Search results for: atmospheric dispersion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1261

Search results for: atmospheric dispersion

1141 Impacts on Atmospheric Mercury from Changes in Climate, Land Use, Land Cover, and Wildfires

Authors: Shiliang Wu, Huanxin Zhang, Aditya Kumar

Abstract:

There have been increasing concerns on atmospheric mercury as a toxic and bioaccumulative pollutant in the global environment. Global change, including changes in climate change, land use, land cover and wildfires activities can all have significant impacts on atmospheric mercury. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from global change on atmospheric mercury. All of these factors in the context of global change are found to have significant impacts on the long-term evolution of atmospheric mercury and can substantially alter the global source-receptor relationships for mercury. We also estimate the global Hg emissions from wildfires for present-day and the potential impacts from the 2000-2050 changes in climate, land use and land cover and Hg anthropogenic emissions by combining statistical analysis with global data on vegetation type and coverage as well as fire activities. Present global Hg wildfire emissions are estimated to be 612 Mg year-1. Africa is the dominant source region (43.8% of global emissions), followed by Eurasia (31%) and South America (16.6%). We find significant perturbations to wildfire emissions of Hg in the context of global change, driven by the projected changes in climate, land use and land cover and Hg anthropogenic emissions. 2000-2050 climate change could increase Hg emissions by 14% globally. Projected changes in land use by 2050 could decrease the global Hg emissions from wildfires by 13% mainly driven by a decline in African emissions due to significant agricultural land expansion. Future land cover changes could lead to significant increases in Hg emissions over some regions (+32% North America, +14% Africa, +13% Eurasia). Potential enrichment of terrestrial ecosystems in 2050 in response to changes in Hg anthropogenic emissions could increase Hg wildfire emissions both globally (+28%) and regionally. Our results indicate that the future evolution of climate, land use and land cover and Hg anthropogenic emissions are all important factors affecting Hg wildfire emissions in the coming decades.

Keywords: climate change, land use, land cover, wildfires

Procedia PDF Downloads 293
1140 3D Printing of Cold Atmospheric Plasma Treated Poly(ɛ-Caprolactone) for Bone Tissue Engineering

Authors: Dong Nyoung Heo, Il Keun Kwon

Abstract:

Three-dimensional (3D) technology is a promising method for bone tissue engineering. In order to enhance bone tissue regeneration, it is important to have ideal 3D constructs with biomimetic mechanical strength, structure interconnectivity, roughened surface, and the presence of chemical functionality. In this respect, a 3D printing system combined with cold atmospheric plasma (CAP) was developed to fabricate a 3D construct that has a rough surface with polar functional chemical groups. The CAP-etching process leads to oxidation of chemical groups existing on the polycaprolactone (PCL) surface without conformational change. The surface morphology, chemical composition, mean roughness of the CAP-treated PCL surfaces were evaluated. 3D printed constructs composed of CAP-treated PCL showed an effective increment in the hydrophilicity and roughness of the PCL surface. Also, an in vitro study revealed that CAP-treated 3D PCL constructs had higher cellular behaviors such as cell adhesion, cell proliferation, and osteogenic differentiation. Therefore, a 3D printing system with CAP can be a highly useful fabrication method for bone tissue regeneration.

Keywords: bone tissue engineering, cold atmospheric plasma, PCL, 3D printing

Procedia PDF Downloads 77
1139 Investigation of Cold Atmospheric Plasma Exposure Protocol on Wound Healing in Diabetic Foot Ulcer

Authors: P. Akbartehrani, M. Khaledi Pour, M. Amini, M. Khani, M. Mohajeri Tehrani, E. Ghasemi, P. Charipoor, B. Shokri

Abstract:

