Search results for: Synthetic Control Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27069

Search results for: Synthetic Control Method

26799 The Moment of the Optimal Average Length of the Multivariate Exponentially Weighted Moving Average Control Chart for Equally Correlated Variables

Authors: Edokpa Idemudia Waziri, Salisu S. Umar

Abstract:

The Hotellng’s T^2 is a well-known statistic for detecting a shift in the mean vector of a multivariate normal distribution. Control charts based on T have been widely used in statistical process control for monitoring a multivariate process. Although it is a powerful tool, the T statistic is deficient when the shift to be detected in the mean vector of a multivariate process is small and consistent. The Multivariate Exponentially Weighted Moving Average (MEWMA) control chart is one of the control statistics used to overcome the drawback of the Hotellng’s T statistic. In this paper, the probability distribution of the Average Run Length (ARL) of the MEWMA control chart when the quality characteristics exhibit substantial cross correlation and when the process is in-control and out-of-control was derived using the Markov Chain algorithm. The derivation of the probability functions and the moments of the run length distribution were also obtained and they were consistent with some existing results for the in-control and out-of-control situation. By simulation process, the procedure identified a class of ARL for the MEWMA control when the process is in-control and out-of-control. From our study, it was observed that the MEWMA scheme is quite adequate for detecting a small shift and a good way to improve the quality of goods and services in a multivariate situation. It was also observed that as the in-control average run length ARL0¬ or the number of variables (p) increases, the optimum value of the ARL0pt increases asymptotically and as the magnitude of the shift σ increases, the optimal ARLopt decreases. Finally, we use the example from the literature to illustrate our method and demonstrate its efficiency.

Keywords: average run length, markov chain, multivariate exponentially weighted moving average, optimal smoothing parameter

Procedia PDF Downloads 385
26798 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System

Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon

Abstract:

This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.

Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control

Procedia PDF Downloads 286
26797 Bridging Stress Modeling of Composite Materials Reinforced by Fiber Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all the mechanical properties of fibers, matrix, the fiber/matrix interface, as well as the geometry of the fiber. An appropriate method applicable to the simulation and analysis of toughening is essential. In this work, we performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of the contribution of random fibers to the toughening of composite. Then with numerical programming, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers with high strength and low elasticity modulus benefit toughening; (ii) fibers with relatively high elastic modulus compared to the matrix may result in considerable matrix damage (spalling effect); (iii) employment of high-strength synthetic fiber is a good option. The present work makes it possible to optimize the parameters in order to produce advanced ceramic with desired performance. We believe combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed.

Keywords: bridging stress, discrete element method, fiber reinforced composites, toughening

Procedia PDF Downloads 411
26796 Adaptive Nonlinear Control of a Variable Speed Horizontal Axis Wind Turbine: Controller for Optimal Power Capture

Authors: Rana M. Mostafa, Nouby M. Ghazaly, Ahmed S. Ali

Abstract:

This article introduces a solution for increasing the wind energy extracted from turbines to overcome the more electric power required. This objective provides a new science discipline; wind turbine control. This field depends on the development in power electronics to provide new control strategies for turbines. Those strategies should deal with all turbine operating modes. Here there are two control strategies developed for variable speed horizontal axis wind turbine for rated and over rated wind speed regions. These strategies will support wind energy validation, decrease manufacturing overhead cost. Here nonlinear adaptive method was used to design speed controllers to a scheme for ‘Aeolos50 kw’ wind turbine connected to permanent magnet generator via a gear box which was built on MATLAB/Simulink. These controllers apply maximum power point tracking concept to guarantee goal achievement. Procedures were carried to test both controllers efficiency. The results had been shown that the developed controllers are acceptable and this can be easily declared from simulation results.

Keywords: adaptive method, pitch controller, wind energy, nonlinear control

Procedia PDF Downloads 214
26795 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: delayed systems, fuzzy immune PID, optimization, Smith predictor

Procedia PDF Downloads 398
26794 Control of Spherical Robot with Sliding Mode

Authors: Roya Khajepour, Alireza B. Novinzadeh

Abstract:

A major issue with spherical robot is it surface shape, which is not always predictable. This means that given only the dynamic model of the robot, it is not possible to control the robot. Due to the fact that in certain conditions it is not possible to measure surface friction, control methods must be prepared for these conditions. Moreover, although spherical robot never becomes unstable or topples thanks to its special shape, since it moves by rolling it has a non-holonomic constraint at point of contact and therefore it is considered a non-holonomic system. Existence of such a point leads to complexity and non-linearity of robot's kinematic equations and makes the control problem difficult. Due to the non-linear dynamics and presence of uncertainty, the sliding-mode control is employed. The proposed method is based on Lyapunov Theory and guarantees system stability. This controller is insusceptible to external disturbances and un-modeled dynamics.

