Search results for: aqueous solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6132

Search results for: aqueous solution

1212 Building and Development of the Stock Market Institutional Infrastructure in Russia

Authors: Irina Bondarenko, Olga Vandina

Abstract:

The theory of evolutionary economics is the basis for preparation and application of methods forming the stock market infrastructure development concept. The authors believe that the basis for the process of formation and development of the stock market model infrastructure in Russia is the theory of large systems. This theory considers the financial market infrastructure as a whole on the basis of macroeconomic approach with the further definition of its aims and objectives. Evaluation of the prospects for interaction of securities market institutions will enable identifying the problems associated with the development of this system. The interaction of elements of the stock market infrastructure allows to reduce the costs and time of transactions, thereby freeing up resources of market participants for more efficient operation. Thus, methodology of the transaction analysis allows to determine the financial infrastructure as a set of specialized institutions that form a modern quasi-stable system. The financial infrastructure, based on international standards, should include trading systems, regulatory and supervisory bodies, rating agencies, settlement, clearing and depository organizations. Distribution of financial assets, reducing the magnitude of transaction costs, increased transparency of the market are promising tasks in the solution for questions of services level and quality increase provided by institutions of the securities market financial infrastructure. In order to improve the efficiency of the regulatory system, it is necessary to provide "standards" for all market participants. The development of a clear regulation for the barrier to the stock market entry and exit, provision of conditions for the development and implementation of new laws regulating the activities of participants in the securities market, as well as formulation of proposals aimed at minimizing risks and costs, will enable the achievement of positive results. The latter will be manifested in increasing the level of market participant security and, accordingly, the attractiveness of this market for investors and issuers.

Keywords: institutional infrastructure, financial assets, regulatory system, stock market, transparency of the market

Procedia PDF Downloads 108
1211 Partnering with Stakeholders to Secure Digitization of Water

Authors: Sindhu Govardhan, Kenneth G. Crowther

Abstract:

Modernisation of the water sector is leading to increased connectivity and integration of emerging technologies with traditional ones, leading to new security risks. The convergence of Information Technology (IT) with Operation Technology (OT) results in solutions that are spread across larger geographic areas, increasingly consist of interconnected Industrial Internet of Things (IIOT) devices and software, rely on the integration of legacy with modern technologies, use of complex supply chain components leading to complex architectures and communication paths. The result is that multiple parties collectively own and operate these emergent technologies, threat actors find new paths to exploit, and traditional cybersecurity controls are inadequate. Our approach is to explicitly identify and draw data flows that cross trust boundaries between owners and operators of various aspects of these emerging and interconnected technologies. On these data flows, we layer potential attack vectors to create a frame of reference for evaluating possible risks against connected technologies. Finally, we identify where existing controls, mitigations, and other remediations exist across industry partners (e.g., suppliers, product vendors, integrators, water utilities, and regulators). From these, we are able to understand potential gaps in security, the roles in the supply chain that are most likely to effectively remediate those security gaps, and test cases to evaluate and strengthen security across these partners. This informs a “shared responsibility” solution that recognises that security is multi-layered and requires collaboration to be successful. This shared responsibility security framework improves visibility, understanding, and control across the entire supply chain, and particularly for those water utilities that are accountable for safe and continuous operations.

Keywords: cyber security, shared responsibility, IIOT, threat modelling

Procedia PDF Downloads 38
1210 Value Index, a Novel Decision Making Approach for Waste Load Allocation

Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) policies may use multi-objective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.

Keywords: waste load allocation (WLA), value index, multi objective particle swarm optimization (MOPSO), Haraz River, equity

Procedia PDF Downloads 394
1209 Magnetic Nano-Composite of Self-Doped Polyaniline Nanofibers for Magnetic Dispersive Micro Solid Phase Extraction Applications

Authors: Hatem I. Mokhtar, Randa A. Abd-El-Salam, Ghada M. Hadad

Abstract:

An improved nano-composite of self-doped polyaniline nanofibers and silica-coated magnetite nanoparticles were prepared and evaluated for suitability to magnetic dispersive micro solid-phase extraction. The work focused on optimization of the composite capacity to extract four fluoroquinolones (FQs) antibiotics, ciprofloxacin, enrofloxacin, danofloxacin, and difloxacin from water and improvement of composite stability towards acid and atmospheric degradation. Self-doped polyaniline nanofibers were prepared by oxidative co-polymerization of aniline with anthranilic acid. Magnetite nanopariticles were prepared by alkaline co-precipitation and coated with silica by silicate hydrolysis on magnetite nanoparticles surface at pH 6.5. The composite was formed by self-assembly by mixing self-doped polyaniline nanofibers with silica-coated magnetite nanoparticles dispersions in ethanol. The composite structure was confirmed by transmission electron microscopy (TEM). Self-doped polyaniline nanofibers and magnetite chemical structures were confirmed by FT-IR while silica coating of the magnetite was confirmed by Energy Dispersion X-ray Spectroscopy (EDS). Improved stability of the composite magnetic component was evidenced by resistance to degrade in 2N HCl solution. The adsorption capacity of self-doped polyaniline nanofibers based composite was higher than previously reported corresponding composite prepared from polyaniline nanofibers instead of self-doped polyaniline nanofibers. Adsorption-pH profile for the studied FQs on the prepared composite revealed that the best pH for adsorption was in range of 6.5 to 7. Best extraction recovery values were obtained at pH 7 using phosphate buffer. The best solvent for FQs desorption was found to be 0.1N HCl in methanol:water (8:2; v/v) mixture. 20 mL of Spiked water sample with studied FQs were preconcentrated using 4.8 mg of composite and resulting extracts were analysed by HPLC-UV method. The prepared composite represented a suitable adsorbent phase for magnetic dispersive micro-solid phase application.