A common problem between diabetic patients is foot ulcers which are chronic and require specialized treatment. Previous studies illustrate that Cold atmospheric plasma (CAP) has beneficial effects on wound healing and infection. Nevertheless, the comparison of different cap exposure protocols in diabetic ulcer wound healing remained to be studied. This study aims to determine the effect of two different exposure protocols on wound healing in diabetic ulcers. A prospective, randomized clinical trial was conducted at two clinics. Diabetic patients with G1 and G2 wanger classification diabetic foot ulcers were divided into two groups of study. One group was treated by the first protocol, which was treating wounds by argon-generated cold atmospheric plasma jet once a week for five weeks in a row. The other group was treated by the second protocol, which was treating wounds every three days for five weeks in a row. The wounds were treated for 40 seconds/cubic centimeter, while the nozzle tip was moved nonlocalized 1 cm above the wounds. A patient with one or more wounds could participate in different groups as wounds were separately randomized, which allow a participant to be treated several times during the study. The study's significant findings were two different reductions rate in wound size, microbial load, and two different healing speeds. This study concludes that CAP therapy by the second protocol yields more effective healing speeds, reduction in wound sizes, and microbial loads of foot ulcers in diabetic patients.

Keywords: wound healing, diabetic ulcers, cold atmospheric plasma, cold argon jet

Procedia PDF Downloads 186
1138 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media

Authors: Olayiwola Moruf Oyedunsi

Abstract:

This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.

Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation

Procedia PDF Downloads 288
1137 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study

Authors: Amit Kumar

Abstract:

Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.

Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality

Procedia PDF Downloads 247
1136 Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling

Authors: M. J. Gibbons, A. J. Robinson

Abstract:

Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code.

Keywords: electronic cooling, electrospray, electrospray plume dispersion, spray cooling

Procedia PDF Downloads 363
1135 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle

Authors: R. Haoui

Abstract:

The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.

Keywords: finite volume, lunchers, nozzles, shock wave

Procedia PDF Downloads 263
1134 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 137
1133 Temperature Calculation for an Atmospheric Pressure Plasma Jet by Optical Emission Spectroscopy

Authors: H. Lee, Jr., L. Bo-ot, R. Tumlos, H. Ramos

Abstract:

The objective of the study is to be able to calculate excitation and vibrational temperatures of a 2.45 GHz microwave-induced atmospheric pressure plasma jet. The plasma jet utilizes Argon gas as a primary working gas, while Nitrogen is utilized as a shroud gas for protecting the quartz tube from the plasma discharge. Through Optical Emission Spectroscopy (OES), various emission spectra were acquired from the plasma discharge. Selected lines from Ar I and N2 I emissions were used for the Boltzmann plot technique. The Boltzmann plots yielded values for the excitation and vibrational temperatures. The various values for the temperatures were plotted against varying parameters such as the gas flow rates.

Keywords: plasma jet, OES, Boltzmann plots, vibrational temperatures

Procedia PDF Downloads 680
1132 Numerical Modelling of Wind Dispersal Seeds of Bromeliad Tillandsia recurvata L. (L.) Attached to Electric Power Lines

Authors: Bruna P. De Souza, Ricardo C. De Almeida

Abstract:

In some cities in the State of Parana – Brazil and in other countries atmospheric bromeliads (Tillandsia spp - Bromeliaceae) are considered weeds in trees, electric power lines, satellite dishes and other artificial supports. In this study, a numerical model was developed to simulate the seed dispersal of the Tillandsia recurvata species by wind with the objective of evaluating seeds displacement in the city of Ponta Grossa – PR, Brazil, since it is considered that the region is already infested. The model simulates the dispersal of each individual seed integrating parameters from the atmospheric boundary layer (ABL) and the local wind, simulated by the Weather Research Forecasting (WRF) mesoscale atmospheric model for the 2012 to 2015 period. The dispersal model also incorporates the approximate number of bromeliads and source height data collected from most infested electric power lines. The seeds terminal velocity, which is an important input data but was not available in the literature, was measured by an experiment with fifty-one seeds of Tillandsia recurvata. Wind is the main dispersal agent acting on plumed seeds whereas atmospheric turbulence is a determinant factor to transport the seeds to distances beyond 200 meters as well as to introduce random variability in the seed dispersal process. Such variability was added to the model through the application of an Inverse Fast Fourier Transform to wind velocity components energy spectra based on boundary-layer meteorology theory and estimated from micrometeorological parameters produced by the WRF model. Seasonal and annual wind means were obtained from the surface wind data simulated by WRF for Ponta Grossa. The mean wind direction is assumed to be the most probable direction of bromeliad seed trajectory. Moreover, the atmospheric turbulence effect and dispersal distances were analyzed in order to identify likely regions of infestation around Ponta Grossa urban area. It is important to mention that this model could be applied to any species and local as long as seed’s biological data and meteorological data for the region of interest are available.