Keywords: sliding mode, spherical robot, non-holomonic constraint, system stability

Procedia PDF Downloads 348
26793 Hollowfiber Poly Lactid Co-Glycolic Acid (PLGA)-Collagen Coated by Chitosan as a Candidate of Small Diameter Vascular Graft

Authors: Dita Mayasari, Zahrina Mardina, Riki Siswanto, Agresta Ifada, Ova Oktavina, Prihartini Widiyanti

Abstract:

Heart failure is a serious major health problem with high number of mortality per year. Bypass is one of the solutions that has often been taken. Natural vascular graft (xenograft) as the substitute in bypass is inconvenient due to ethic problems and the risk of infection transmission caused by the usage of another species transgenic vascular. Nowadays, synthetic materials have been fabricated from polymers. The aim of this research is to make a synthetic vascular graft with great physical strength, high biocompatibility, and good affordability. The method of this research was mixing PLGA and collagen by magnetic stirrer. This composite were shaped by spinneret with water as coagulant. Then it was coated by chitosan with 3 variations of weight (1 gram, 2 grams, and 3 grams) to increase hemo and cytocompatibility, proliferation, and cell attachment in order for the vascular graft candidates to be more biocompatible. Mechanical strength for each variation was 5,306 MPa (chitosan 1 gram), 3,433 MPa (chitosan 2 grams) and 3,745 MPa (chitosan 3 grams). All the tensile values were higher than human vascular tensile strength. Toxicity test showed that the living cells in all variations were more than 60% in number, thus the vascular graft is not toxic.

Keywords: chitosan, collagen, PLGA, spinneret

Procedia PDF Downloads 365
26792 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 269
26791 Radial Distortion Correction Based on the Concept of Verifying the Planarity of a Specimen

Authors: Shih-Heng Tung, Ming-Hsiang Shih, Wen-Pei Sung

Abstract:

Because of the rapid development of digital camera and computer, digital image correlation method has drawn lots of attention recently and has been applied to a variety of fields. However, the image distortion is inevitable when the image is captured through a lens. This image distortion problem can result in an innegligible error while using digital image correlation method. There are already many different ways to correct the image distortion, and most of them require specific image patterns or precise control points. A new distortion correction method is proposed in this study. The proposed method is based on the fact that a flat surface should keep flat when it is measured using three-dimensional (3D) digital image measurement technique. Lens distortion can be divided into radial distortion, decentering distortion and thin prism distortion. Because radial distortion has a more noticeable influence than the other types of distortions, this method deals only with radial distortion. The simplified 3D digital image measurement technique is adopted to measure the surface coordinates of a flat specimen. Then the gradient method is applied to find the best correction parameters. A few experiments are carried out in this study to verify the correctness of this method. The results show that this method can achieve a good accuracy and it is suitable for both large and small distortion conditions. The most important advantage is that it requires neither mark with specific pattern nor precise control points.

Keywords: 3D DIC, radial distortion, distortion correction, planarity

Procedia PDF Downloads 517
26790 A Novel Fuzzy Second-Order Sliding Mode Control of a Doubly Fed Induction Generator for Wind Energy Conversion

Authors: Elhadj Bounadja, Mohand Oulhadj Mahmoudi, Abdelkader Djahbar, Zinelaabidine Boudjema

Abstract:

In this paper we present a novel fuzzy second-order sliding mode control (FSOSMC) for wind energy conversion system based on a doubly-fed induction generator (DFIG). The proposed control strategy combines a fuzzy logic and a second-order sliding mode for the DFIG control. This strategy presents attractive features such as chattering-free, compared to the conventional first and second order sliding mode techniques. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 1.5-MW wind turbine driven a DFIG using the Matlab/Simulink.

Keywords: doubly fed induction generator, fuzzy second-order sliding mode controller, wind energy

Procedia PDF Downloads 505
26789 Lab Bench for Synthetic Aperture Radar Imaging System

Authors: Karthiyayini Nagarajan, P. V. Ramakrishna

Abstract:

Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.