Keywords: fluoroquinolones, magnetic dispersive micro extraction, nano-composite, self-doped polyaniline nanofibers

Procedia PDF Downloads 95
1208 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies

Authors: Amira Abdelrasoul

Abstract:

This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.

Keywords: biomimetic, membrane, synchrotron, permeability, morphology

Procedia PDF Downloads 73
1207 Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant

Authors: I. Székács, Á. Fejes, S. Klátyik, E. Takács, D. Patkó, J. Pomóthy, M. Mörtl, R. Horváth, E. Madarász, B. Darvas, A. Székács

Abstract:

Environmental and toxicological characteristics of formulated pesticides may substantially differ from those of their active ingredients or other components alone. This phenomenon is demonstrated in the case of the herbicide active ingredient glyphosate. Due to its extensive application, this active ingredient was found in surface and ground water samples collected in Békés County, Hungary, in the concentration range of 0.54–0.98 ng/ml. The occurrence of glyphosate appeared to be somewhat higher at areas under intensive agriculture, industrial activities and public road services, but the compound was detected at areas under organic (ecological) farming or natural grasslands, indicating environmental mobility. Increased toxicity of the formulated herbicide product Roundup, compared to that of glyphosate was observed on the indicator aquatic organism Daphnia magna Straus. Acute LC50 values of Roundup and its formulating adjuvant Polyethoxylated Tallowamine (POEA) exceeded 20 and 3.1 mg/ml, respectively, while that of glyphosate (as isopropyl salt) was found to be substantially lower (690-900 mg/ml) showing good agreement with literature data. Cytotoxicity of Roundup, POEA and glyphosate has been determined on the neuroectodermal cell line, NE-4C measured both by cell viability test and holographic microscopy. Acute toxicity (LC50) of Roundup, POEA and glyphosate on NE-4C cells was found to be 0.013±0.002%, 0.017±0.009% and 6.46±2.25%, respectively (in equivalents of diluted Roundup solution), corresponding to 0.022±0.003 and 53.1±18.5 mg/ml for POEA and glyphosate, respectively, indicating no statistical difference between Roundup and POEA and 2.5 orders of magnitude difference between these and glyphosate. The same order of cellular toxicity seen in average cell area has been indicated under quantitative cell visualization. The results indicate that toxicity of the formulated herbicide is caused by the formulating agent, but in some parameters toxicological synergy occurs between POEA and glyphosate.

Keywords: glyphosate, polyethoxylated tallowamine, Roundup, combined aquatic and cellular toxicity, synergy

Procedia PDF Downloads 285
1206 Legal Problems with the Thai Political Party Establishment

Authors: Paiboon Chuwatthanakij

Abstract:

Each of the countries around the world has different ways of management and many of them depend on people to administrate their country. Thailand, for example, empowers the sovereignty of Thai people under constitution; however, our Thai voting system is not able to flow fast enough under the current Political management system. The sovereignty of Thai people is addressing this problem through representatives during current elections, in order to set a new policy for the countries ideology to change in the House and the Cabinet. This is particularly important in a democracy to be developed under our current political institution. The Organic Act on Political Parties 2007 is the establishment we have today that is causing confrontations within the establishment. There are many political parties that will soon be abolished. Many political parties have already been subsidized. This research study is to analyze the legal problems with the political party establishment under the Organic Act on Political Parties 2007. This will focus on the freedom of each political establishment compared to an effective political operation. Textbooks and academic papers will be referenced from studies home and abroad. The study revealed that Organic Act on Political Parties 2007 has strict provisions on the political structure over the number of members and the number of branches involved within political parties system. Such operations shall be completed within one year; but under the existing laws the small parties are not able to participate with the bigger parties. The cities are capable of fulfilling small political party requirements but fail to become coalesced because the current laws won't allow them to be united as one. It is important to allow all independent political parties to join our current political structure. Board members can’t help the smaller parties to become a large organization under the existing Thai laws. Creating a new establishment that functions efficiently throughout all branches would be one solution to these legal problems between all political parties. With this new operation, individual political parties can participate with the bigger parties during elections. Until current political institutions change their system to accommodate public opinion, these current Thai laws will continue to be a problem with all political parties in Thailand.

Keywords: coalesced, political party, sovereignty, elections

Procedia PDF Downloads 281
1205 Preparation of Novel Silicone/Graphene-based Nanostructured Surfaces as Fouling Release Coatings

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Ping Jing Mo

Abstract:

As marine fouling-release (FR) surfaces, two new superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) loaded with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were created. The self-cleaning and antifouling capabilities were modified by controlling the nanofillers' shapes and distribution in the silicone matrix. With an average diameter of 10-20 nm and a length of 200 nm, γ-AlOOH nanorods showed a single crystallinity. RGO was made using a hydrothermal process, whereas GO-γ-AlOOH nanocomposites were made using a chemical deposition method for use as fouling-release coating materials. These nanofillers were disseminated in the silicone matrix using the solution casting method to explore the synergetic effects of graphene-based materials on the surface, mechanical, and FR characteristics. Water contact angle (WCA), scanning electron, and atomic force microscopes were used to investigate the surface's hydrophobicity and antifouling capabilities (SEM and AFM). The roughness, superhydrophobicity, and surface mechanical characteristics of coatings all increased the homogeneity of the nanocomposite dispersion. To examine the antifouling effects of the coating systems, laboratory tests were conducted for 30 days using specified bacteria.PDMS/GO-γ-AlOOH nanorod composite demonstrated superior antibacterial efficacy against several bacterial strains than PDMS/RGO nanocomposite. The high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers are to blame for this. The biodegradability percentage of the PDMS/GO-γ-AlOOH nanorod composite (3 wt.%) was the lowest (1.6%), while the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. The homogeneity of the GO-γ-AlOOH (3 wt.%) dispersion, which had a WCA of 151° and a rough surface, was the most profound superhydrophobic antifouling nanostructured coating.

