Search results for: anaerobic treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8110

Search results for: anaerobic treatment

7960 Enhanced Methane Yield from Organic Fraction of Municipal Solid Waste with Coconut Biochar as Syntrophic Metabolism Biostimulant

Authors: Maria Altamirano, Alfonso Duran

Abstract:

Biostimulation has recently become important in order to improve the stability and performance of the anaerobic digestion (AD) process. This strategy involves the addition of nutrients or supplements to improve the rate of degradation of a native microbial consortium. With the aim of biostimulate sytrophism between secondary fermenting bacteria and methanogenic archaea, improving metabolite degradation and efficient conversion to methane, the addition of conductive materials, mainly carbon based have been studied. This research seeks to highlight the effect that coconut biochar (CBC) has on the metanogenic conversion of the organic fraction of municipal solid waste (OFMSW), analyzing the surface chemistry properties that give biochar its capacity to serve as a redox mediator in the anaerobic digestion process. The biochar characterization techniques were electrical conductivity (EC) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier Transform Infrared Transmission Spectroscopy (FTIR) and Cyclic Voltammetry (CV). Effect of coconut biochar addition was studied using Authomatic Methane Potential Test System (AMPTS II) applying a one-way variance analysis to determine the dose that leads to higher methane performance. The surface chemistry of the CBC could confer properties that enhance the AD process, such as the presence of alkaline and alkaline earth metals and their hydrophobicity that may be related to their buffering capacity and the adsorption of polar and non-polar compounds, such as NH4+ and CO2. It also has aromatic functional groups, just as quinones, whose potential as a redox mediator has been demonstrated and its morphology allows it to form an immobilizing matrix that favors a closer activity among the syntrophic microorganisms, which directly contributed in the oxidation of secondary metabolites and the final reduction to methane, whose yield is increased by 39% compared to controls, with a CBC dose of 1 g/L.

Keywords: anaerobic digestion, biochar, biostimulation, syntrophic metabolism

Procedia PDF Downloads 160
7959 Comparison of Growth and Biomass of Red Alga Cultured on Rope and Net

Authors: Esmaeil Kouhgardi, Saeedeh Dashti, Hakimeh Fekrandish

Abstract:

This research has been conducted to study the method of culture and comparing growth and biomass of Gracilariacorticata cultured on rope and net for 50 days through two treatments (first treatment: culture of alga on net and the second treatment: culture of alga on rope and each treatment was repeated by four cases). During culture period, the water of aquariums was replaced once every two days for 40-50%. Also, 0.3-0.5 grams of Urea fertilizer was added to the culture environment for fertilization. Moreover, some of the environmental factors such as pH, salinity and temperature of the environment were measured on a daily basis. During the culture period, extent of longitudinal growth of the species of both treatments was equal. The said length was reached from 8-10 cm to 10.5-13 cm accordingly. The resulted weight in repetitions of the first treatment was higher than that of the second treatment in such a way as in the first treatment, its weight reached from 10 grams to 21.119 grams and in the second treatment, its weight reached from 10 grams to 17.663 grams. On a whole, it may be stated that that kind of alga being studied has a considerable growth with respect to its volume. The results have revealed that the percentage of daily growth and wet weight at the end of the first treatment was higher than that of the second treatment and it was registered as 0.934, 6.072 and 811.432 in the first treatment and 0.797, 4.990 and 758.071 in the second treatment respectively. This difference is significant (P < 0.05). Growth and biomass of G. corticata through culture on net was more emphasizing on numerous branches due to wider bed. Moreover, higher level of the species in this method was exposed to sunlight and this increased biosynthesis and eventually increases of growth and biomass.

Keywords: red alga, growth, biomass, culture, net, rope

Procedia PDF Downloads 397
7958 Effect of Ultrasonic Treatment on the Suspension Stability, Zeta Potential and Contact Angle of Celestite

Authors: Kiraz Esmeli, Alper Ozkan

Abstract:

In this study, firstly, the effect of ultrasonic treatment on the stability of celestite suspension was investigated. In this context, the variations of the suspension stability with ultrasonic power, treatment time, immersion depth of ultrasonic probe, and treatment regime (batch and continuous) were determined. The experimental results showed that the suspension stability and zeta potential of celestite decreased with ultrasonic treatment. Also, the treatment time, immersion depth of probe, and treatment regime affected the stability of celestite suspension. Secondly, the effect of pre-treatment of the suspension with the ultrasonic process on the shear flocculation of celestite using sodium dodecyl sulfate (SDS) was studied and the variations of the flocculation, zeta potential, and contact angle of the mineral with SDS concentration were presented. It was found that the ultrasonic pre-treatment slightly improved the shear flocculation of celestite particles in accordance with the increase in the contact angles. In addition, the ultrasonic process again relatively reduced the magnitude of the negative potential of celestite particles in the presence of SDS.

Keywords: celestite, contact angle, suspension stability, ultrasonic treatment, zeta potential

Procedia PDF Downloads 196
7957 Improvement of Mechanical Properties and Corrosion Resistance of AA7056 Aluminum Alloys by the Non-isothermal Aging Process

Authors: Tse-An Pan, Sheng-Long Lee

Abstract:

The effect of non-isothermal aging on the mechanical properties and corrosion resistance of Al-9Zn-2.3Mg-1.9Cu (AA7056) alloys was investigated. The results revealed that thick materials were limited to retrogression and re-aging treatment (RRA). It could not reach the retrogression temperature in the RRA treatment. Compared with the RRA treatment, the non-isothermal aging (NIA) treatment produced discontinuous precipitates at grain boundaries, while the intragranular precipitates were fine and dense. The strength was similar to that of the RRA treatment; the corrosion resistance of the alloy was significantly improved by NIA aging. NIA treatment was less affected by the thickness of the alloy. The difference between the actual temperature and the setting temperature of the alloy is minimal during the aging process. The combination of properties could overcome the fact that RRA treatment cannot handle thick materials.

