3, modified BiFeO3-PbTiO3 -based ceramics revealed enhancement in the electric-field-induced polarization.

Keywords: BiFeO3)1−x(PbTiO3)x ceramic, multiferroic, SQUID, magnetic properties

Procedia PDF Downloads 319
9804 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation

Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras

Abstract:

The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.

Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure

Procedia PDF Downloads 199
9803 Numerical Simulation of Fracturing Behaviour of Pre-Cracked Crystalline Rock Using a Cohesive Grain-Based Distinct Element Model

Authors: Mahdi Saadat, Abbas Taheri

Abstract:

Understanding the cracking response of crystalline rocks at mineralogical scale is of great importance during the design procedure of mining structures. A grain-based distinct element model (GBM) is employed to numerically study the cracking response of Barre granite at micro- and macro-scales. The GBM framework is augmented with a proposed distinct element-based cohesive model to reproduce the micro-cracking response of the inter- and intra-grain contacts. The cohesive GBM framework is implemented in PFC2D distinct element codes. The microstructural properties of Barre granite are imported in PFC2D to generate synthetic specimens. The microproperties of the model is calibrated against the laboratory uniaxial compressive and Brazilian split tensile tests. The calibrated model is then used to simulate the fracturing behaviour of pre-cracked Barre granite with different flaw configurations. The numerical results of the proposed model demonstrate a good agreement with the experimental counterparts. The GBM framework proposed thus appears promising for further investigation of the influence of grain microstructure and mineralogical properties on the cracking behaviour of crystalline rocks.

Keywords: discrete element modelling, cohesive grain-based model, crystalline rock, fracturing behavior

Procedia PDF Downloads 99
9802 Effect of Time and Rate of Nitrogen Application on the Malting Quality of Barley Yield in Sandy Soil

Authors: A. S. Talaab, Safaa, A. Mahmoud, Hanan S. Siam

Abstract:

A field experiment was conducted during the winter season of 2013/2014 in the barley production area of Dakhala – New Valley Governorate, Egypt to assess the effect of nitrogen rate and time of N fertilizer application on barley grain yield, yield components and N use efficiency of barley and their association with grain yield. The treatments consisted of three levels of nitrogen (0, 70 and 100 kg N/acre) and five application times. The experiment was laid out as a randomized complete block design with three replication. Results revealed that barley grain yield and yield components increased significantly in response to N rate. Splitting N fertilizer amount at several times result in significant effect on grain yield, yield components, protein content and N uptake efficiency when compared with the entire N was applied at once. Application of N at rate of 100 kg N/acre resulted in accumulation of nitrate in the subsurface soil > 30cm. When N application timing considered, less NO3 was found in the soil profile with splitting N application compared with all preplans application.

Keywords: nitrogen use efficiency, splitting N fertilizer, barley, NO3

Procedia PDF Downloads 277
9801 The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath

Authors: Chun-Ying Lee, Mei-Wen Wu, Li-Yi Cheng, Chiang-Ho Cheng

Abstract:

This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.

Keywords: supercritical CO2, zinc-electroplating, sodium fluoride, electroplating

Procedia PDF Downloads 535
9800 Rim Size Optimization Using Mathematical Modelling

Authors: M. Tan, N. N. Wan, N. Ramli, N. H. Hassan

Abstract:

Car drivers would always like to have custom wheel on their car for two reasons; to improve their car's aesthetic beauty and to improve their car handling. As the size of the rims or wheels played an important role in influencing the way of car handles around turns, this paper aims to present the optimality of rim size that drivers should have known while changing their rim. There are three factors that drivers should have considered while changing their rim: rim size, its weight and material of which they are made. Using mathematical analysis, this paper will focus on only one factor, which is rim size. Factors that are considered in calculating the optimum rim size are the vehicle rim radius, tire height and weight, and aspect ratio. This paper has found that there are limitations in percentage change in rim size from the original tire size. Failure to have the right offset size may cause problems in maneuvering the vehicle.

Keywords: mathematical analysis, optimum wheel size, percentage change, custom wheel

Procedia PDF Downloads 463
9799 Characterization of A390 Aluminum Alloy Produced at Different Slow Shot Speeds Using Assisted Vacuum High-Pressure Die Casting

Authors: Wenbo Yu, Zihao Yuan, Zhipeng Guo, Shoumei Xiong

Abstract:

Under different slow shot speeds in vacuum assisted high pressure die casting (VHPDC) process, plate-shaped specimens of hypereutectic A390 aluminum alloy were produced. According to the results, the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling. Meanwhile, it was found that the tensile properties of vacuum die castings were deteriorated by the porosity content. In addition, the average primary Si size varies between 14µm to 23µm, which has a binary functional relationship with the slow shot speeds. Due to the vacuum effect, the castings were treated by T6 heat treatment. After heat treatment, microstructural morphologies revealed that needle-shaped and thin-flaked eutectic Si particles became rounded while Al2Cu dissolved into α-Al matrix. For the as-received sample in-situ tensile test, microcracks firstly initiate at the primary Si particles and propagated along Al matrix with a transgranular fracture mode. In contrast, for the treated sample, the crack initiated at the Al2Cu particles and propagated along Al grain boundaries with an intergranular fracture mode. In-situ three bending test, microcracks firstly formed in the primary Si particles for both samples. Subsequently, the cracks between primary Si linked along Al grain boundaries in as received sample. In contrast, the cracks in primary Si linked through the solid lines in Al matrix. Furthermore, the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.