Keywords: superhydrophobic nanocomposite, fouling release, nanofillers, surface coating

Procedia PDF Downloads 200
1204 Eco-Agriculture for Effective Solid Waste Management in Minna, Nigeria

Authors: A. Abdulkadir, Y. M. Bello, A. A. Okhimamhe, H. Ibrahim, M. B. Matazu, L. S. Barau

Abstract:

The increasing volume of solid waste generated, collected and disposed daily complicate adequate management of solid waste by the relevant agency like Niger State Environmental Protection Agency (NISEPA). In addition, the impacts of solid waste on the natural environment and human livelihood require identification of cost-effective ways for sustainable municipal waste management in Nigeria. These signal the need for identifying environment-friendly initiative and local solution to address municipal solid waste. A research field was secured at Pago, Minna, Niger State which is located in the guinea savanna belt of Nigeria, within longitude 60 3614311- 4511 and latitude 90 291 37.6111- .6211 N. Poultry droppings, decomposed household waste manure and NPK treatment were used. The experimental field was divided into three replications and four (4) treatments on each replication making a total of twelve (12) plots. The treatments were allotted using Randomized Complete Block Design (RCBD) and Data collected was analyzed using SPSS software and RCBD. The result depicts variation in plant height and number of leaves at 50% flowering; Poultry dropping records the highest height as a number of leaves for waste manure competes fairly well with NPK treatment. Similarly, the varying treatments significantly increase vegetable yield, as the control (Nontreatment) records the least yield for the three vegetable samples. Adoption of this organic manure for cultivation does not only enhance environment quality and attainment of food security but will contribute to local economic development, poverty alleviation, and social inclusion.

Keywords: environmental issues, food security, NISEPA, solid waste

Procedia PDF Downloads 302
1203 Antibiofilm Activities of Biogenic Silver Nanoparticles against Human Pathogenic Bacteria

Authors: Muhammad Shahzad Tufail, Iram Liaqat, Umer Sohail Meer, Muhammad Ishtaiq, Muhammad Sattar

Abstract:

Nanotechnology is a vibrant field with numerous applications in many different branches of science and technology. Several methods are used to synthesize nanoparticles (NPs), which have multiple range of applications. Comparatively, the biogenic synthesis of NPs is a more economical and environmentally favourable method than the traditional chemical method. The current study aims to synthesize biogenically silver nanoparticles (AgNPs) using bacterial isolates. Four bacterial strains Escherichia coli (MT448673), Pseudomonas aeruginosa (MN900691), Bacillus subtilis (MN900684) and Bacillus licheniformis (MN900686) were used for the synthesis of AgNPs from silver nitrate (AgNO3) solution. The biofilm time kinetics of four bacterial isolates (P. aeruginosa, E. coli, B. licheniformis and B. subtilis) was analysed by incubating bacterial cultures at 37◦C in test tubes over a period of different time intervals i.e., 2, 3, 5 and 7 days following crystal violet staining method. All the four strains had ability to form strong biofilms between 48 to 72 hours of incubation. Two strains (B. subtilis and B. licheniformis) formed significant (p < 0.05) biofilm after 3 days of incubation period. The other two strains (E. coli and P. aeruginosa) showed strong biofilm formation after 2 days of incubation. Next, the antibiofilm activity of biogenically synthesized AgNPs (10 - 100 µgmL-1) was analysed against biofilm forming human pathogenic bacteria. Findings of the work revealed that 60-90% inhibition was observed at 60 µgmL-1 of AgNPs, while maximum inhibition (i.e.,100%) was found at highest concentration (90 µgmL-1). It was evident that highly significant (p < 0.05) decrease in biofilm formation was observed with increasing concentration of AgNPs.

Keywords: antibiofilm, biofilm formation, nanotechnology, pathogenic bacteria, silver nanoparticles

Procedia PDF Downloads 51
1202 Deorbiting Performance of Electrodynamic Tethers to Mitigate Space Debris

Authors: Giulia Sarego, Lorenzo Olivieri, Andrea Valmorbida, Carlo Bettanini, Giacomo Colombatti, Marco Pertile, Enrico C. Lorenzini

Abstract:

International guidelines recommend removing any artificial body in Low Earth Orbit (LEO) within 25 years from mission completion. Among disposal strategies, electrodynamic tethers appear to be a promising option for LEO, thanks to the limited storage mass and the minimum interface requirements to the host spacecraft. In particular, recent technological advances make it feasible to deorbit large objects with tether lengths of a few kilometers or less. To further investigate such an innovative passive system, the European Union is currently funding the project E.T.PACK – Electrodynamic Tether Technology for Passive Consumable-less Deorbit Kit in the framework of the H2020 Future Emerging Technologies (FET) Open program. The project focuses on the design of an end of life disposal kit for LEO satellites. This kit aims to deploy a taped tether that can be activated at the spacecraft end of life to perform autonomous deorbit within the international guidelines. In this paper, the orbital performance of the E.T.PACK deorbiting kit is compared to other disposal methods. Besides, the orbital decay prediction is parametrized as a function of spacecraft mass and tether system performance. Different values of length, width, and thickness of the tether will be evaluated for various scenarios (i.e., different initial orbital parameters). The results will be compared to other end-of-life disposal methods with similar allocated resources. The analysis of the more innovative system’s performance with the tape coated with a thermionic material, which has a low work-function (LWT), for which no active component for the cathode is required, will also be briefly discussed. The results show that the electrodynamic tether option can be a competitive and performant solution for satellite disposal compared to other deorbit technologies.