Keywords: Al-Zn-Mg-Cu alloy, corrosion, retrogression, re-aging, non-isothermal aging

Procedia PDF Downloads 149
7956 Rationality and Evidence of Pre-Prepared Treatment Plan in Oesophageal HDR Brachytherapy

Authors: Jim S. Meng, Mammo H. Yewondwossen

Abstract:

As a part of routine oesophageal HDR brachytherapy procedure, treatment planning takes about 45 minutes while patients are under light sedation. Some patients may suffer gagging and/or spasms, and the treatment may need to be aborted. A pre-prepared plan generated before the patient’s sedation may reduce the brachytherapy procedure time by forty minutes. This paper reports the rationality and evidence of pre-prepared treatment plans. A retrospective study of 28 patients confirm that all of the pre-prepared plans would be acceptable. The rationality of pre-prepared HDR brachytherapy plans is further confirmed by a systemic study with a wide range of applicator curvature and treatment volume. Detailed comparison between CT based treatment plans and pre-prepared plans are discussed. This argument holds also for endobronchial HDR brachytherapy. With the above evidence, pre-prepared plans have been used for all oesophagus and bronchus HDR brachytherapy cases in our clinic.

Keywords: HDR brachytherapy, treatment planning, oesophageal carcinoma, pre-planning

Procedia PDF Downloads 348
7955 Biogas Production from University Canteen Waste: Effect of Organic Loading Rate and Retention Time

Authors: Khamdan Cahyari, Gumbolo Hadi Susanto, Pratikno Hidayat, Sukirman

Abstract:

University canteen waste was used as raw material to produce biogas in Faculty of Industrial Technology, Islamic University of Indonesia. This faculty was home to more than 3000 students and lecturers who work and study for 5 days/week (8 hours/day). It produced approximately 85 ton/year organic fraction of canteen waste. Yet, this waste had been dumped for years in landfill area which cause severe environmental problems. It was proposed to utilize the waste as raw material for producing renewable energy source of biogas. This research activities was meant to investigate the effect of organic loading rate (OLR) and retention time (RT) of continuous anaerobic digestion process for 200 days. Organic loading rate was set at value 2, 3, 4 and 5 g VS/l/d whereas the retention time was adjusted at 30, 24, 18 and 14.4 days. Optimum condition was achieved at OLR 4 g VS/l/d and RT 24 days with biogas production rate between 0.75 to 1.25 liter/day (40-60% CH4). This indicated that the utilization of canteen waste to produce biogas was promising method to mitigate environmental problem of university canteen waste. Furthermore, biogas could be used as alternative energy source to supply energy demand at the university. This implementation is simultaneous solution for both waste and energy problems to achieve green campus.

Keywords: canteen waste, biogas, anaerobic digestion, university, green campus

Procedia PDF Downloads 365
7954 Evaluating the Process of Biofuel Generation from Grass

Authors: Karan Bhandari

Abstract:

Almost quarter region of Indian terrain is covered by grasslands. Grass being a low maintenance perennial crop is in abundance. Farmers are well acquainted with its nature, yield and storage. The aim of this paper is to study and identify the applicability of grass as a source of bio fuel. Anaerobic break down is a well-recognized technology. This process is vital for harnessing bio fuel from grass. Grass is a lignocellulosic material which is fibrous and can readily cause problems with parts in motion. Further, it also has a tendency to float. This paper also deals with the ideal digester configuration for biogas generation from grass. Intensive analysis of the literature is studied on the optimum production of grass storage in accordance with bio digester specifications. Subsequent to this two different digester systems were designed, fabricated, analyzed. The first setup was a double stage wet continuous arrangement usually known as a Continuously Stirred Tank Reactor (CSTR). The next was a double stage, double phase system implementing Sequentially Fed Leach Beds using an Upflow Anaerobic Sludge Blanket (SLBR-UASB). The above methodologies were carried for the same feedstock acquired from the same field. Examination of grass silage was undertaken using Biomethane Potential values. The outcomes portrayed that the Continuously Stirred Tank Reactor system produced about 450 liters of methane per Kg of volatile solids, at a detention period of 48 days. The second method involving Leach Beds produced about 340 liters of methane per Kg of volatile solids with a detention period of 28 days. The results showcased that CSTR when designed exclusively for grass proved to be extremely efficient in methane production. The SLBR-UASB has significant potential to allow for lower detention times with significant levels of methane production. This technology has immense future for research and development in India in terms utilizing of grass crop as a non-conventional source of fuel.

Keywords: biomethane potential values, bio digester specifications, continuously stirred tank reactor, upflow anaerobic sludge blanket

Procedia PDF Downloads 216
7953 Methane Production from Biomedical Waste (Blood)

Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan

Abstract:

This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.