Keywords: synthetic aperture radar, radio reflection model, lab bench, imaging engineering

Procedia PDF Downloads 450
26788 Exact and Approximate Controllability of Nuclear Dynamics Using Bilinear Controls

Authors: Ramdas Sonawane, Mahaveer Gadiya

Abstract:

The control problem associated with nuclear dynamics is represented by nonlinear integro-differential equation with additive controls. To control chain reaction, certain amount of neutrons is added into (or withdrawn out of) chamber as and when required. It is not realistic. So, we can think of controlling the reactor dynamics by bilinear control, which enters the system as coefficient of state. In this paper, we study the approximate and exact controllability of parabolic integro-differential equation controlled by bilinear control with non-homogeneous boundary conditions in bounded domain. We prove the existence of control and propose an explicit control strategy.

Keywords: approximate control, exact control, bilinear control, nuclear dynamics, integro-differential equations

Procedia PDF Downloads 401
26787 Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System

Authors: Karthiyayini Nagarajan, P. V. RamaKrishna

Abstract:

Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes.

Keywords: synthetic aperture radar, radio reflection model, lab bench

Procedia PDF Downloads 429
26786 A Cost-Effective Evaluation of Proper Control Process of Air-Cooled Heat Exchanger

Authors: Ali Ghobadi, Eisa Bakhoda, Hamid R. Javdan

Abstract:

One of the key factors in air cooled heat exchangers operation is the proper control of process stream outlet temperature. In this study, performances of two different air cooled heat exchangers have been considered, one of them condenses Propane and the other one cools LPG streams. In order to predict operation of these air coolers at different operating conditions. The results of simulations were applied for both economical evaluations and operational considerations for using convenient air cooler control system. In this paper, using On-Off fans method and installing variable speed drivers have been studied. Finally, the appropriate methods for controlling outlet temperature of process fluid streams as well as saving energy consumption were proposed. Using On-Off method for controlling studied Propane condenser by multiple fans is proper; while controlling LPG air cooler with lesser fans by means of two variable speed drivers is economically convenient.

Keywords: air cooled heat exchanger, simulation, economical evaluation, energy, process control

Procedia PDF Downloads 375
26785 UML Model for Double-Loop Control Self-Adaptive Braking System

Authors: Heung Sun Yoon, Jong Tae Kim

Abstract:

In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption, we can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.

Keywords: activity diagram, automotive, braking system, double-loop, self-adaptive, UML, vehicle

Procedia PDF Downloads 380
26784 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system

Procedia PDF Downloads 306
26783 Synthesis of Green Silver Nanoparticles with Aqueous Extract of Glycyrrhiza glabra and Its Characterization

Authors: Mandeep Kataria, Ankita Thakur

Abstract:

Glycyrrhiza glabra grows in the sub- tropical and warm temperate regions of the world, in Mediterranean countries and China, America, Europe, Asia and Australia. It grows in areas with sunny, dry and hot climates. It has numerous medicinal properties like it is used to cure Peptic Ulcers, Canker sores, Eczema, Indigestion and Upper Respiratory Infections. Biosynthetic methods such as plant extract have emerged as a simple and viable alternative to more complex chemical synthetic procedures to obtain nanomaterials. Extract from plant may act both as reducing and capping agents in silver nanoparticles synthesis. In the present work, Green Silver nanoparticles were successfully formulated from bioreduction of silver nitrate solutions using Glycyrrhiza glabra root extract. These Green Silver nanoparticles have been appropriately characterized using Visible spectroscopy, colour change. The Antimicrobial activity was done by Agar disc diffusion assay. AgNPs were developed by using aqueous root extract of Glycyrrhiza glabra, which acts as a reducing as well as stabilizing agent. The green synthetic method is a fast, low cost and eco-friendly process in the field of nanotechnology. The study revealed that the green-synthesized silver nanoparticle provides a promising approach for antimicrobial activity.