Keywords: atmospheric turbulence, bromeliad, numerical model, seed dispersal, terminal velocity, wind

Procedia PDF Downloads 115
1131 Study of Large-Scale Atmospheric Convection over the Tropical Indian Ocean and Its Association with Oceanic Variables

Authors: Supriya Manikrao Ovhal

Abstract:

In India, the summer monsoon rainfall occurs owing to large scale convection with reference to continental ITCZ. It was found that convection over tropical ocean increases with SST from 26 to 28 degree C, and when SST is above 29 degree C, it sharply decreases for warm pool areas of Indian and for monsoon areas of West Pacific Ocean. The reduction in convection can be influenced by large scale subsidence forced by nearby or remotely generated deep convection, thus it was observed that under the influence of strong large scale rising motion, convection does not decreases but increases monotonically with SST even if SST value is higher than 29.5 degree C. Since convection is related to SST gradient, that helps to generate low level moisture convergence and upward vertical motion in the atmosphere. Strong wind fields like cross equatorial low level jet stream on equator ward side of the warm pool are produced due to convection initiated by SST gradient. Areas having maximum SST have low SST gradient, and that result in feeble convection. Hence it is imperative to mention that the oceanic role (other than SST) could be prominent in influencing large Scale Atmospheric convection. Since warm oceanic surface somewhere or the other contributes to penetrate the heat radiation to the subsurface of the ocean, and as there is no studies seen related to oceanic subsurface role in large Scale Atmospheric convection, in the present study, we are concentrating on the oceanic subsurface contribution in large Scale Atmospheric convection by considering the SST gradient, mixed layer depth (MLD), thermocline, barrier layer. The present study examines the probable role of subsurface ocean parameters in influencing convection.

Keywords: sst, d20, olr, wind

Procedia PDF Downloads 61
1130 Atmospheric Circulation Types Related to Dust Transport Episodes over Crete in the Eastern Mediterranean

Authors: K. Alafogiannis, E. E. Houssos, E. Anagnostou, G. Kouvarakis, N. Mihalopoulos, A. Fotiadi

Abstract:

The Mediterranean basin is an area where different aerosol types coexist, including urban/industrial, desert dust, biomass burning and marine particles. Particularly, mineral dust aerosols, mostly originated from North African deserts, significantly contribute to high aerosol loads above the Mediterranean. Dust transport, controlled by the variation of the atmospheric circulation throughout the year, results in a strong spatial and temporal variability of aerosol properties. In this study, the synoptic conditions which favor dust transport over the Eastern Mediterranean are thoroughly investigated. For this reason, three datasets are employed. Firstly, ground-based daily data of aerosol properties, namely Aerosol Optical Thickness (AOT), Ångström exponent (α440-870) and fine fraction from the FORTH-AERONET (Aerosol Robotic Network) station along with measurements of PM10 concentrations from Finokalia station, for the period 2003-2011, are used to identify days with high coarse aerosol load (episodes) over Crete. Then, geopotential height at 1000, 850 and 700 hPa levels obtained from the NCEP/NCAR Reanalysis Project, are utilized to depict the atmospheric circulation during the identified episodes. Additionally, air-mass back trajectories, calculated by HYSPLIT, are used to verify the origin of aerosols from neighbouring deserts. For the 227 identified dust episodes, the statistical methods of Factor and Cluster Analysis are applied on the corresponding atmospheric circulation data to reveal the main types of the synoptic conditions favouring dust transport towards Crete (Eastern Mediterranean). The 227 cases are classified into 11 distinct types (clusters). Dust episodes in Eastern Mediterranean, are found to be more frequent (52%) in spring with a secondary maximum in autumn. The main characteristic of the atmospheric circulation associated with dust episodes, is the presence of a low-pressure system at surface, either in southwestern Europe or western/central Mediterranean, which induces a southerly air flow favouring dust transport from African deserts. The exact position and the intensity of the low-pressure system vary notably among clusters. More rarely dust may originate from deserts of Arabian Peninsula.