Keywords: renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal

Procedia PDF Downloads 273
7952 Effect of Cryogenic Treatment on Various Mechanical and Metallurgical Properties of Different Material: A Review

Authors: Prashant Dhiman, Viranshu Kumar, Pradeep Joshi

Abstract:

Lot of research is going on to study the effect of cryogenic treatment on materials. Cryogenic treatment is a heat treatment process which is used widely to enhance the mechanical and metallurgical properties of various materials whether the material is ferrous or non ferrous. In almost all ferrous metals, it is found that retained austenite is converted into martensite. Generally deep cryogenic treatment is done using liquid nitrogen having temperature of -195 ℃. The austenite is unstable at this stage and converts into martensite. In non ferrous materials there presents a microcavity and under the action of stress it becomes crack. When this crack propagates, fracture takes place. As the metal contract under low temperature, by doing cryogenic treatment these microcavities will be filled hence increases the soundness of the material. Properties which are enhanced by cryogenic treatment of both ferrous and non ferrous materials are hardness, tensile strength, wear rate, electrical and thermal conductivity, and others. Also there is decrease in residual stress. A large number of manufacturing process (EDM, CNC etc.) are using cryogenic treatment on different tools or workpiece to reduce their wear. In this Review paper the use of cryogenic heat treatment in different manufacturing has been shown along with their advantages.

Keywords: cyrogenic treatment, EDM (Electrical Discharge Machining), CNC (Computer Numeric Control), Mechanical and Metallurgical Properties

Procedia PDF Downloads 403
7951 Optimization of Sequential Thermophilic Bio-Hydrogen/Methane Production from Mono-Ethylene Glycol via Anaerobic Digestion: Impact of Inoculum to Substrate Ratio and N/P Ratio

Authors: Ahmed Elreedy, Ahmed Tawfik

Abstract:

This investigation aims to assess the effect of inoculum to substrate ratio (ISR) and nitrogen to phosphorous balance on simultaneous biohydrogen and methane production from anaerobic decomposition of mono-ethylene glycol (MEG). Different ISRs were applied in the range between 2.65 and 13.23 gVSS/gCOD, whereas the tested N/P ratios were changed from 4.6 to 8.5; both under thermophilic conditions (55°C). The maximum obtained methane and hydrogen yields (MY and HY) of 151.86±10.8 and 22.27±1.1 mL/gCODinitial were recorded at ISRs of 5.29 and 3.78 gVSS/gCOD, respectively. Unlikely, the ammonification process, in terms of net ammonia produced, was found to be ISR and COD/N ratio dependent, reaching its peak value of 515.5±31.05 mgNH4-N/L at ISR and COD/N ratio of 13.23 gVSS/gCOD and 11.56. The optimum HY was enhanced by more than 1.45-fold with declining N/P ratio from 8.5 to 4.6; whereas, the MY was improved (1.6-fold), while increasing N/P ratio from 4.6 to 5.5 with no significant impact at N/P ratio of 8.5. The results obtained revealed that the methane production was strongly influenced by initial ammonia, compared to initial phosphate. Likewise, the generation of ammonia was markedly deteriorated from 535.25±41.5 to 238.33±17.6 mgNH4-N/L with increasing N/P ratio from 4.6 to 8.5. The kinetic study using Modified Gompertz equation was successfully fitted to the experimental outputs (R2 > 0.9761).

Keywords: mono-ethylene glycol, biohydrogen and methane, inoculum to substrate ratio, nitrogen to phosphorous balance, ammonification

Procedia PDF Downloads 346
7950 Bulk-Density and Lignocellulose Composition: Influence of Changing Lignocellulosic Composition on Bulk-Density during Anaerobic Digestion and Implication of Compacted Lignocellulose Bed on Mass Transfer

Authors: Aastha Paliwal, H. N. Chanakya, S. Dasappa

Abstract:

Lignocellulose, as an alternate feedstock for biogas production, has been an active area of research. However, lignocellulose poses a lot of operational difficulties- widespread variation in the structural organization of lignocellulosic matrix, amenability to degradation, low bulk density, to name a few. Amongst these, the low bulk density of the lignocellulosic feedstock is crucial to the process operation and optimization. Low bulk densities render the feedstock floating in conventional liquid/wet digesters. Low bulk densities also restrict the maximum achievable organic loading rate in the reactor, decreasing the power density of the reactor. However, during digestion, lignocellulose undergoes very high compaction (up to 26 times feeding density). This first reduces the achievable OLR (because of low feeding density) and compaction during digestion, then renders the reactor space underutilized and also imposes significant mass transfer limitations. The objective of this paper was to understand the effects of compacting lignocellulose on mass transfer and the influence of loss of different components on the bulk density and hence structural integrity of the digesting lignocellulosic feedstock. 10 different lignocellulosic feedstocks (monocots and dicots) were digested anaerobically in a fed-batch, leach bed reactor -solid-state stratified bed reactor (SSBR). Percolation rates of the recycled bio-digester liquid (BDL) were also measured during the reactor run period to understand the implication of compaction on mass transfer. After 95 ds, in a destructive sampling, lignocellulosic feedstocks digested at different SRT were investigated to quantitate the weekly changes in bulk density and lignocellulosic composition. Further, percolation rate data was also compared to bulk density data. Results from the study indicate loss of hemicellulose (r²=0.76), hot water extractives (r²=0.68), and oxalate extractives (r²=0.64) had dominant influence on changing the structural integrity of the studied lignocellulose during anaerobic digestion. Further, feeding bulk density of the lignocellulose can be maintained between 300-400kg/m³ to achieve higher OLR, and bulk density of 440-500kg/m³ incurs significant mass transfer limitation for high compacting beds of dicots.