Keywords: Glycyrrhiza glabra, nanoparticles, antimicrobial activity, aqueous extract

Procedia PDF Downloads 96
26782 Sensorless Controller of Induction Motor Using Backstepping Approach and Fuzzy MRAS

Authors: Ahmed Abbou

Abstract:

This paper present a sensorless controller designed by the backstepping approach for the speed control of induction motor. In this strategy of control, we also combined the method Fuzzy MRAS to estimate the rotor speed and the observer type Luenburger to observe Rotor flux. The control model involves a division by the flux variable that may lead to unbounded solutions. Such a risk is avoided by basing the controller design on Lyapunov function that accounts for the model singularity. On the other hand, this mixed method gives better results in Sensorless operation and especially at low speed. The response time at 5% of the flux is 20ms while the error between the speed with sensor and the estimated speed remains in the range of ±0.8 rad/s for the rated functioning and ±1.5 rad/s for low speed.

Keywords: backstepping approach, fuzzy logic, induction motor, luenburger observer, sensorless MRAS

Procedia PDF Downloads 340
26781 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch

Procedia PDF Downloads 79
26780 Analysis of Airborne Data Using Range Migration Algorithm for the Spotlight Mode of Synthetic Aperture Radar

Authors: Peter Joseph Basil Morris, Chhabi Nigam, S. Ramakrishnan, P. Radhakrishna

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data using the Range Migration Algorithm (RMA) for the spotlight mode of operation. Unlike in polar format algorithm (PFA), space-variant defocusing and geometric distortion effects are mitigated in RMA since it does not assume that the illuminating wave-fronts are planar. This facilitates the use of RMA for imaging scenarios involving severe differential range curvatures enabling the imaging of larger scenes at fine resolution and at shorter ranges with low center frequencies. The RMA algorithm for the spotlight mode of SAR is analyzed in this paper using the airborne data. Pre-processing operations viz: - range de-skew and motion compensation to a line are performed on the raw data before being fed to the RMA component. Various stages of the RMA viz:- 2D Matched Filtering, Along Track Fourier Transform and Slot Interpolation are analyzed to find the performance limits and the dependence of the imaging geometry on the resolution of the final image. The ability of RMA to compensate for severe differential range curvatures in the two-dimensional spatial frequency domain are also illustrated in this paper.

Keywords: range migration algorithm, spotlight SAR, synthetic aperture radar, matched filtering, slot interpolation

Procedia PDF Downloads 208
26779 Synchronization of a Perturbed Satellite Attitude Motion using Active Sliding Mode Controller

Authors: Djaouida Sadaoui

Abstract:

In this paper, the design procedure of the active sliding mode controller which is a combination of the active controller and the sliding mode controller is given first and then the problem of synchronization of two satellites systems is discussed for the proposed method. Finally, numerical results are presented to evaluate the robustness and effectiveness of the proposed control strategy.

Keywords: active control, sliding mode control, synchronization, satellite attitude

Procedia PDF Downloads 453
26778 Comparative Study between Direct Torque Control and Sliding Mode Control of Sensorless Induction Machine

Authors: Fouad Berrabah, Saad Salah, Zaamouche Fares

Abstract:

In this paper, the Direct Torque Control (DTC) Control and the Sliding Mode Control for induction motor are presented and compared. The performance of the two control schemes is evaluated in terms of torque and current ripple, and transient response to variations of the torque , speed and robustness, trajectory tracking. In order to identify the more suitable solution for any application, both techniques are analyzed mathematically and simulation results are compared which advantages and drawbacks are discussed.

Keywords: induction motor, DTC- MRAS control, sliding mode control, robustness, trajectory tracking

Procedia PDF Downloads 555
26777 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis

Authors: Shriya Shukla, Lachin Fernando

Abstract:

Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.

Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning

Procedia PDF Downloads 15
26776 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

Authors: Sheela Tiwari, R. Naresh, R. Jha

Abstract:

The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.

Keywords: identification, neural networks, predictive control, transient stability, UPFC

Procedia PDF Downloads 348
26775 Adverse Effects of Natural Pesticides on Human and Animals: An Experimental Analysis

Authors: Abdel-Tawab H. Mossa

Abstract:

