Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: Pantaleon Lutta
2 Energy Scenarios for Greater Kampala Metropolitan Area towards a Sustainable 2050: A TIMES-VEDA Analysis
Authors: Kimuli Ismail, Michael Lubwama, John Baptist Kirabira, Adam Sebbit
Abstract:
This study develops 4 energy scenarios for Greater Kampala Metropolitan Area (GKMA). GKMA is Uganda’s capital with a population of 4.1million and a GDP growth rate of 5.8 with a nonsustainable energy management system. The study uses TIMES-VEDA to examine the energy impacts of business as usual (BAU), Kabejja, Carbon-Tax, and Lutta scenarios in commercial, industrial, transportation, residential, agricultural, and electricity generation activities. BAU is the baseline scenario with limited CO2 emissions restrictions against which Kabejja with 20% CO2 emissions restriction, a carbon tax of $100/ton imposed in 2050 for Carbon-Tax scenario, and Lutta with 95% CO2 emissions restriction is made. The analysis suggests that if the current policy trends continue as BAU, consumption would increase from 139.6PJ to 497.42PJ and CO2 emissions will increase from 4.6mtns to 7mtns. However, consumption would decrease by 2.3% in Kabejja, 3.4% in Carbon-Tax, and 3.3 % in Lutta compared to BAU. The CO2 emissions would decrease by 8.57% in Kabejja, 55.14% in Carbon-Tax, and 60% in Lutta compared to BAU. Sustainability is achievable when low-carbon electricity is increased by 53.68% in the EMS, and setting up an electrified Kampala metro. The study recommends Lutta as the sustainable pathway to a lowcarbon 2050.Keywords: Sustainability, Scenario Plannnig, Times-Veda Modelling, Energy Policy Development
Procedia PDF Downloads 651 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics
Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan
Abstract:
The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).Keywords: cloud forensics, data protection Laws, GDPR, IoT forensics, machine Learning
Procedia PDF Downloads 150