Keywords: anaerobic digestion, bulk density, feed compaction, lignocellulose, lignocellulosic matrix, cellulose, hemicellulose, lignin, extractives, mass transfer

Procedia PDF Downloads 116
7949 Post-Exercise Recovery Tracking Based on Electrocardiography-Derived Features

Authors: Pavel Bulai, Taras Pitlik, Tatsiana Kulahava, Timofei Lipski

Abstract:

The method of Electrocardiography (ECG) interpretation for post-exercise recovery tracking was developed. Metabolic indices (aerobic and anaerobic) were designed using ECG-derived features. This study reports the associations between aerobic and anaerobic indices and classical parameters of the person’s physiological state, including blood biochemistry, glycogen concentration and VO2max changes. During the study 9 participants, healthy, physically active medium trained men and women, which trained 2-4 times per week for at least 9 weeks, fulfilled (i) ECG monitoring using Apple Watch Series 4 (AWS4); (ii) blood biochemical analysis; (iii) maximal oxygen consumption (VO2max) test, (iv) bioimpedance analysis (BIA). ECG signals from a single-lead wrist-wearable device were processed with detection of QRS-complex. Aerobic index (AI) was derived as the normalized slope of QR segment. Anaerobic index (ANI) was derived as the normalized slope of SJ segment. Biochemical parameters, glycogen content and VO2max were evaluated eight times within 3-60 hours after training. ECGs were recorded 5 times per day, plus before and after training, cycloergometry and BIA. The negative correlation between AI and blood markers of the muscles functional status including creatine phosphokinase (r=-0.238, p < 0.008), aspartate aminotransferase (r=-0.249, p < 0.004) and uric acid (r = -0.293, p<0.004) were observed. ANI was also correlated with creatine phosphokinase (r= -0.265, p < 0.003), aspartate aminotransferase (r = -0.292, p < 0.001), lactate dehydrogenase (LDH) (r = -0.190, p < 0.050). So, when the level of muscular enzymes increases during post-exercise fatigue, AI and ANI decrease. During recovery, the level of metabolites is restored, and metabolic indices rising is registered. It can be concluded that AI and ANI adequately reflect the physiology of the muscles during recovery. One of the markers of an athlete’s physiological state is the ratio between testosterone and cortisol (TCR). TCR provides a relative indication of anabolic-catabolic balance and is considered to be more sensitive to training stress than measuring testosterone and cortisol separately. AI shows a strong negative correlation with TCR (r=-0.437, p < 0.001) and correctly represents post-exercise physiology. In order to reveal the relation between the ECG-derived metabolic indices and the state of the cardiorespiratory system, direct measurements of VO2max were carried out at various time points after training sessions. The negative correlation between AI and VO2max (r = -0.342, p < 0.001) was obtained. These data testifying VO2max rising during fatigue are controversial. However, some studies have revealed increased stroke volume after training, that agrees with findings. It is important to note that post-exercise increase in VO2max does not mean an athlete’s readiness for the next training session, because the recovery of the cardiovascular system occurs over a substantially longer period. Negative correlations registered for ANI with glycogen (r = -0.303, p < 0.001), albumin (r = -0.205, p < 0.021) and creatinine (r = -0.268, p < 0.002) reflect the dehydration status of participants after training. Correlations between designed metabolic indices and physiological parameters revealed in this study can be considered as the sufficient evidence to use these indices for assessing the state of person’s aerobic and anaerobic metabolic systems after training during fatigue, recovery and supercompensation.

Keywords: aerobic index, anaerobic index, electrocardiography, supercompensation

Procedia PDF Downloads 86
7948 Role of Hyperbaric Oxygen Therapy in Management of Diabetic Foot

Authors: Magdy Al Shourbagi

Abstract:

Diabetes mellitus is the commonest cause of neuropathy. The common pattern is a distal symmetrical sensory polyneuropathy, associated with autonomic disturbances. Less often, Diabetes mellitus is responsible for a focal or multifocal neuropathy. Common causes for non-healing of diabetic foot are the infection and ischemia. Diabetes mellitus is associated with a defective cellular and humoral immunity. Particularly, decreased phagocytosis, decreased chemotaxis, impaired bacterial killing and abnormal lymphocytic function resulting in a reduced inflammatory reaction and defective wound healing. Hyperbaric oxygen therapy is defined by the Undersea and Hyperbaric Medical Society as a treatment in which a patient intermittently breathes 100% oxygen and the treatment chamber is pressurized to a pressure greater than sea level (1 atmosphere absolute). The pressure increase may be applied in mono-place (single person) or multi-place chambers. Multi-place chambers are pressurized with air, with oxygen given via face mask or endotracheal tube; while mono-place chambers are pressurized with oxygen. Oxygen gas plays an important role in the physiology of wound healing. Hyperbaric oxygen therapy can raise tissue oxygen tensions to levels where wound healing can be expected. HBOT increases the killing ability of leucocytes also it is lethal for certain anaerobic bacteria and inhibits toxin formation in many other anaerobes. Multiple anecdotal reports and studies in HBO therapy in diabetic patients report that HBO can be an effective adjunct therapy in the management of diabetic foot wounds and is associated with better functional outcomes.