Keywords: deorbiting performance, H2020, spacecraft disposal, space electrodynamic tethers

Procedia PDF Downloads 137
1201 Flow Behavior of a ScCO₂-Stimulated Geothermal Reservoir under in-situ Stress and Temperature Conditions

Authors: B. L. Avanthi Isaka, P. G. Ranjith

Abstract:

The development of technically-sound enhanced geothermal systems (EGSs) is identified as a viable solution for world growing energy demand with immense potential, low carbon dioxide emission and importantly, as an environmentally friendly option for renewable energy production. The use of supercritical carbon dioxide (ScCO₂) as the working fluid in EGSs by replacing traditional water-based method is promising due to multiple advantages prevail in ScCO₂-injection for underground reservoir stimulation. The evolution of reservoir stimulation using ScCO₂ and the understanding of the flow behavior of a ScCO₂-stimulated geothermal reservoir is vital in applying ScCO₂-EGSs as a replacement for water-based EGSs. The study is therefore aimed to investigate the flow behavior of a ScCO₂-fractured rock medium at in-situ stress and temperature conditions. A series of permeability tests were conducted for ScCO₂ fractured Harcourt granite rock specimens at 90ºC, under varying confining pressures from 5–60 MPa using the high-pressure and high-temperature tri-axial set up which can simulate deep geological conditions. The permeability of the ScCO₂-fractured rock specimens was compared with that of water-fractured rock specimens. The results show that the permeability of the ScCO₂-fractured rock specimens is one order higher than that of water-fractured rock specimens and the permeability exhibits a non-linear reduction with increasing confining pressure due to the stress-induced fracture closure. Further, the enhanced permeability of the ScCO₂-induced fracture with multiple secondary branches was explained by exploring the CT images of the rock specimens. However, a single plain fracture was induced under water-based fracturing.

Keywords: supercritical carbon dioxide, fracture permeability, granite, enhanced geothermal systems

Procedia PDF Downloads 106
1200 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste

Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova

Abstract:

Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.

Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples

Procedia PDF Downloads 72
1199 Installing Beehives in Solar Parks to Enhance Local Biodiversity

Authors: Nuria Rubio, María Campo, Joana Ruiz, Paola Vecino

Abstract:

Renewable energies have been proposed for some years as a solution to the ecological crisis caused by traditional fuels. The installation of solar parks for electricity production is therefore necessary for a transition to cleaner energy. Additionally, spaces occupied by solar parks can be ideal places for biodiversity promotion consisting in controlled areas allowing free transit of numerous animal species in absence of phytosanitary products or other substances commonly used in rural areas. The main objective of this project is increasing local biodiversity. Secondary objectives include the installation of beehives with Apis mellifera iberiensis swarms (native honeybee species), the monitoring and periodic evaluation of the state of health and demographic progression of these swarms and study of biodiversity increase in these areas, mainly due to the presence of Apis mellifera iberiensis. Prior to bee-hives installation, a preliminary study of the area is carried out to quantify floral load, biocenosis and geo-climatological characteristics of the area of study for determining the optimal number of hives for the benefit of the local ecosystem. Once beehives set up, the bee-swarms health status is monitored and evaluated quarterly using monitoring systems. Parameters studies are weight, humidity inside the hive, external and internal temperature, and sound inside the hive. Furthermore, a biodiversity study of the area was conducted by direct observation and quantification of species (S) in the area of bee-foraging (1 km around the beehives). A great diversity of species has been detected in the area of study. Therefore, the population of Apis mellifera iberiensis is not displacing other pollinators in the area, on the contrary, results show that it is contributing to the pollination of the different plant species enhancing wild bees’ biodiversity.

Keywords: biodiversity, honeybee, pollination, solar park

Procedia PDF Downloads 16
1198 The Impact of Organizational Culture on Internet Marketing Adoption

Authors: Hafiz Mushtaq Ahmad, Syed Faizan Ali Shah, Bushra Hussain, Muneeb Iqbal

Abstract:

Purpose: The purpose of this study is to investigate the impact of organizational culture on internet marketing adoption. Moreover, the study intends to explore the role of organizational culture in the internet marketing adoption that helps business to achieve organizational growth and augmented market share. Background: With the enormous expansion of technology, organizations now need technology-based marketing paradigm in order to capture larger group of customers. Organizational culture plays a dominant and prominent role in the internet marketing adoption. Changes in the world economy have demolished current organizational competition and generating new technology standards and strategies. With all the technological advances, e-marketing has become one of the essential part of marketing strategies. Organizations require advance internet marketing strategies in order to compete in a global market. Methodology: The population of this study consists of telecom sector organizations of Pakistan. The sample size consists of 200 telecom sector employees. Data were gathered through the questionnaire instrument. The research strategy of this study is survey. The study uses a deductive approach. The sampling technique of this study is convenience sampling. Tentative Results: The study reveals that organizational culture played a vital role in the internet marketing adoption. The results show that there is a strong association between the organizational culture and internet marketing adoption. The results further show that flexible organizational culture helps organization to easily adopt internet marketing. Conclusion: The study discloses that flexible organizational culture helps organizations to easily adopt e-marketing. The study guides decision-makers and owners of organizations to recognize the importance of internet marketing strategy and help them to increase market share by using e-marketing. The study offers solution to the managers to develop flexible organizational culture that helps in internet marketing adoption.