Keywords: aerosols, atmospheric circulation, dust particles, Eastern Mediterranean

Procedia PDF Downloads 203
1129 Modeling the Effects of Temperature on Ambient Air Quality Using AERMOD

Authors: Mustapha Babatunde, Bassam Tawabini, Ole John Nielson

Abstract:

Air dispersion (AD) models such as AERMOD are important tools for estimating the environmental impacts of air pollutant emissions into the atmosphere from anthropogenic sources. The outcome of these models is significantly linked to the climate condition like air temperature, which is expected to differ in the future due to the global warming phenomenon. With projections from scientific sources of impending changes to the future climate of Saudi Arabia, especially anticipated temperature rise, there is a potential direct impact on the dispersion patterns of air pollutants results from AD models. To our knowledge, no similar studies were carried out in Saudi Arabia to investigate such impact. Therefore, this research investigates the effects of climate temperature change on air quality in the Dammam Metropolitan area, Saudi Arabia, using AERMOD coupled with Station data using Sulphur dioxide (SO₂) – as a model air pollutant. The research uses AERMOD model to predict the SO₂ dispersion trends in the surrounding area. Emissions from five (5) industrial stacks on twenty-eight (28) receptors in the study area were considered for the climate period (2010-2019) and future period of mid-century (2040-2060) under different scenarios of elevated temperature profiles (+1ᵒC, + 3ᵒC and + 5ᵒC) across averaging time periods of 1hr, 4hr and 8hr. Results showed that levels of SO₂ at the receiving sites under current and simulated future climactic condition fall within the allowable limit of WHO and KSA air quality standards. Results also revealed that the projected rise in temperature would only have mild increment on the SO₂ concentration levels. The average increase of SO₂ levels was 0.04%, 0.14%, and 0.23% due to the temperature increase of 1, 3, and 5 degrees, respectively. In conclusion, the outcome of this work elucidates the degree of the effects of global warming and climate changes phenomena on air quality and can help the policymakers in their decision-making, given the significant health challenges associated with ambient air pollution in Saudi Arabia.

Keywords: air quality, sulfur dioxide, dispersion models, global warming, KSA

Procedia PDF Downloads 47
1128 Modeling the Effects of Temperature on Air Pollutant Concentration

Authors: Mustapha Babatunde, Bassam Tawabini, Ole John Nielson

Abstract:

Air dispersion (AD) models such as AERMOD are important tools for estimating the environmental impacts of air pollutant emissions into the atmosphere from anthropogenic sources. The outcome of these models is significantly linked to the climate condition like air temperature, which is expected to differ in the future due to the global warming phenomenon. With projections from scientific sources of impending changes to the future climate of Saudi Arabia, especially anticipated temperature rise, there is a potential direct impact on the dispersion patterns of air pollutants results from AD models. To our knowledge, no similar studies were carried out in Saudi Arabia to investigate such impact. Therefore, this research investigates the effects of climate temperature change on air quality in the Dammam Metropolitan area, Saudi Arabia, using AERMOD coupled with Station data using Sulphur dioxide (SO2) – as a model air pollutant. The research uses AERMOD model to predict the SO2 dispersion trends on the surrounding area. Emissions from five (5) industrial stacks, on twenty-eight (28) receptors in the study area were considered for the climate period (2010-2019) and future period of mid-century (2040-2060) under different scenarios of elevated temperature profiles (+1oC, + 3oC and + 5oC) across averaging time periods of 1hr, 4hr and 8hr. Results showed that levels of SO2 at the receiving sites under current and simulated future climactic condition fall within the allowable limit of WHO and KSA air quality standards. Results also revealed that the projected rise in temperature would only have mild increment on the SO2 concentration levels. The average increase of SO2 levels were 0.04%, 0.14%, and 0.23% due to the temperature increase of 1, 3, and 5 degrees respectively. In conclusion, the outcome of this work elucidates the degree of the effects of global warming and climate changes phenomena on air quality and can help the policymakers in their decision-making, given the significant health challenges associated with ambient air pollution in Saudi Arabia.