Keywords: hyperbari oxygen therapy, diabetic foot, neuropathy, multiplace chambers

Procedia PDF Downloads 261
7947 Evaluation Treatment of 130 Feline Infectious Peritonitis (FIP) Cats with GS-441524 in Iran

Authors: Manely Ansary Mood, Farzaneh Aziizi, Mahmoud Akbarian

Abstract:

This investigation included 130 cats diagnosed with FIP (Feb 2021-March 2022) in Iran, 74 with effusive FIP, and 56 with non-effusive FIP. The patients' initial dosage regime consisted of a subcutaneous injection of GS-441524 was 6-15mg/kg-every 24h (based on the wet or ocular and neurologic signs). The minimum treatment period was twelve weeks, extended in animals that still had abnormal lab values, clinical signs, and sonographic findings. The outcomes of the 130 cats that completed the duration of treatment (14 died, 116 cured) were checked and recorded. Clinical, sonographic, and laboratory responses were checked and compared on days 28, 56, and 83 of treatment. 2 of the 116 cured cats relapsed within observation days. At the time of this publication (May 2022), 114 of the studied patients remained healthy. We could conclude that GS-441524 appears to be an effective option for FIP treatment, and also, to the base of our knowledge, this is the first report for group treatment of infected cats of FIP with GS-441524 in Iran.

Keywords: FIP, cat, GS-441524, treatment

Procedia PDF Downloads 77
7946 The Use of Ketamine in Conjunction with Antidepressants for Treatment Resistant Depression

Authors: Zumra Mehmedovic, Susan Luhrmann

Abstract:

Treatment-resistant depression (TRD) is a debilitating mental health disorder for which there are very few available treatment options. Current research suggests that ketamine may be a safe and effective option for the treatment of TRD. Research utilizing a review of the literature was conducted to determine if ketamine in conjunction with antidepressants is more effective than antidepressants alone in the treatment of TRD. The literature consists of ten journal articles which include quantitative studies based on primary research. A critique of the literature was done to determine whether the findings are reliable, critiquing elements influencing the believability and robustness of the research. The research was based on the neuroplasticity theory of depression, hypothesizing that ketamine, in conjunction with antidepressants, will be more effective than antidepressants alone as they have different mechanisms of action. All the studies except one found ketamine in conjunction with antidepressants to be a more effective treatment than antidepressants alone in the treatment of TRD. Results of the studies indicate that ketamine is effective in treating TRD at various doses, settings, and routes of administration. Further research is necessary, though, to further explore and confirm the findings. Several gaps in literature were identified, including the optimal dose of ketamine, its long-term efficacy and safety, and effects of ketamine in repeated doses. The research topic is highly significant to advanced practice nursing, as based on the findings, ketamine can be utilized as a safe and effective treatment for TRD.

Keywords: ketamine, major depressive disorder, treatment-resistant depression, treatment

Procedia PDF Downloads 104
7945 Advances in Natural Fiber Surface Treatment Methodologies for Upgradation in Properties of Their Reinforced Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

Natural fiber reinforced polymer composite is a very attractive area among the scientific community because of their low cost, eco-friendly and sustainable in nature. Among all advantages there are few issues which need to be addressed, those issues are the poor adhesion and compatibility between two opposite nature materials that is fiber and matrix and their relatively high water absorption. Therefore, natural fiber modifications are necessary to improve their adhesion with different matrices. Excellent properties could be achieved with the surface treatment of these natural fibers ultimately leads to property up-gradation of their reinforced composites with different polymer matrices. Lot of work is going on to improve the adhesion between reinforced fiber phase and polymer matrix phase to improve the properties of composites. Researchers have suggested various methods for natural fiber treatment like silane treatment, treatment with alkali, acetylation, acrylation, maleate coupling, etc. In this study a review is done on the different methods used for the surface treatment of natural fibers and what are the advance treatment methodologies for natural fiber surface treatment for property improvement of natural fiber reinforced polymer composites.

Keywords: composites, acetylation, natural fiber, surface treatment

Procedia PDF Downloads 378
7944 Molecular Characterization and Arsenic Mobilization Properties of a Novel Strain IIIJ3-1 Isolated from Arsenic Contaminated Aquifers of Brahmaputra River Basin, India

Authors: Soma Ghosh, Balaram Mohapatra, Pinaki Sar, Abhijeet Mukherjee

Abstract:

Microbial role in arsenic (As) mobilization in the groundwater aquifers of Brahmaputra river basin (BRB) in India, severely threatened by high concentrations of As, remains largely unknown. The present study, therefore, is a molecular and ecophysiological characterization of an indigenous bacterium strain IIIJ3-1 isolated from As contaminated groundwater of BRB and application of this strain in several microcosm set ups differing in their organic carbon (OC) source and terminal electron acceptors (TEA), to understand its role in As dissolution under aerobic and anaerobic conditions. Strain IIIJ3-1 was found to be a new facultative anaerobic, gram-positive, endospore-forming strain capable of arsenite (As3+) oxidation and dissimilatory arsenate (As5+) reduction. The bacterium exhibited low genomic (G+C)% content (45 mol%). Although, its 16S rRNA gene sequence revealed a maximum similarity of 99% with Bacillus cereus ATCC 14579(T) but the DNA-DNA relatedness of their genomic DNAs was only 49.9%, which remains well below the value recommended to delimit different species. Abundance of fatty acids iC17:0, iC15:0 and menaquinone (MK) 7 though corroborates its taxonomic affiliation with B. cereus sensu-lato group, presence of hydroxy fatty acids (HFAs), C18:2, MK5 and MK6 marked its uniqueness. Besides being highly As resistant (MTC=10mM As3+, 350mM As5+), metabolically diverse, efficient aerobic As3+ oxidizer; it exhibited near complete dissimilatory reduction of As5+ (1 mM). Utilization of various carbon sources with As5+ as TEA revealed lactate to serve as the best electron donor. Aerobic biotransformation assay yielded a lower Km for As3+ oxidation than As5+ reduction. Arsenic homeostasis was found to be conferred by the presence of arr, arsB, aioB, and acr3(1) genes. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis of this bacterium revealed reduction in cell size upon exposure to As and formation of As-rich electron opaque dots following growth with As3+. Incubation of this strain with sediment (sterilised) collected from BRB aquifers under varying OC, TEA and redox conditions revealed that the strain caused highest As mobilization from solid to aqueous phase under anaerobic condition with lactate and nitrate as electron donor and acceptor, respectively. Co-release of highest concentrations of oxalic acid, a well known bioweathering agent, considerable fold increase in viable cell counts and SEM-EDX and X-ray diffraction analysis of the sediment after incubation under this condition indicated that As release is consequent to microbial bioweathering of the minerals. Co-release of other elements statistically proves decoupled release of As with Fe and Zn. Principle component analysis also revealed prominent role of nitrate under aerobic and/or anaerobic condition in As release by strain IIIJ3-1. This study, therefore, is the first to isolate, characterize and reveal As mobilization property of a strain belonging to the Bacillus cereus sensu lato group isolated from highly As contaminated aquifers of Brahmaputra River Basin.

