Search results for: Wenhui%20Xiong
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Wenhui%20Xiong

3 Identifying Dominant Anaerobic Microorganisms for Degradation of Benzene

Authors: Jian Peng, Wenhui Xiong, Zheng Lu

Abstract:

An optimal recipe of amendment (nutrients and electron acceptors) was developed and dominant indigenous benzene-degrading microorganisms were characterized in this study. Lessons were learnt from the development of the optimal amendment recipe: (1) salinity and substantial initial concentration of benzene were detrimental for benzene biodegradation; (2) large dose of amendments can shorten the lag time for benzene biodegradation occurrence; (3) toluene was an essential co-substance for promoting benzene degradation activity. The stable isotope probing study identified incorporation 13C from 13C-benzene into microorganisms, which can be considered as a direct evidence of the occurrence of benzene biodegradation. The dominant mechanism for benzene removal was identified by quantitative polymerase chain reaction analysis to be nitrate reduction. Microbial analyses (denaturing gradient gel electrophoresis and 16S ribosomal RNA) demonstrated that members of genus Dokdonella spp., Pusillimonas spp., and Advenella spp. were predominant within the microbial community and involved in the anaerobic benzene bioremediation.

Keywords: benzene, enhanced anaerobic bioremediation, stable isotope probing, biosep biotrap

Procedia PDF Downloads 312
2 Ambiguity-Identification Prompting for Large Language Model to Better Understand Complex Legal Texts

Authors: Haixu Yu, Wenhui Cao

Abstract:

Tailoring Large Language Models (LLMs) to perform legal reasoning has been a popular trend in the study of AI and law. Researchers have mainly employed two methods to unlock the potential of LLMs, namely by finetuning the LLMs to expand their knowledge of law and by restructuring the prompts (In-Context Learning) to optimize the LLMs’ understanding of the legal questions. Although claiming the finetuning and renovated prompting can make LLMs more competent in legal reasoning, most state-of-the-art studies show quite limited improvements of practicability. In this paper, drawing on the study of the complexity and low interpretability of legal texts, we propose a prompting strategy based on the Chain of Thought (CoT) method. Instead of merely instructing the LLM to reason “step by step”, the prompting strategy requires the tested LLM to identify the ambiguity in the questions as the first step and then allows the LLM to generate corresponding answers in line with different understandings of the identified terms as the following step. The proposed prompting strategy attempts to encourage LLMs to "interpret" the given text from various aspects. Experiments that require the LLMs to answer “case analysis” questions of bar examination with general LLMs such as GPT 4 and legal LLMs such as LawGPT show that the prompting strategy can improve LLMs’ ability to better understand complex legal texts.

Keywords: ambiguity-identification, prompt, large language model, legal text understanding

Procedia PDF Downloads 22
1 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 42