Keywords: air quality, sulphur dioxide, global warming, air dispersion model

Procedia PDF Downloads 107
1127 Effect of the Firing Cycle on the Microstructure and Mechanical Properties of High Steel Barrel Fabricated by Forging Process

Authors: El Oualid Mokhnache, Noureddine Ramdani

Abstract:

The choice of gun barrel materials is crucial to ensure the maximum high rate of fire. The high rate of fire causes wear-out damage and shuts off mechanical properties (hardness, strength, wear resistance, etc.) and ballistic properties (bullet speed, dispersion and precision, longevity of barrel, etc). To overcome these kinds of problems, a deep understanding of the effect of the firing cycle on the mechanical and ballistic properties of the barrel is regarded as crucial to improving its characteristics. In the present work, a real experimental test of firing by using a high steel barrel with 7.62x39 ammunition was carried. Microstructural observations by using SEM were investigated. Hardness evolution through the barrel of both barrels labeled as reference barrels and as fired barrels were compared and discussed. Ballistic properties during the firing test, including speed of projectile and precision dispersion, are revealed and discussed as well. The aim of the present communication is about to discuss the relationship between pressure distribution versus mechanical properties through the wall barrel. Ballistic properties, including speed of the projectile, dispersion, and precision results during the shooting process, were investigated. Microstructure observations of the as-rifled barrel in comparison with the as-reference barrel were performed as well.

Keywords: barrel, ballistic, pressure, microstructure evolution, hardness

Procedia PDF Downloads 27
1126 Phase Stability and Grain Growth Kinetics of Oxide Dispersed CoCrFeMnNi

Authors: Prangya P. Sahoo, B. S. Murty

Abstract:

The present study deals with phase evolution of oxide dispersed CoCrFeMnNi high entropy alloy as a function of amount of added Y2O3 during mechanical alloying and analysis of grain growth kinetics of CoCrFeMnNi high entropy alloy without and with oxide dispersion. Mechanical alloying of CoCrFeMnNi resulted in a single FCC phase. However, evolution of chromium carbide was observed after heat treatment between 1073 and 1473 K. Comparison of grain growth time exponents and activation energy barrier is also reported. Micro structural investigations, using electron microscopy and EBSD techniques, were carried out to confirm the enhanced grain growth resistance which is attributed to the presence oxide dispersoids.

Keywords: grain growth kinetics, mechanical alloying, oxide dispersion, phase evolution

Procedia PDF Downloads 399
1125 Study of Dispersion of Silica and Chitosan Nanoparticles into Gelatin Film

Authors: Mohit Batra, Noel Sarkar, Jayeeta Mitra

Abstract:

In this study silica nanoparticles were synthesized using different methods and different silica sources namely Tetraethyl ortho silicate (TEOS), Sodium Silicate, Rice husk while chitosan nanoparticles were prepared with ionic gelation method using Sodium tripolyphosphate (TPP). Size and texture of silica nanoparticles were studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) along with the effect of change in concentration of various reagents in different synthesis processes. Size and dispersion of Silica nanoparticles prepared from TEOS using stobber’s method were found better than other methods while nanoparticles prepared using rice husk were cheaper than other ones. Catalyst found to play a very significant role in controlling the size of nanoparticles in all methods.

Keywords: silica nanoparticles, gelatin, bio-nanocomposites, SEM, TEM, chitosan

Procedia PDF Downloads 279
1124 Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma

Authors: Maxime Moreau, Silvère Baron, Jean-Marc Lobaccaro, Karine Charlet, Sébastien Menecier, Frédéric Perisse

Abstract:

Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma.