Keywords: internet technology, internet marketing, marketing paradigm, organizational culture

Procedia PDF Downloads 203
1197 Comparative Assessment of Microplastic Pollution in Surface Water and Sediment of the Gomati and Saryu Rivers, India

Authors: Amit K. Mishra, Jaswant Singh

Abstract:

The menace of plastic, which significantly pollutes the aquatic environment, has emerged as a global problem. There is an emerging concern about microplastics (MPs) accumulation in aquatic ecosystems. It is familiar to everyone that the ultimate end for most of the plastic debris is the ocean. Rivers are the efficient carriers for transferring MPs from terrestrial to aquatic, further from upstream to downstream areas, and ultimately to oceans. The root cause study can provide an effective solution to a problem; hence, tracing of MPs in the riverine system can illustrate the long-term microplastic pollution. This study aimed to investigate the occurrence and distribution of microplastic contamination in surface water and sediment of the two major river systems of Uttar Pradesh, India. One is the Gomti River, Lucknow, a tributary of the Ganga, and the second is the Saryu River, the lower part of the Ghagra River, which flows through the city of Ayodhya. In this study, the distribution and abundance of MPs in surface water and sediments of two rivers were compared. Samples of water and sediment were collected from different (four from each river) sampling stations in the river catchment of two rivers. Plastic particles were classified according to type, shape, and color. In this study, 1523 (average abundance 254) and 143 (average abundance 26) microplastics were identified in all studied sites in the Gomati River and Saryu River, respectively. Observations on samples of water showed that the average MPs concentration was 392 (±69.6) and 63 ((±18.9) particles per 50l of water, whereas the sediment sample showed that the average MPs concentration was 116 (±42.9) and 46 (±12.5) particles per 250gm of dry sediment in the Gomati River and Saryu River, respectively. The high concentration of microplastics in the Lucknow area can be attributed to human activities, population density, and the entry of various effluents into the river. Microplastics with fibrous shapes were dominated, followed by fragment shapes in all the samples. The present study is a pioneering effort to count MPs in the Gomati and Saryu River systems.

Keywords: freshwater, Gomati, microplastics, Saryu, sediment

Procedia PDF Downloads 50
1196 Hot Cracking Susceptibility Evaluation of the Advanced UNS S31035 Austenitic Stainless Steel by Varestraint Weldability Testing

Authors: Mikael M. Johansson, Peter Stenvall, Leif Karlsson, Joel Andersson

Abstract:

Sandvik Sanicro 25, UNS S31035, is an advanced high temperature austenitic stainless steel that potentially can be used in super-heaters and reheaters in the next generation of advanced ultra-super critical power plants. The material possesses both high creep strength and good corrosion resistance at temperatures up to 700°C. Its high temperature properties are positioned between other commercially available high temperature austenitic stainless steels and nickel-based alloys. It is, however, well known that an austenitic solidification mode combined with a fully austenitic microstructure exacerbate susceptibility towards hot cracking. The problem increases even more for thick walled material in multipass welding and could compromise the integrity of the welded component. Varestraint weldability testing is commonly used to evaluate susceptibility towards hot cracking of materials. In this paper, Varestraint test results are evaluated for base material of both UNS S31035 steel and are compared to those of the well-known and well-characterized UNS S31008 grade. The more creep resistant alloy, UNS S31035, is metallurgically more complicated than the UNS S31008 grade and has additions of several alloying elements to improve its high temperature properties. It benefits from both solid solution hardening as well as precipitation hardening. This investigation therefore attempts, based on the Varestraint weldability test, to understand if there are any differences in cracking mechanisms between these two grades due to the additional alloying elements used in UNS S31035. Results from Varestraint testing and crack type investigations will be presented and discussed in some detail. It is shown that hot cracking susceptibility of the UNS S31035 steel is only slightly higher than that of UNS S31008 despite the more complicated metallurgy. Weldability of the two alloys is therefore judged to be comparable making the newer alloy well suited also for critical applications.

Keywords: austenitic stainless steel, hot cracking susceptibility, UNS S31035, UNS S31008, varestraint weldability testing

Procedia PDF Downloads 104
1195 Driving towards Sustainability with Shared Electric Mobility: A Case Study of Time-Sharing Electric Cars on University’s Campus

Authors: Jiayi Pan, Le Qin, Shichan Zhang

Abstract:

Following the worldwide growing interest in the sharing economy, especially in China, innovations within the field are rapidly emerging. It is, therefore, appropriate to address the under-investigated sustainability issues related to the development of shared mobility. In 2019, Shanghai Jiao Tong University (SJTU) introduced one of the first on-campus Time-sharing Electric Cars (TEC) that counts now about 4000 users. The increasing popularity of this original initiative highlights the necessity to assess its sustainability and find ways to extend the performance and availability of this new transport option. This study used an online questionnaire survey on TEC usage and experience to collect answers among students and university staff. The study also conducted interviews with TEC’s team in order to better understand its motivations and operating model. Data analysis underscores that TEC’s usage frequency is positively associated with a lower carbon footprint, showing that this scheme contributes to improving the environmental sustainability of transportation on campus. This study also demonstrates that TEC provides a convenient solution to those not owning a car in situations where soft mobility cannot satisfy their needs, this contributing to a globally positive assessment of TEC in the social domains of sustainability. As SJTU’s TEC project belongs to the non-profit sector and aims at serving current research, its economical sustainability is not among the main preoccupations, and TEC, along with similar projects, could greatly benefit from this study’s findings to better evaluate the overall benefits and develop operation on a larger scale. This study suggests various ways to further improve the TEC users’ experience and enhance its promotion. This research believably provides meaningful insights on the position of shared transportation within transport mode choice and how to assess the overall sustainability of such innovations.