Keywords: A390 aluminum, vacuum assisted high pressure die casting, heat treatment, mechanical properties

Procedia PDF Downloads 209
9798 Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots

Authors: Hyunho Shin, Jaekwang Jung, Jeongho Park, Sungwon Hwang

Abstract:

For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependencies. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at diameter ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at diameter ∼17 nm as the GQD size increases, as demonstrated by high resolution transmission electron microscopy. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of GQDs provides a device for practical realization of environmentally benign, high performance flexible devices in the future.

Keywords: graphene, quantum dot, size, photoluminescence

Procedia PDF Downloads 264
9797 Evaluation of Milk Production of an Algerian Rabbit Population Raised in Aures Area

Authors: Moumen Souad, Melizi Mohamed

Abstract:

In order to characterize rabbits does of an Aures local population raised in Algeria, a study of their milk yield was realized in the experimental rabbitry of El Hadj Lakhdhar University. Milk production of does was measured every day during the days following 215 parturitions. It was estimated by weighing the female before and after the single daily suckling (10–15 min between the two weighing operations). The various calculated parameters were the quantity of milk produced per day, per week and the total quantity produced in 21 days, as well as the intake of milk by young rabbits. The analysis concerned the effects of the number of successive litters (3 classes: 1 to 3 and more) and of the average number of the number of young rabbits suckled per litter (6 classes: from 1-2 kits to more than 6). During the 21 days of controlled lactation, the average litter size was 6±3. The rabbits of the Aures area produced on average 2544.34±747 g in 21 days that is 121 g of milk/day or 21 g of milk/kit/day. The milk yield increased from 526, 1035, 1240 and 2801 g to 760, 1365, 1715 and 3840 for week 1, 2, 3 and the total period of lactation, respectively. Nevertheless, milk production available per kit and per day decreased linearly with kits number in the litter for each of the 3 weeks considered. On the other hand the milk yield was not affected by the weight at birth of kits.

Keywords: milk production, litter size, rabbit, Aures area, Algeria

Procedia PDF Downloads 234
9796 Variation in Total Iron and Zinc Concentration, Protein Quality, and Quantity of Maize Hybrids Grown under Abiotic Stress and Optimal Conditions

Authors: Tesfaye Walle Mekonnen

Abstract:

Maize is one of the most important staple food crops for most low-income households in the Sub-Saharan (SSA). Combined heat and drought stress is the major production threats that reduce the yield potential of biofortified maize and restrain various macro and micronutrient deficiencies highly prevalent in low-income people who rely solely on maize-based diets, SSA. This problem can be alleviated by crossing the biofortified inbred lines with different nutritional attributes, Fe, Zn, Protein, and Provitamin A, and developing agronomically superior and stable multi-nutrient maize of various genetic backgrounds. This aimed to understand the correlation between biofortified inbred lines per se and hybrid performance under combined heat and drought stress conditions (CSC). The experiment was conducted at CIMMYT, Zimbabwe, using α-lattice design with three replications. The hybrid effect was highly significant for zein fractions (α-, β-, γ- and δ-zein) zinc, (Zn), and iron (Fe) provitamin A, phytic acid, and grain yield. Under CSC, Fe, Zn concentration, provitamin A in grain and grain yield of hybrids were significantly decreased, however, the zein fraction content and phytic acid content increases in grain were increased under CSC. The phenotypic correlation between grain yield with Zn, Fe concentration, and Provitamin A in grain was strongly positive and higher under CSC than in well-watered conditions. The present investigation confirmed that under CSC, Fe, and Zn-enhanced hybrids could be forecasted to a certain scope based on the performance of and scientifically selected for desirable grain yield and related traits with CSC tolerance during hybrid development programs. In conclusion, the development of high-yielding and micronutrient-dense maize variety is possible under CSC, which could reduce the highly prevalent micronutrient in SSA.

Keywords: drought, Fe, heat, maize, protein, zein fractions, Zn

Procedia PDF Downloads 33
9795 Effect of Hull-Less Barley Flakes and Malt Extract on Yoghurt Quality

Authors: Ilze Beitane, Evita Straumite

Abstract:

The aim of the research was to evaluate the influence of flakes from biologically activated hull-less barley grain and malt extract on quality of yoghurt during its storage. The results showed that the concentration of added malt extract and storage time influenced the changes of pH and lactic acid in yoghurt samples. Sensory properties-aroma, taste, consistency and appearance-of yoghurt enriched with flakes from biologically activated hull-less barley grain and malt extract changed significantly (p<0.05) during storage. Yoghurt with increased proportion of malt extract had sweeter taste and more flowing consistency. Sensory properties (taste, aroma, consistency, and appearance) of yoghurt samples enriched with 5% flakes from biologically activated hull-less barley grain (YFBG 5%) and 5% flakes from biologically activated hull-less barley grain and 2% malt extract (YFBG 5% ME 2%) did not change significantly during one week of storage.

Keywords: Barley flakes, malt extract, yoghurt, sensory analysis

Procedia PDF Downloads 273