Keywords: cold atmospheric plasma, hydrogen peroxide, prostate cancer, selectivity

Procedia PDF Downloads 115
1123 Atmospheric Transport Modeling of Radio-Xenon Detections Possibly Related to the Announced Nuclear Test in North Korea on February 12, 2013

Authors: Kobi Kutsher

Abstract:

On February 12th 2013, monitoring stations of the Preparatory Commission of the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO) detected a seismic event with explosion-like underground characteristics in the Democratic People’s Republic of Korea (DPRK). The location was found to be in the vicinity of the two previous announced nuclear tests in 2006 and 2009.The nuclear test was also announced by the government of the DPRK.After an underground nuclear explosion, radioactive fission products (mostly noble gases) can seep through layers of rock and sediment until they escape into the atmosphere. The fission products are dispersed in the atmosphere and may be detected thousands of kilometers downwind from the test site. Indeed, more than 7 weeks after the explosion, unusual detections of noble gases was reported at the radionuclide station in Takasaki, Japan. The radionuclide station is a part of the International Monitoring System, operated to verify the CTBT. This study provides an estimation of the possible source region and the total radioactivity of the release using Atmospheric Transport Modeling.

Keywords: atmospheric transport modeling, CTBTO, nuclear tests, radioactive fission products

Procedia PDF Downloads 402
1122 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods

Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad

Abstract:

we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical design

Keywords: hydrogen gas, lightning energy, power plant, resistive element

Procedia PDF Downloads 108
1121 Flow Characterization in Complex Terrain for Aviation Safety

Authors: Adil Rasheed, Mandar Tabib

Abstract:

The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.

Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system

Procedia PDF Downloads 380
1120 Electron Beam Effects on Kinetic Alfven Waves in the Cold Homogenous Plasma

Authors: Jaya Shrivastava

Abstract:

The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, growth/damping rate and associated currents in the presence of electron beam in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. The plasma parameters appropriate to plasma sheet boundary layer are used. It is found that downward electron beam affects the dispersion relation, growth/damping-rate and associated currents in cold electron limit.

Keywords: magnetospheric physics, plasma waves and instabilities, electron beam, space plasma physics, wave-particle interactions

Procedia PDF Downloads 362
1119 Impact of Ship Traffic to PM 2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi

Abstract:

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at International level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.

Keywords: ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol

Procedia PDF Downloads 725
1118 Synthesis of TiO₂/Graphene Nanocomposites with Excellent Visible-Light Photocatalytic Activity Based on Chemical Exfoliation Method

Authors: Nhan N. T. Ton, Anh T. N. Dao, Kouichirou Katou, Toshiaki Taniike

Abstract:

Facile electron-hole recombination and the broad band gap are two major drawbacks of titanium dioxide (TiO₂) when applied in visible-light photocatalysis. Hybridization of TiO₂ with graphene is a promising strategy to lessen these pitfalls. Recently, there have been many reports on the synthesis of TiO₂/graphene nanocomposites, in most of which graphene oxide (GO) was used as a starting material. However, the reduction of GO introduced a large number of defects on the graphene framework. In addition, the sensitivity of titanium alkoxide to water (GO usually contains) significantly obstructs the uniform and controlled growth of TiO₂ on graphene. Here, we demonstrate a novel technique to synthesize TiO₂/graphene nanocomposites without the use of GO. Graphene dispersion was obtained through the chemical exfoliation of graphite in titanium tetra-n-butoxide with the aid of ultrasonication. The dispersion was directly used for the sol-gel reaction in the presence of different catalysts. A TiO₂/reduced graphene oxide (TiO₂/rGO) nanocomposite, which was prepared by a solvothermal method from GO, and the commercial TiO₂-P25 were used as references. It was found that titanium alkoxide afforded the graphene dispersion of a high quality in terms of a trace amount of defects and a few layers of dispersed graphene. Moreover, the sol-gel reaction from this dispersion led to TiO₂/graphene nanocomposites featured with promising characteristics for visible-light photocatalysts including: (I) the formation of a TiO₂ nano layer (thickness ranging from 1 nm to 5 nm) that uniformly and thinly covered graphene sheets, (II) a trace amount of defects on the graphene framework (low ID/IG ratio: 0.21), (III) a significant extension of the absorption edge into the visible light region (a remarkable extension of the absorption edge to 578 nm beside the usual edge at 360 nm), and (IV) a dramatic suppression of electron-hole recombination (the lowest photoluminescence intensity compared to reference samples). These advantages were successfully demonstrated in the photocatalytic decomposition of methylene blue under visible light irradiation. The TiO₂/graphene nanocomposites exhibited 15 and 5 times higher activity than TiO₂-P25 and the TiO₂/rGO nanocomposite, respectively.