Keywords: shared mobility, sharing economy, sustainability assessment, sustainable transportation, urban electric transportation

Procedia PDF Downloads 169
1194 Effects of pH, Load Capacity and Contact Time in the Sulphate Sorption onto a Functionalized Mesoporous Structure

Authors: Jaime Pizarro, Ximena Castillo

Abstract:

The intensive use of water in agriculture, industry, human consumption and increasing pollution are factors that reduce the availability of water for future generations; the challenge is to advance in sustainable and low-cost solutions to reuse water and to facilitate the availability of the resource in quality and quantity. The use of new low-cost materials with sorbent capacity for pollutants is a solution that contributes to the improvement and expansion of water treatment and reuse systems. Fly ash, a residue from the combustion of coal in power plants that is produced in large quantities in newly industrialized countries, contains a high amount of silicon oxides and aluminum oxides, whose properties can be used for the synthesis of mesoporous materials. Properly functionalized, this material allows obtaining matrixes with high sorption capacity. The mesoporous materials have a large surface area, thermal and mechanical stability, uniform porous structure, and high sorption and functionalization capacities. The goal of this study was to develop hexagonal mesoporous siliceous material (HMS) for the adsorption of sulphate from industrial and mining waters. The silica was extracted from fly ash after calcination at 850 ° C, followed by the addition of water. The mesoporous structure has a surface area of 282 m2 g-1 and a size of 5.7 nm and was functionalized with ethylene diamine through of a self-assembly method. The material was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The capacity of sulphate sorption was evaluated according to pH, maximum load capacity and contact time. The sulphate maximum adsorption capacity was 146.1 mg g-1, which is three times higher than commercial sorbents. The kinetic data were fitted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model.

Keywords: fly ash, mesoporous siliceous, sorption, sulphate

Procedia PDF Downloads 128
1193 Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used.

Keywords: biosorption, brown marine macroalgae, zinc, chromium

Procedia PDF Downloads 291
1192 New Model of Immersive Experiential Branding for International Universities

Authors: Kakhaber Djakeli

Abstract:

For market leadership, iconic brands already start to establish their unique digital avatars into Metaverse and offer Non Fungible Tokens to their fans. Metaverse can be defined as an evolutionary step of Internet development. So if companies and brands use the internet, logically, they can find new solutions for them and their customers in Metaverse. Marketing and Management today must learn how to combine physical world activities with those either entitled as digital, virtual, and immersive. A “Phygital” Solution uniting physical and digital competitive activities of the company covering the questions about how to use virtual worlds for Brand Development and Non Fungible Tokens for more attractiveness soon will be most relevant question for Branding. Thinking comprehensively, we can entitle this type of branding as an Immersive one. As we see, the Immersive Brands give customers more mesmerizing feelings than traditional ones. Accordingly, the Branding can be divided by the company in its own understanding into two models: traditional and immersive. Immersive Branding being more directed to Sensorial challenges of Humans will be big job for International Universities in near future because they target the Generation - Z. To try to help those International Universities opening the door to the mesmerizing, immersive branding, the Marketing Research have been undertaken. The main goal of the study was to establish the model for Immersive Branding at International Universities and answer on many questions what logically arises in university life. The type of Delphi Surveys entitled as an Expert Studies was undertaken for one great mission, to help International Universities to open the opportunities to Phygital activities with reliable knowledge with Model of Immersive Branding. The Questionnaire sent to Experts of Education were covering professional type of questions from education to segmentation of customers, branding, attitude to students, and knowledge to Immersive Marketing. The research results being very interesting and encouraging enough to make author to establish the New Model of Immersive Experiential Branding for International Universities.

Keywords: branding, immersive marketing, students, university

Procedia PDF Downloads 44
1191 Rich 3-Tori Dynamics in Small-Aspect-Ratio Highly Counter-Rotating Taylor-Couette Flow with Reversal of Spiraling Vortices

Authors: S. Altmeyer, B. Hof, F. Marques, J. M. Lopez

Abstract:

We present numerical simulations concerning the reversal of spiraling vortices in short highly counter-rotating cylinders. Increasing the differential cylinder rotation results in global flow-inversion is which develops various different and complex flow dynamics of several quasi-periodic solutions that differ in their number of vortex cells in the bulk. The dynamics change from being dominated of the inner cylinder boundary layer with ’passive’ only responding outer one to be dominated by the outer cylinder boundary layer with only responding inner one. Solutions exist on either two or three tori invariant manifolds whereby they appear as symmetric or asymmetric states. We find for either moderate and high inner cylinder rotation speed the quasiperiodic flow to consist of only two vortex cells but differ as the vortices has opposite spiraling direction. These both flows live on 2-tori but differ in number of symmetries. While for the quasi-periodic flow (q^a_2) at lower rotation speed a pair of symmetrically related 2-tori T2 exists the quasi-periodic flow (q^s_2) at higher rotation speeds is symmetric living on a single 2-torus T2. In addition these both flows differ due to their dominant azimuthal m modes. The first is dominated by m=1 whereas for the latter m=3 contribution is largest. The 2-tori states are separated by a further quasi-periodic flow (q^a_3) living on pair of symmetrically related 3-tori T3. This flow offers a ’periodical’ competition between a two and three vortex cell states in the bulk. This flow is also an m=1 solution as for the quasiperiodic flows living on the pair of symmetrically-related 2-tori states. Moreover we find hysteresis resulting in coexisting regions of different quasiperiodic flows q^s_2 and q^a_3 with increasing and decreasing the differential rotation.