Keywords: anaerobic microcosm, arsenic rich electron opaque dots, Arsenic release, Bacillus strain IIIJ3-1

Procedia PDF Downloads 101
7943 Open Trial of Group Schema Therapy for the Treatment of Eating Disorders

Authors: Evelyn Smith, Susan Simpson

Abstract:

Background: Eating disorder (ED) treatment is complicated by high rates of chronicity, comorbidity, complex personality traits and client dropout. Given these complexities, Schema Therapy (ST) has been identified as a suitable treatment option. The study primarily aims to evaluate the efficacy of group ST for the treatment of EDs. The study further evaluated the effectiveness of ST in reducing schemas and improving quality of life. Method: Participant suitability was ascertained using the Eating Disorder Examination. Following this, participants attended 90-minute weekly group sessions over 25 weeks. Groups consisted of six to eight participants and were facilitated by two psychologists, at least one of who is trained in ST. Measures were completed at pre, mid and post-treatment. Measures assessed ED symptoms, cognitive schemas, schema mode presentations, quality of life, self-compassion and psychological distress. Results: As predicted, measures of ED symptoms were significantly reduced following treatment. No significant changes were observed in early maladaptive schema severity; however, reductions in schema modes were observed. Participants did not report improvements in general quality of life measures following treatment, though improvement in psychological well-being was observed. Discussion: Overall, the findings from the current study support the use of group ST for the treatment of EDs. It is expected that lengthier treatment is needed for the reduction in schema severity. Given participant dropout was considerably low, this has important treatment implications for the suitability of ST for the treatment of EDs.

Keywords: eating disorders, schema therapy, treatment, quality of life

Procedia PDF Downloads 44
7942 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach

Authors: Rajneesh, Priyanka Singh

Abstract:

Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).

Keywords: biogas, digester efficiency, design of experiment, plug flow digester

Procedia PDF Downloads 346
7941 Use of Electrokinetic Technology to Enhance Chemical and Biological Remediation of Contaminated Sands and Soils

Authors: Brian Wartell, Michel Boufadel

Abstract:

Contaminants such as polycyclic aromatic hydrocarbons (PAHs) are compounds present in crude and petroleum oils and are known to be toxic and often carcinogenic. Therefore, a major effort is placed on tracking their subsurface soil concentrations following an oil spill. The PAHs can persist for years in the subsurface especially if there is a lack of oxygen. Both aerobic and anaerobic biodegradation of PAHs encounter the difficulties of both nutrient transport and bioavailability (proximal access) to the organisms of the contaminants. A technology, known as electrokinetics (EK or EK-BIO for ‘electrokinetic bioremediation’) has been found to transport efficiently nutrients or other chemicals in the subsurface. Experiments were conducted to demonstrate migration patterns in both sands and clay for both ionic and nonionic compounds and aerobic biodegradation studies were conducted with soil spiked with Polycyclic Aromatic Hydrocarbons yielding interesting results. In one set of experiment, Self-designed electrokinetic setups were constructed to examine the differences in electromigration and electroosmotic rates. Anionic and non-ionic dyes were used to visualize these phenomena, respectively. In another experiment, a silt-clay soil was spiked with three low-molecular-weight compounds (fluorene, phenanthrene, fluoranthene) and placed within self-designed electrokinetic setups and monitored for aerobic degradation. Plans for additional studies are in progress including the transport of peroxide through anaerobic sands.

Keywords: bioavailability, bioremediation, electrokinetics, subsurface transport

Procedia PDF Downloads 126
7940 Relationship between Exercise Activity with Incidence of Overweight-Obesity in Medical Students

Authors: Randy M. Fitratullah, Afriwardi, Nurhayati

Abstract:

Overweight-obesity caused by exercise. The objective of this research is to analyze the relation between exercise with the incidence of overweight-obesity of medical students of medical faculty of Andalas Univesity batch 2013. This is an analytical observational research with case-control method. This research conducted in FK Unand on September-October 2015. The population of this research is medical students batch 2013. 26 samples (13 samples were case, 13 samples were control) were taken by purposive sampling technique and analysed using statistical univariate and bivariate analysis. Exercise questionnaire was used as research instruments. Based on the interview with questionnaire, anaerobic exercise was majority in case group and aerobic exercise was majority in control group. The case and control group have a rare category in exercise. Less category was majority in exercise duration of case and enough category was majority in control group. Bivariate analysis is using chi-square test with cell combining to 2x2 table, obtained p-value=0.097 in sort of exercise, p-value=1,000 in the frequency of exercise, and p-value=0,112 in duration of exercise, which means statistically unsignificant. There is no relation between exercise with the incidence of overweight-obesity of medical students of FK Unand batch 2013. For medical students suffers overweight-obesity is suggested for increase the frequency of exercise.