Keywords: chemical exfoliation, photocatalyst, TiO₂/graphene, sol-gel reaction

Procedia PDF Downloads 129
1117 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 378
1116 Excitation of Guided Waves in Finite Width Plates Using a Numerical Approach

Authors: Wenbo Duan, Hossein Habibi, Vassilios Kappatos, Cem Selcuk, Tat-Hean Gan

Abstract:

Ultrasonic guided waves are often used to remove ice or fouling in different structures, such as ship hulls, wind turbine blades and so on. To achieve maximum sound power output, it is important that multiple transducers are arranged in a particular way so that a desired mode can be excited. The objective of this paper is thus to provide a theoretical basis for generating a particular mode in a finite width rectangular plate which can be used for removing potential ice or fouling on the plate. The number of transducers and their locations with respect to a particular mode will be investigated, and the link between dispersion curves and practical applications will be explored. To achieve this, a semi-analytical finite element (SAFE) method is used to study the dispersion characteristics of all the modes in the ultrasonic frequency range. The detailed modal shapes will be revealed, and from the modal analysis, the particular mode with the strongest yet continuous transverse and axial displacements on the surfaces of the plate will be chosen for the purpose of removing potential ice or fouling on the plate. The modal analysis is followed by providing information on the number, location and amplitude of transducers needed to excite this particular mode. Modal excitation is then implemented in a standard finite element commercial package, namely COMSOL Multiphysics. Wave motion is visualized in COMSOL, and the mode shapes generated in SAFE is found to be consistent with the mode shapes generated in COMSOL.

Keywords: dispersion analysis, finite width plate, guided wave, modal excitation

Procedia PDF Downloads 438
1115 Formulation and Evaluation of Solid Dispersion of an Anti-Epileptic Drug Carbamazepine

Authors: Sharmin Akhter, M. Salahuddin, Sukalyan Kumar Kundu, Mohammad Fahim Kadir

Abstract:

Relatively insoluble candidate drug like carbamazepine (CBZ) often exhibit incomplete or erratic absorption; and hence wide consideration is given to improve aqueous solubility of such compound. Solid dispersions were formulated with an aim of improving aqueous solubility, oral bioavailability and the rate of dissolution of Carbamazepine using different hydrophyllic polymer like Polyethylene Glycol (PEG) 6000, Polyethylene Glycol (PEG) 4000, kollidon 30, HPMC 6 cps, poloxamer 407 and povidone k 30. Solid dispersions were prepared with different drug to polymer weight ratio by the solvent evaporation method where methanol was used as solvent. Drug-polymer physical mixtures were also prepared to compare the rate of dissolution. Effects of different polymer were studied for solid dispersion formulation as well as physical mixtures. These formulations were characterized in the solid state by Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). Solid state characterization indicated CBZ was present as fine particles and entrapped in carrier matrix of PEG 6000 and PVP K30 solid dispersions. Fourier Transform Infrared (FTIR) spectroscopic studies showed the stability of CBZ and absence of well-defined drug-polymer interactions. In contrast to the very slow dissolution rate of pure CBZ, dispersions of drug in polymers considerably improved the dissolution rate. This can be attributed to increased wettability and dispersibility, as well as decreased crystallinity and increase in amorphous fraction of drug. Solid dispersion formulations containing PEG 6000 and Povidone K 30 showed maximum drug release within one hour at the ratio of 1:1:1. Even physical mixtures of CBZ prepared with both carriers also showed better dissolution profiles than those of pure CBZ. In conclusions, solid dispersions could be a promising delivery of CBZ with improved oral bioavailability and immediate release profiles.