Keywords: transition, bifurcation, torus, symmetries

Procedia PDF Downloads 333
1190 Design and Analysis of Hybrid Morphing Smart Wing for Unmanned Aerial Vehicles

Authors: Chetan Gupta, Ramesh Gupta

Abstract:

Unmanned aerial vehicles, of all sizes, are prime targets of the wing morphing concept as their lightweight structures demand high aerodynamic stability while traversing unsteady atmospheric conditions. In this research study, a hybrid morphing technology is developed to aid the trailing edge of the aircraft wing to alter its camber as a monolithic element rather than functioning as conventional appendages like flaps. Kinematic tailoring, actuation techniques involving shape memory alloys (SMA), piezoelectrics – individually fall short of providing a simplistic solution to the conundrum of morphing aircraft wings. On the other hand, the feature of negligible hysteresis while actuating using compliant mechanisms has shown higher levels of applicability and deliverability in morphing wings of even large aircrafts. This research paper delves into designing a wing section model with a periodic, multi-stable compliant structure requiring lower orders of topological optimization. The design is sub-divided into three smaller domains with external hyperelastic connections to achieve deflections ranging from -15° to +15° at the trailing edge of the wing. To facilitate this functioning, a hybrid actuation system by combining the larger bandwidth feature of piezoelectric macro-fibre composites and relatively higher work densities of shape memory alloy wires are used. Finite element analysis is applied to optimize piezoelectric actuation of the internal compliant structure. A coupled fluid-surface interaction analysis is conducted on the wing section during morphing to study the development of the velocity boundary layer at low Reynold’s numbers of airflow.

Keywords: compliant mechanism, hybrid morphing, piezoelectrics, shape memory alloys

Procedia PDF Downloads 276
1189 Investigating the Potential Use of Unsaturated Fatty Acids as Antifungal Crop Protective Agents

Authors: Azadeh Yasari, Michael Ganzle, Stephen Strelkov, Nuanyi Liang, Jonathan Curtis, Nat N. V. Kav

Abstract:

Pathogenic fungi cause significant yield losses and quality reductions to major crops including wheat, canola, and barley. Toxic metabolites produced by phytopathogenic fungi also pose significant risks to animal and human health. Extensive application of synthetic fungicides is not a sustainable solution since it poses risks to human, animal and environmental health. Unsaturated fatty acids may provide an environmentally friendly alternative because of their direct antifungal activity against phytopathogens as well as through the stimulation of plant defense pathways. The present study assessed the in vitro and in vivo efficacy of two hydroxy fatty acids, coriolic acid and ricinoleic acid, against the phytopathogens Fusarium graminearum, Pyrenophora tritici-repentis, Pyrenophora teres f. teres, Sclerotinia sclerotiorum, and Leptosphaeria maculans. Antifungal activity of coriolic acid and ricinoleic acid was evaluated using broth micro-dilution method to determine the minimum inhibitory concentration (MIC). Results indicated that both ricinoleic acid and coriolic acid showed antifungal activity against phytopathogens, with the strongest inhibitory activity against L. maculans, but the MIC varied greatly between species. An antifungal effect was observed for coriolic acid in vivo against pathogenic fungi of wheat and barley. This effect was not correlated to the in vitro activity because ricinoleic acid with equivalent in vitro antifungal activity showed no protective effect in vivo. Moreover, neither coriolic acid nor ricinoleic acid controlled fungal pathogens of canola. In conclusion, coriolic acid inhibits some phytopathogens in vivo and may have the potential to be an effective crop protection agent.

Keywords: coriolic acid, minimum inhibitory concentration, pathogenic fungi, ricinoleic acid

Procedia PDF Downloads 142
1188 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

Authors: David B. Tsuanyo, Didier Aussel, Yao Azoumah, Pierre Neveu

Abstract:

An innovative concept called “Flexy-Energy”is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energies sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel gensets and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel gensets. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand. This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Keywords: investments criteria, optimization, PV hybrid, sizing, rural electrification

Procedia PDF Downloads 403
1187 Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array

Authors: S. S. Sree Sanker, K. N. Madhusoodanan

Abstract:

Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring.

Keywords: CST microwave studio, glucose sensor, photonic crystal, terahertz waves

Procedia PDF Downloads 252
1186 Psychological Capital: Convergent and Discriminant Validity of a Reconfigured Measure

Authors: Anton Grobler

Abstract:

Background: Psychological capital (PsyCap), consisting of Hope, Optimism, Resilience, and Self-efficacy, is a popular positive organisational behaviour construct utilised in the studying employee work and behavioral attitudes. Various scholars believe however that further validity research should be conducted on the PsyCap questionnaire (PCQ), outside of the founding research team and in more diverse settings, for the purpose of this paper, within the diverse South African (SA) context. Aim: The purpose of this study was to investigate the construct validity of the PCQ with specific reference to its psychometric properties within the diverse SA context. Setting: The sample includes a total of 1 749 respondents, ± 60 each from 30 organisations in South Africa. Method: This study utilised a cross-sectional design and quantitative analysis. The sample is relatively representative (in terms of race, gender) of the South African workforce. A multi-factorial model was statistically explored and confirmed (with exploratory factor analysis [EFA] and confirmatory factor analysis [CFA] respectively). Results: The study yielded a three-factor solution, with Hope and Optimism as a combined factor and Resilience and Self-efficacy made up of a reconfigured set of substantively justifiable items. Three items of the original 24 items were found not to be suitable. The three factors showed good psychometric properties, good fit (in support of construct validity) and acceptable levels of convergent and discriminant validity. Conclusion: The results support the original conceptualisation of PsyCap, although with a unique structural configuration. This resonates with the notion of scholars that further research should be conducted within diverse settings. This is necessary to ensure the valid measurement of the construct, which is considered to be one of the four criteria for a construct to be categorised as a positive organisational behaviour construct.