Keywords: overweight-obesity, exercise, aerobic, anaerobic, frequency, duration

Procedia PDF Downloads 226
7939 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions

Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo

Abstract:

It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.

Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant

Procedia PDF Downloads 468
7938 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 358
7937 Improving the Ability of Constructed Wetlands to Treat Acid Mine Drainage

Authors: Chigbo Emmanuel Ikechukwu

Abstract:

Constructed wetlands are seen as a potential means of ameliorating the poor quality water that derives from coal and gold mining operations. However, the processes whereby a wetland environment is able to improve water quality are not well understood and techniques for optimising their performance poorly developed. A parameter that may be manipulated in order to improve the treatment capacity of a wetland is the substrate in which the aquatic plants are rooted. This substrate can provide an environment wherein sulphate reducing bacteria, which contribute to the removal of contaminants from the water, are able to flourish. The bacteria require an energy source which is largely provided by carbon in the substrate. This paper discusses the form in which carbon is most suitable for the bacteria and describes the results of a series of experiments in which different materials were used as substrate. Synthetic acid mine drainage was passed through an anaerobic bioreactor that contained either compost or cow manure. The effluent water quality was monitored with respect to time and the effect of the substrate composition discussed.

Keywords: constructed wetland, bacteria, carbon, acid mine drainage, sulphate

Procedia PDF Downloads 407
7936 Wastewater Treatment Using Microalgae

Authors: Chigbo Ikechukwu Emmanuel

Abstract:

Microalgae can be used for tertiary treatment of wastewater due to their capacity to assimilate nutrients. The pH increase which is mediated by the growing algae also induces phosphorus precipitation and ammonia stripping to the air, and may in addition act disinfecting on the wastewater. Domestic wastewater is ideal for algal growth since it contains high concentrations of all necessary nutrients. The growth limiting factor is rather light, especially at higher latitudes. The most important operational factors for successful wastewater treatment with microalgae are depth, turbulence and hydraulic retention time.

Keywords: microalgae, wastewater treatment, phosphorus, nitrogen, light, operation, ponds, growth

Procedia PDF Downloads 443
7935 Fishing Waste: A Source of Valuable Products through Anaerobic Treatments

Authors: Luisa Maria Arrechea Fajardo, Luz Stella Cadavid Rodriguez

Abstract:

Fish is one of the most commercialized foods worldwide. However, this industry only takes advantage of about 55% of the product's weight, the rest is converted into waste, which is mainly composed of viscera, gills, scales and spines. Consequently, if these wastes are not used or disposed of properly, they cause serious environmental impacts. This is the case of Tumaco (Colombia), the second largest producer of marine fisheries on the Colombian Pacific coast, where artisanal fishermen process more than 50% of the commercialized volume. There, fishing waste is disposed primarily in the ocean, causing negative impacts on the environment and society. Therefore, in the present research, a proposal was made to take advantage of fishing waste through anaerobic treatments, through which it is possible to obtain products with high added value from organic waste. The research was carried out in four stages. First, the production of volatile fatty acids (VFA) in semi-continuous 4L reactors was studied, evaluating three hydraulic retention times (HRT) (10, 7 and 5 days) with four organic loading rates (OLR) (16, 14, 12 and 10 gVS/L/day), the experiment was carried out for 150 days. Subsequently, biogas production was evaluated from the solid digestate generated in the VFA production reactors, initially evaluating the biochemical methane potential (BMP) of 4 total solid concentrations (1, 2, 4 and 6% TS), for 40 days and then, with the optimum TS concentration (2 gVS/L/day), 2 HRT (15 and 20 days) in semi-continuous reactors, were evaluated for 100 days. Finally, the integration of the processes was carried out with the best conditions found, a first phase of VFA production from fishing waste and a second phase of biogas production from unrecovered VFAs and unprocessed material Additionally, an VFA membrane extraction system was included. In the first phase, a liquid digestate with a concentration and VFA production yield of 59.04 gVFA/L and 0.527 gVFA/gVS, respectively, was obtained, with the best condition found (HRT:7 days and OLR: 16 gVS/L/día), where acetic acid and isobutyric acid were the predominant acids. In the second phase of biogas production, a BMP of 0.349 Nm3CH4/KgVS was reached, and it was found as best HRT 20 days. In the integration, the isovaleric, butyric and isobutyric acid were the VFA with the highest percentage of extraction, additionally a 106.67% increase in biogas production was achieved. This research shows that anaerobic treatments are a promising technology for an environmentally safe management of fishing waste and presents the basis of a possible biorefinery.

