Search results for: Serir Chafiaa
Optimized Energy Management in Hybrid Photovoltaic-Battery-Fuel Cell Systems for Enhanced Sustainability
Authors: Mokrani Zahra, Kakouche Khoudir, Rekioua Djamila, Oubelaid Adel, Rekioua Toufik, Serir Chafiaa, Belhoul Talit
Abstract:
This paper explores strategies to enhance energy efficiency, sustainability, and reliability through the integration of photovoltaic (PV) technologies, batteries, and fuel cells within hybrid energy systems. These systems capitalize on the intermittent availability of solar energy, the energy storage capabilities of batteries, and the flexible power generation of fuel cells. Photovoltaic panels convert sunlight into electrical energy, which can be stored in batteries for future use. When solar energy is insufficient, batteries and fuel cells operate simultaneously, reducing the strain on individual components and extending the overall lifespan of the batteries. The synergy between these elements results in a dynamic and optimized energy management approach. By leveraging the complementary strengths of PV panels, batteries, and fuel cells, these hybrid systems enhance reliability while promoting sustainability. This approach also addresses the limitations of single-source energy systems by mitigating power fluctuations and ensuring continuous energy supply, even in varying environmental conditions. Moreover, the integration of these technologies contributes to reducing the carbon footprint of energy production, aligning with global efforts to transition to cleaner and more resilient energy systems. The findings of this study highlight the potential of hybrid energy systems to revolutionize energy management practices, offering a viable solution for both residential and industrial applications. This comprehensive approach not only maximizes system longevity but also supports the development of a sustainable and efficient energy infrastructure for the future.Keywords: photovoltaics system, fuel cells, battery storage, energy management.
Procedia PDF Downloads 0Investigation of NiO/V₂O₅ Powder Composite as Cathode Material for Lithium-Ion Batteries
Authors: Katia Ayouz-Chebout, Fatima Boudeffar, Maha Ayat, Malika Berouaken, Chafiaa Yaddaden, Saloua Merazga, Nouredine Gabouze
Abstract:
Transition metal oxide composites have been widely reported in energy storage and conversion systems. In this regard, an attempt has been made to synthesize NiO@V₂O₅ nanocomposite. The structures and morphology of synthesized powder are investigated by X-ray diffraction, scanning electron microscope (SEM), and Attenuated Total Reflection (ATR). The electrochemical properties and performances as cathode electrodes based on active material NiO@V₂O₅ were studied by cyclic voltammetry (CV), between potential bias [0.01V to 3V], with scanning speed of 0,1mVs⁻¹, the galvanostatic charge/discharge (CDG) for 100 cycles was also measured.Keywords: composite nanobelts, vanadium pentoxide, nickel oxide, Li-ion batteries
Procedia PDF Downloads 32Fuzzy Logic Optimization for Solar Systems with Integrated Hybrid Energy Storage
Authors: Mokrani Zahra, Oubelaid Adel, Rekioua Djamila, Serir Chafia, Kakouche Khoudir, Rekioua Toufik, Belhoul Talit
Abstract:
In this paper, a hybrid approach combining fuzzy logic-based Maximum Power Point Tracking (MPPT) with a battery-supercapacitor system is proposed to improve photovoltaic system performance. This method increases overall efficiency and extends the lifespan of the energy storage components. By optimizing energy capture and management, the system becomes more adaptive, reliable, and effective in harnessing solar power. The integration of fuzzy logic and hybrid storage represents a significant advancement in maximizing the potential of renewable energy technologies, providing a more sustainable and efficient solution for solar energy applications. This innovation enhances the effectiveness of solar power systems in real-world scenarios.Keywords: Photovoltaic system, fuzzy logic control, energy management, hybrid storage
Procedia PDF Downloads 5Air–Water Two-Phase Flow Patterns in PEMFC Microchannels
Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand
Abstract:
The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing
Procedia PDF Downloads 316