Search results for: Vang Vang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Vang Vang

2 In the Spirit of Open Educational Resources: Library Resources and Fashion Merchandising

Authors: Lizhu Y. Davis, Gretchen Higginbottom, Vang Vang

Abstract:

This presentation explores the adoption of library resources to engage students in a Visual Merchandising course during the 2016 spring semester. This study was a cross-disciplinary collaboration between the Fashion Merchandising Program and the Madden Library at California State University, Fresno. The goal of the project was to explore and assess the students’ use of library resources as a part of the Affordable Learning Solutions Initiative, a California State University (CSU) Office of the Chancellor Program that enables faculty to choose and provide high-quality, free or low-cost educational materials for their students. Students were interviewed afterwards and the results were generally favorable and provided insight into how students perceive and use library resources to support their research needs. This study reveals an important step in examining how open educational resources impact student learning.

Keywords: collaboration, library resources, open educational resources, visual merchandising

Procedia PDF Downloads 312
1 Topic Sentiments toward the COVID-19 Vaccine on Twitter

Authors: Melissa Vang, Raheyma Khan, Haihua Chen

Abstract:

The coronavirus disease 2019 (COVID‐19) pandemic has changed people's lives from all over the world. More people have turned to Twitter to engage online and discuss the COVID-19 vaccine. This study aims to present a text mining approach to identify people's attitudes towards the COVID-19 vaccine on Twitter. To achieve this purpose, we collected 54,268 COVID-19 vaccine tweets from September 01, 2020, to November 01, 2020, then the BERT model is used for the sentiment and topic analysis. The results show that people had more negative than positive attitudes about the vaccine, and countries with an increasing number of confirmed cases had a higher percentage of negative attitudes. Additionally, the topics discussed in positive and negative tweets are different. The tweet datasets can be helpful to information professionals to inform the public about vaccine-related informational resources. Our findings may have implications for understanding people's cognitions and feelings about the vaccine.

Keywords: BERT, COVID-19 vaccine, sentiment analysis, topic modeling

Procedia PDF Downloads 149