Keywords: carbamazepine, FTIR, kollidon 30, HPMC 6 CPS, PEG 6000, PEG 4000, poloxamer 407, water solubility, povidone k 30, SEM, solid dispersion

Procedia PDF Downloads 272
1114 Elaboration and Characterization of PP/TiO2 Composites

Authors: F. Z. Benabid, S. Kridi, F. Zouai, D. Benachour

Abstract:

The aim of present work is to characterize the PP/TiO2 blends as composites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the impact strength results which increased about 39% compared to neat PP. The rheological study showed an increase in the fluidity in all developed composite compositions, involved by the good dispersion of TiO2 particles.

Keywords: composites, PP, TiO2, comixing, mechanical treatment

Procedia PDF Downloads 241
1113 GIS Based Atmospheric Analysis to Predict Future Temperature Rise Caused by Land Use and Land Cover in Okara by Using Environmental Remote Sensing

Authors: Sumaira Hafeez, Saira Akram

Abstract:

Albeit the populace in metropolitan regions on the planet develops each year, the urban communities battling to adapt to the expanded metropolitan movement grow at different rates. Land Surface Temperature and other atmospheric parameters of the area of not really settled using Landsat pictures more than 10 years isolated. The LULC types were moreover arranged using managed gathering techniques. Quick urbanization is changing the current examples of Land Use Land Cover (LULC) all around the world, which is thusly expanding the Land Surface Temperature (LST) other atmospheric parameters in numerous districts. Present review was centered around assessing the current and recreating the future LULC and Land Surface Temperature patterns in the elevated climate of lower Himalayan district of Pakistan. Past examples of LULC and Land Surface Temperature were distinguished through the multi-unearthly Landsat satellite pictures during the 1995–2019 information period. The future forecasts were made for the year 2030 to work out LULC and LST changes separately, utilizing their previous examples. The review presumes that the reliably extending encroachment of the city's as of late advanced provincial regions over the totally open have went with an overall warming of the district's typical. Meteorological parameters over the earlier ten years and that permitting the land to lie void for a significant long time resulting to clearing the country fields for future metropolitan improvement is a preparation that has lamentable natural effects.

Keywords: surface urban heat island, land surface temperature, urban climate change, spatial analysis of meterological and atmospheric science

Procedia PDF Downloads 89
1112 Dielectric Properties of Thalium Selenide Thin Films at Radio Wave Frequencies

Authors: Onur Potok, Deniz Deger, Kemal Ulutas, Sahin Yakut, Deniz Bozoglu

Abstract:

Thalium Selenide (TlSe) is used for optoelectronic devices, pressure sensitive detectors, and gamma-ray detectors. The TlSe samples were grown as large single crystals using the Stockbarger-Bridgman method. The thin films, in the form of Al/TlSe/Al, were deposited on the microscope slide in different thicknesses (300-3000 Å) using thermal evaporation technique at 10-5 Torr. The dielectric properties of (TlSe) thin films, capacitance (C) and dielectric loss factor (tanδ), were measured in a frequency range of 10-105 Hz, and temperatures between 213K and 393K via Broadband Dielectric Spectroscopy analyzer. The dielectric constant (ε’) and the dielectric loss (ε’’) of the thin films were derived from measured parameters (C and tanδ). These results showed that the dielectric properties of TlSe thin films are frequency and temperature dependent. The capacitance and the dielectric constant decrease with increasing frequency and decreasing temperature. The dielectric loss of TlSe thin films decreases with increasing frequency, on the other hand, they increase with increasing temperature and increasing thicknesses. There is two relaxation region in the investigated frequency and temperature interval. These regions can be called as low and high-frequency dispersion regions. Low-frequency dispersion region can be attributed to the polarization of the main part of the chain structure of TlSe while high-frequency dispersion region can be attributed to the polarization of side parts of the structure.

Keywords: thin films, thallium selenide, dielectric spectroscopy, binary compounds

Procedia PDF Downloads 122