Search results for: acoustic sensor array
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2523

Search results for: acoustic sensor array

3 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 456
2 Light Sensitive Plasmonic Nanostructures for Photonic Applications

Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi

Abstract:

In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures

Procedia PDF Downloads 274
1 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Cybersecurity professionals have long been embroiled in a digital arms race, confronting increasingly sophisticated threats with innovative solutions. The field of cybersecurity is in an unending race against malicious adversaries. As threats evolve in complexity, the tools used to defend against them need to advance even faster. Burdened with a vast arsenal of tools and an expansive scope of threat intelligence, analysts frequently navigate a complex web, trying to discern patterns amidst information overload. Herein lies the potential of Retrieval Augmented Generation (RAG). By combining the capabilities of Large Language Models (LLMs) with a generative AI facet, RAG brings to the table an unparalleled ability for real-time cross-referencing, bridging the gap between raw data and actionable insights. Imagine an analyst named Sarah working at a global Fortune 500 company. Every day, Sarah navigates a maze of diverse knowledge bases, real-time threat intelligence, and her company's vast proprietary data, from network specifics to intricate technical blueprints. One day, she's challenged by a potential breach through a personal device due to the company's global "Bring Your Own Device" policy. With the clock ticking, Sarah has mere minutes to trace the malware's origin, all while considering complex regional regulations. As she races against the benchmark of Mean Time To Resolution (MTTR), she wonders: Could "Cozy Bear" with its notorious malware tactic, HAMMERTOSS, be behind this? Balancing policy intricacies, global network considerations, and ever-emerging cyber threats, Sarah's role epitomizes the intense challenges faced by today's cybersecurity analysts. While analysts grapple with this array of intricate, time-sensitive challenges, the necessity for precision and efficiency is key. RAG technology—a cutting-edge advancement in Gen AI—is a promising solution. Designed to assimilate diverse data sources such as cyber advisory notices, phishing email sentiment, secure and insecure code examples, information security policy documentation, and the MITRE ATT&CK framework, RAG equips analysts with real-time querying capabilities through a vector database and a cross referenced concise response from a Gen AI model. Traditional relational databases often necessitate a tedious process of filtering through numerous entries. Now, with the synergy of vector databases and Gen AI models, analysts can rapidly access both contextually or semantically akin data points. This augmented approach equips analysts with a comprehensive understanding of the prevailing cyber threats, elevating the robustness of cybersecurity defenses and upskilling the analyst and team, too. Vector databases underpin the knowledge translation in Gen AI. They bridge the gap between raw data and translation into meaningful insights, ensuring that analysts are equipped with comprehensive and relevant information. This superior capability of the RAG framework, with its impressive depth and precision, finds application across a broad spectrum of cybersecurity challenges. Let's delve into some use cases where its potential becomes particularly evident: Phishing Email Sentiment Analysis: Phishing remains a predominant vector for cybersecurity breaches. Leveraging RAG's capabilities, analysts can not only assess the potential malevolence of an email but can also understand the context behind it. By cross-referencing patterns from varied data sources in real-time, the detection process evolves from a mere content evaluation to a holistic understanding of attacker tactics, behaviors, and evolving profiles. This allows for the identification of nuanced phishing strategies that might otherwise go undetected. Insecure Code Analysis: Software vulnerabilities form a critical entry point for cyber adversaries. With RAG, the process of code evaluation undergoes a transformation. Instead of manual code reviews, the system pulls insights from vector databases and historical code snippets marked as insecure, enabling detection of vulnerabilities based on historical patterns, emerging threat vectors, and even predictive threat modeling. This ensures that even the most obfuscated or embedded vulnerabilities are identified, and corrective measures can be promptly implemented. Vulnerability and Upskill Advisory: In the fast-paced world of cybersecurity, staying updated is paramount. Through RAG's capabilities, analysts are not only made aware of real-time vulnerabilities but are also guided on the necessary skills and tools needed to combat them. By dynamically sourcing data through vulnerability advisories, news on advanced persistent threats, and tactics to defend, RAG ensures that analysts are not only reactive to threats but are also proactively upskilled, thereby bolstering their defense mechanisms. Information Security Policies for Compliance Teams: Compliance remains at the heart of many organizational cybersecurity strategies. However, with ever-shifting regulatory landscapes, staying compliant becomes a moving target. RAG's ability to source real-time data ensures that compliance teams always have access to the latest policy changes, guidelines, and best practices. This not only facilitates adherence to current standards but also anticipates future shifts, assists with audits, and ensures that organizations remain ahead of the compliance curve. Fusing a RAG architecture with platforms like Slack amplifies its practical utility. Slack, known for its real-time communication prowess, seamlessly evolves into more than just a messaging platform in this context. Cybersecurity analysts can pose intricate queries within Slack and, almost instantaneously, receive comprehensive feedback powered by the harmonious interplay of RAG and Gen AI. This integration effectively transforms Slack into an AI-augmented chatbot-like assistant for cybersecurity professionals, always ready to provide informed insights on-demand, making it an indispensable ally in the ever-evolving cyber battlefield. Navigating the vast landscape of cybersecurity, analysts often encounter unfamiliar terminologies and techniques., analysts require tools that not only detect or inform them of threats, like CISA (U.S Cybersecurity Infrastructure Security Agency) Advisories, but also interpret and communicate them effectively. Consider a junior cybersecurity analyst named Alex, who comes across the term "Kerberoasting" while reviewing a network log. Unfamiliar with its intricacies, Alex turns to Slack to pose a query: "chat explain is Kerberoasting, using CISA." Almost instantaneously, Slack, powered by the harmonious interplay of RAG and Gen AI, provides a detailed response, cross-referencing a recent cyber advisory on the technique. It explains how attackers can exploit the Kerberos Ticket Granting Service to decipher service account passwords, potentially compromising a network. In this dynamic realm of cybersecurity, the blend of RAG and Generative AI represents more than just a technological leap. It embodies a paradigm shift, promising a future where human expertise and AI-driven precision join forces. As cyber threats continue their relentless advance, this synergy ensures that defenders are equipped with an arsenal that's not just reactive, but also profoundly insightful. No longer should analysts be submerged in a deluge of data without direction. Instead, they should be empowered, to discern, act, and preempt with unparalleled clarity and confidence. By harmoniously intertwining human discernment with AI capabilities, we should chart a path towards a future where cybersecurity is not just about defense, but about achieving a strategic advantage, paving the way for a safer, informed and a more secure digital horizon.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 46