Synthetic pesticides are widely used in large-scale worldwide for control pests in agriculture and public health sectors in both developed and developing countries. Although the positive role of pesticides, they have many adverse toxic effects on humans, animals, and the ecosystem. Therefore, in the last few years, scientists have been searching for new active compounds from natural resources as an alternative to synthetic pesticides. Currently, many commercial natural pesticides are available commercially worldwide. These products are recommended for uses in organic farmers and considered as safe pesticides. This paper focuses on the adverse effects of natural pesticides on mammals. Available commercial pesticides in the market contain essential oils (e.g. pepper, cinnamon, and garlic), plant extracts, microorganism (e.g. bacteria, fungi or their toxin), mineral oils and some active compounds from natural recourses e.g. spinosad, neem, pyrethrum, rotenone, abamectin and other active compounds from essential oils (EOs). Some EOs components, e.g., thujone, pulegone, and thymol have high acute toxicity (LD50) is 87.5, 150 and 980 mg/kg. B.wt on mice, respectively. Natural pesticides such as spinosad, pyrethrum, neem, abamectin, and others have toxicological effects to mammals and ecosystem. These compounds were found to cause hematotoxicity, hepato-renal toxicity, biochemical alteration, reproductive toxicity, genotoxicity, and mutagenicity. It caused adverse effects on the ecosystem. Therefore, natural pesticides in general not safe and have high acute toxicity and can induce adverse effects at long-term exposure.

Keywords: natural pesticides, toxicity, safety, genotoxicity, ecosystem, biochemical

Procedia PDF Downloads 134
26774 Experimental Study on Connection Method of Precast Beam-Column Using CFRPS

Authors: Harmonis Rante, Rudy Djamaluddin, Herman Parung, Victor Sampebulu

Abstract:

Many research of FRP strengthening on beam-column joint have been done. They used FRP as a strengthening material but not as a connection method. This paper presents a result of experimental-study on connection method of precast beam-column using CFRP sheet to investigate the possibility of CFRP sheet to be a connecting material. Six specimens were prepared and tested to investigate the behavior of CFRP-s connection capacity. The performance of two-connection method is presented in this paper. Three specimens have been tested so far, they were specimen without belt, specimen using one belt and monolith specimen as a control specimen. Result indicated that FRP joint system without belt reached higher capacity than joint system using one belt, but both are lower than monolith joint. Capacity of joint system without belt is 90.6% and 62.5% for the joint system using one belt, respectively compared to the control specimen.

Keywords: belt, CFRP-s, connection method, strengthening

Procedia PDF Downloads 218
26773 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests

Authors: R. S. Giraddi, C. M. Poleshi

Abstract:

Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture.  Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control.  The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.

Keywords: humic acid, azadirachtin, vermicompost, insect-pest

Procedia PDF Downloads 243
26772 Functional Mortality of Anopheles stephensi, the Urban Malaria Vector as Induced by the Sublethal Exposure to Deltamethrin

Authors: P. Aarumugam, N. Krishnamoorthy, K. Gunasekaran

Abstract:

The mosquitoes with loss of minimum three legs especially the hind legs have the negative impact on the survival hood of mosquitoes. Three days old unfed adult female laboratory strain was selected in each generation against sublethal dosages (0.004%, 0.005%, 0.007% and 0.01%) of deltamethrin upto 40 generations. Impregnated papers with acetone were used for control. Every fourth generation, survived mosquitoes were observed for functional mortality. Hind legs lost were significantly (P< 0.05) higher in treated than the controls up to generation 24, thereafter no significant lost. In contrary, no significant forelegs lost among exposed mosquitoes. Middle legs lost were also not significant in the exposed mosquitoes except first generation (F1). The field strain (Chennai) did not show any significant loss of legs (fore or mid or hind) compared to the control. The selection pressure on mosquito population influences strong natural selection to develop various adaptive mechanisms.

Keywords: Anopheles stephensi, deltamethrin, functional mortality, synthetic pyrethroids

Procedia PDF Downloads 357
26771 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 123
26770 Growth of Struvite Crystals in Synthetic Urine Using Magnesium Nitrate

Authors: Reneiloe Seodigeng, John Kabuba, Hilary Rutto, Tumisang Seodigeng

Abstract:

Urine diversion toilets have become popular as a means of solving the challenges in sanitation. As a result, the source-separated urine must be adequately treated so that it can be disposed of safely and valuable struvite can be extracted for use as fertilizer. In this study, synthetic urine was prepared, and struvite crystallisation experiments carried out using magnesium nitrate. The effect of residence time on crystal growth was studied. At residence time of 10, 30 and 60 minutes, mean particle sizes were 17, 34 and 53 µm showing that with higher residence times, larger crystal sizes can be achieved. SEM analysis of the crystal showed that the resultant crystals had the typical morphology of struvite crystals.

Keywords: struvite, magnesium nitrate, crystallisation, urine treatment

Procedia PDF Downloads 129