Keywords: positive organisational behaviour, psychological capital, hope, optimism, resilience, self-efficacy, construct validity

Procedia PDF Downloads 163
1185 A New Technology for Metformin Hydrochloride Mucoadhesive Microparticles Preparation Utilizing BÜCHI Nano-Spray Dryer B-90

Authors: Tamer M. Shehata

Abstract:

Objective: Currently, mucoadhesive microparticles acquired a high interest in both research and pharmaceutical technology fields. Recently, BÜCHI lunched its latest fourth generation nano spray dryer B-90 used for nanoparticle production. B-90 offers an elegant technology combined particle engineering and drying in one step. In our laboratory, we successfully developed a new formulation for metformin hydrochloride, mucoadhesive microparticles utilizing B-90 technology for treatment of type 2-diabetis. Method: Gelatin or sodium alginate, natural occurring polymers with mucoadhesive properties, solely or in combination was used in our formulation trials. Preformulation studies (atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension) and postformulation characters (particle size, flowability, surface scan and dissolution profile) were evaluated. Finally, hypoglycemic effect of the selected formula was evaluated in streptozotocin-induced diabetic rats. Spray head with 7 µm hole, flow rate of 3.5 mL/min and head temperature 120 ºC were selected. Polymer viscosity was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Result: Discrete, non aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula, showed a significant reduction of blood glucose level over 24 h. Conclusion: B-90 technology can open a new era of , mucoadhesive microparticles preparation offering convenient dosage form that can enhance compliance of type 2 diabetic patients.

Keywords: mucoadhesive, microparticles, technology, diabetis

Procedia PDF Downloads 263
1184 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadirachta Indica) Leaf Extract and Investigation of Its Antibacterial Activities

Authors: Emineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention due to their diverse applications encompassing catalytic, optical, photonic, and antibacterial properties. In this study, we successfully synthesized zinc oxide nanoparticles using a rapid, environmentally benign, and cost-effective method. Neem (Azadirachta indica) leaf extract served as the reducing agent for Zn (NO₃)₂.6H2O solution under optimized conditions (pH = 9). Qualitative screening techniques and FT-IR Spectroscopy confirmed the presence of active biomolecules such as flavonoids, phenolic groups, alkaloids, terpenoids, and tannins within the Neem leaf extract, both before and after reduction. The formation of ZnO NPs was visually evident through a distinct color change from colorless to light yellow. The biosynthesized nanoparticles underwent comprehensive characterization through UV-visible, FT-IR, and XRD spectroscopies. The reduction process proved to be straightforward and user-friendly, with UV-visible spectroscopy demonstrating a surface plasmon resonance (SPR) at 321 nm, unequivocally confirming the ZnO NP formation. X-ray diffraction analysis elucidated the crystal structure, revealing an average particle size of approximately 20 nm using Scherrer's equation based on the line width of the plane. Furthermore, the synthesized zinc oxide nanoparticles were evaluated for their antimicrobial properties against both Gram-positive and Gram-negative bacteria. The results showcased significant inhibitory activity, with the highest zone of inhibition observed against Escherichia coli (15 mm) and comparatively lower activity against Staphylococcus aureus. This research underscores the potential of Neem leaf extract-mediated synthesis of ZnO NPs as an eco-friendly and effective approach for various applications, including antibacterial agents.

Keywords: zinc oxide nanoparticles (ZnO NPs), bioreducing agent, green synthesis, antibacterial activity

Procedia PDF Downloads 33
1183 Appraisal of the Impact Strength on Mild Steel Cladding Weld Metal Geometry

Authors: Chukwuemeka Daniel Ezeliora, Chukwuebuka Lawrence Ezeliora

Abstract:

The research focused on the appraisal of impact strength on mild steel cladding weld metal geometry. Over the years, poor welding has resulted in failures in engineering components, poor material quality, the collapse of welded materials, and failures in material strength. This is as a result of poor selection and combination of welding input process parameters. The application of the Tungsten Inert Gas (TIG) welding method with weld specimen of length 60; width 40, and thickness of 10 was used for the experiment. A butt joint method was prepared for the welding, and tungsten inert gas welding process was used to perform the twenty (20) experimental runs. A response surface methodology was used to model and to analyze the system. For an adequate polynomial approximation, the experimental design was used to collect the data. The key parameters considered in this work are welding current, gas flow rate, welding speed, and voltage. The range of the input process parameters was selected from the literature and the design. The steps followed to achieve the experimental design and results is the use of response surface method (RSM) implemented in central composite design (CCD) to generate the design matrix, to obtain quadratic model, and evaluate the interactions in the factors as well as optimizing the factors and the response. The result expresses that the best impact strength of the mild steel cladding weld metal geometry is 115.419 Joules. However, it was observed that the result of the input factors is; current 180.4 amp, voltage 23.99 volt, welding speed 142.7 mm.s and gas flow rate 10.8 lit/min as the optimum of the input process parameters. The optimal solution gives a guide for optimal impact strength of the weldment when welding with tungsten inert gas (TIG) under study.

Keywords: mild steel, impact strength, response surface, bead geometry, welding

Procedia PDF Downloads 94