Keywords: biogas production, fishing waste, VFA membrane extraction, VFA production

Procedia PDF Downloads 79
7934 Time to Second Line Treatment Initiation Among Drug-Resistant Tuberculosis Patients in Nepal

Authors: Shraddha Acharya, Sharad Kumar Sharma, Ratna Bhattarai, Bhagwan Maharjan, Deepak Dahal, Serpahine Kaminsa

Abstract:

Background: Drug-resistant (DR) tuberculosis (TB) continues to be a threat in Nepal, with an estimated 2800 new cases every year. The treatment of DR-TB with second line TB drugs is complex and takes longer time with comparatively lower treatment success rate than drug-susceptible TB. Delay in treatment initiation for DR-TB patients might further result in unfavorable treatment outcomes and increased transmission. This study thus aims to determine median time taken to initiate second-line treatment among Rifampicin Resistant (RR) diagnosed TB patients and to assess the proportion of treatment delays among various type of DR-TB cases. Method: A retrospective cohort study was done using national routine electronic data (DRTB and TB Laboratory Patient Tracking System-DHIS2) on drug resistant tuberculosis patients between January 2020 and December 2022. The time taken for treatment initiation was computed as– days from first diagnosis as RR TB through Xpert MTB/Rif test to enrollment on second-line treatment. The treatment delay (>7 days after diagnosis) was calculated. Results: Among total RR TB cases (N=954) diagnosed via Xpert nationwide, 61.4% were enrolled under shorter-treatment regimen (STR), 33.0% under longer treatment regimen (LTR), 5.1% for Pre-extensively drug resistant TB (Pre-XDR) and 0.4% for Extensively drug resistant TB (XDR) treatment. Among these cases, it was found that the median time from diagnosis to treatment initiation was 6 days (IQR:2-15.8). The median time was 5 days (IQR:2.0-13.3) among STR, 6 days (IQR:3.0-15.0) among LTR, 30 days (IQR:5.5-66.8) among Pre-XDR and 4 days (IQR:2.5-9.0) among XDR TB cases. The overall treatment delay (>7 days after diagnosis) was observed in 42.4% of the patients, among which, cases enrolled under Pre-XDR contributed substantially to treatment delay (72.0%), followed by LTR (43.6%), STR (39.1%) and XDR (33.3%). Conclusion: Timely diagnosis and prompt treatment initiation remain fundamental focus of the National TB program. The findings of the study, however suggest gaps in timeliness of treatment initiation for the drug-resistant TB patients, which could bring adverse treatment outcomes. Moreover, there is an alarming delay in second line treatment initiation for the Pre-XDR TB patients. Therefore, this study generates evidence to identify existing gaps in treatment initiation and highlights need for formulating specific policies and intervention in creating effective linkage between the RR TB diagnosis and enrollment on second line TB treatment with intensified efforts from health providers for follow-ups and expansion of more decentralized, adequate, and accessible diagnostic and treatment services for DR-TB, especially Pre-XDR TB cases, due to the observed long treatment delays.

Keywords: drug-resistant, tuberculosis, treatment initiation, Nepal, treatment delay

Procedia PDF Downloads 49
7933 Moving Towards Zero Waste in a UK Local Authority Area: Challenges to the Introduction of Separate Food Waste Collections

Authors: C. Cole, M. Osmani, A. Wheatley, M. Quddus

Abstract:

EU and UK Government targets for minimising and recycling household waste has led the responsible authorities to research the alternatives to landfill. In the work reported here the local waste collection authority (Charnwood Borough Council) has adopted the aspirational strategy of becoming a “Zero Waste Borough” to lead the drive for public participation. The work concludes that the separate collection of food waste would be needed to meet the two regulatory standards on recycling and biologically active wastes. An analysis of a neighbouring Authority (Newcastle-Under-Lyne Borough Council (NBC), a similar sized local authority that has a successful weekly food waste collection service was undertaken. Results indicate that the main challenges for Charnwood Borough Council would be gaining householder co-operation, the extra costs of collection and organising alternative treatment. The analysis also demonstrated that there was potential offset value via anaerobic digestion for CBC to overcome these difficulties and improve its recycling performance.

Keywords: England, food waste collections, household waste, local authority

Procedia PDF Downloads 380
7932 Risk Allocation in Public-Private Partnership (PPP) Projects for Wastewater Treatment Plants

Authors: Samuel Capintero, Ole H. Petersen

Abstract:

This paper examines the utilization of public-private partnerships for the building and operation of wastewater treatment plants. Our research focuses on risk allocation in this kind of projects. Our analysis builds on more than hundred wastewater treatment plants built and operated through PPP projects in Aragon (Spain). The paper illustrates the consequences of an inadequate management of construction risk and an unsuitable transfer of demand risk in wastewater treatment plants. It also shows that the involvement of many public bodies at local, regional and national level further increases the complexity of this kind of projects and make time delays more likely.

Keywords: wastewater, treatment plants, PPP, construction

Procedia PDF Downloads 611
7931 Preliminary Treatment in Wastewater Treatment Plants: Operation and Maintenance Aspects

Authors: Priscila M. Lima, Corine A. P. de Almeida, Muriele R. de Lima, Fernando J. C. Magalhães Filho

Abstract:

This work characterized the preliminary treatment in WWTPs in the state of Mato Grosso Do Sul (Brazil) and analyzed aspects of operation and maintenance of solid waste retained, and was evaluated the interference of this step in treatment efficiency beyond the relationship between solid waste generation with rainfall and seasonality in the region of each WTPs. The results shown that the standard setting in the preliminary treatment consists of grid along with Sand Trap, followed by Parshall that is used in 94.12% of WWTPs analyzed, and in 5.88% of WWTPs it was added the air-lift to the Sand Trap. Was concluded that the influence of rainfall, flow and seasonality associated with the rate of waste generation in the preliminary treatment, had little relation to the operation and maintenance of the primary treatment. But in some cases, precipitation data showed increased rainfall converging with increased flow and solid waste generation.

Keywords: pretreatment, sewage, solid waste, wastewater

Procedia PDF Downloads 432