Search results for: PDF to story feature
2148 Artificial Intelligence Applications in Kahoot!
Authors: Jana, Walah, Salma, Dareen
Abstract:
This study looks at how the game-based learning platform Kahoot! has changed education, with a particular emphasis on how it incorporates artificial intelligence (AI). From humanly made questions to AI-driven features that improve the learning process, Kahoot! has changed since its 2013 introduction. The software successfully engages educators and students by delivering adaptive learning paths, regulating content, and offering individualized tests. This study also highlights the AI features of Kahoot! by contrasting it with comparable platforms like Quizizz, Socrative, Gimkit, and Nearpod. User satisfaction with Kahoot!'s "PDF to Story" and "Story Text Enhancer" functions ranges from moderate to high, according to a review of user input; yet, there are still issues with consistent accuracy and usability. The results demonstrate how AI can improve learning's effectiveness, adaptability, and interactivity while offering useful insights for educators and developers seeking to optimize educational tools.Keywords: PDF to story feature, story text enhancer, AI-driven learning, interactive content creation
Procedia PDF Downloads 22147 A Stylistic Analysis of the Short Story ‘The Escape’ by Qaisra Shahraz
Authors: Huma Javed
Abstract:
Stylistics is a broad term that is concerned with both literature and linguistics, due to which the significance of the stylistics increases. This research aims to analyze Qaisra Shahraz's short story ‘The Escape’ from the stylistic analysis viewpoint. The focus of this study is on three aspects grammar category, lexical category, and figure of speech of the short story. The research designs for this article are both explorative and descriptive. The analysis of the data shows that the writer has used more nouns in the story as compared to other lexical items, which suggests that story has a descriptive style rather than narrative.Keywords: The Escape, stylistics, grammatical category, lexical category, figure of speech
Procedia PDF Downloads 2392146 Preschool Story Retelling: Actions and Verb Use
Authors: Eva Nwokah, Casey Taliancich-Klinger, Lauren Luna, Sarah Rodriguez
Abstract:
Story-retelling is a technique frequently used to assess children’s language skills and support their development of narratives. Fourteen preschool children listened to one of two stories from the wordless, illustrated Frog book series and then retold the story using the pictures. A comparison of three verb types (action, mental and other) in the original story model, and children's verb use in their retold stories revealed the salience of action events. The children's stories contained a similar proportion of verb types to the original story. However, the action verbs they used were rarely those they had heard in the original. The implications for the process of lexical encoding and narrative recall are discussed, as well as suggestions for the use of wordless picture books and the language teaching of new verbs.Keywords: story re-telling, verb use, preschool language, wordless picture books
Procedia PDF Downloads 2722145 The Communication Effect of the Emotional Storytelling on Non-Profit Organizations: The Moderating Effect of Social Distance
Authors: ZhangRun, Yi-Fang Chiang, Li-Shia Huang
Abstract:
The purpose of this study was to explore the impact of emotional story marketing on the fundraising effectiveness of non-profit organizations and to further clarify the communication effectiveness of emotional story types by using "social distance" which reflects individual differences, as an intervening variable in two experiments. The quasi-experimental design of the development experiment (positive warmth of the story v.s. negative sadness of the story) × social distance (near v.s. far) to clarify the effects of social distance. In this study, we designed the experimental advertising situation ourselves, and data were collected through a questionnaire survey. A total of 391 questionnaires were distributed, and data analysis and hypothesis verification were conducted through variance analysis. According to the analysis results of this study, the use of positive emotional appeals in the design of non-profit organization advertisements on issues related to the loss of children will increase the willingness of listeners to donate. For those with close social distance, there is no significant difference between the positive and "warm" emotional story ads and the negative and "sad" emotional story ads. For those with far social distance, there is a significant difference between the positive and "warm" emotional story ads and the negative and "sad" emotional story ads, with the positive and "warm" emotional appeals improving their willingness to donate. Therefore, this study suggests that NPOs should use more positive and warm emotional stories in their advertising design to enhance the fundraising effectiveness of NPO story marketing.Keywords: story marketing, emotional appeal, social distance, willingness to donate
Procedia PDF Downloads 302144 Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks
Authors: Amir Alirezaei, Shahram Vahdani
Abstract:
This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback, are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.Keywords: deformation demand, drift, setback, tall building
Procedia PDF Downloads 4242143 Fragility Analysis of a Soft First-Story Building in Mexico City
Authors: Rene Jimenez, Sonia E. Ruiz, Miguel A. Orellana
Abstract:
On 09/19/2017, a Mw = 7.1 intraslab earthquake occurred in Mexico causing the collapse of about 40 buildings. Many of these were 5- or 6-story buildings with soft first story; so, it is desirable to perform a structural fragility analysis of typical structures representative of those buildings and to propose a reliable structural solution. Here, a typical 5-story building constituted by regular R/C moment-resisting frames in the first story and confined masonry walls in the upper levels, similar to the collapsed structures on the 09/19/2017 Mexico earthquake, is analyzed. Three different structural solutions of the 5-story building are considered: S1) it is designed in accordance with the Mexico City Building Code-2004; S2) then, the column dimensions of the first story corresponding to S1 are reduced, and S3) viscous dampers are added at the first story of solution S2. A number of dynamic incremental analyses are performed for each structural solution, using a 3D structural model. The hysteretic behavior model of the masonry was calibrated with experiments performed at the Laboratory of Structures at UNAM. Ten seismic ground motions are used to excite the structures; they correspond to ground motions recorded in intermediate soil of Mexico City with a dominant period around 1s, where the structures are located. The fragility curves of the buildings are obtained for different values of the maximum inter-story drift demands. Results show that solutions S1 and S3 give place to similar probabilities of exceedance of a given value of inter-story drift for the same seismic intensity, and that solution S2 presents a higher probability of exceedance for the same seismic intensity and inter-story drift demand. Therefore, it is concluded that solution S3 (which corresponds to the building with soft first story and energy dissipation devices) can be a reliable solution from the structural point of view.Keywords: demand hazard analysis, fragility curves, incremental dynamic analyzes, soft-first story, structural capacity
Procedia PDF Downloads 1782142 The Effect of Feature Selection on Pattern Classification
Authors: Chih-Fong Tsai, Ya-Han Hu
Abstract:
The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.Keywords: data mining, feature selection, pattern classification, dimensionality reduction
Procedia PDF Downloads 6692141 A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning
Authors: Samina Khalid, Shamila Nasreen
Abstract:
Dimensionality reduction as a preprocessing step to machine learning is effective in removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility. However, the recent increase of dimensionality of data poses a severe challenge to many existing feature selection and feature extraction methods with respect to efficiency and effectiveness. In the field of machine learning and pattern recognition, dimensionality reduction is important area, where many approaches have been proposed. In this paper, some widely used feature selection and feature extraction techniques have analyzed with the purpose of how effectively these techniques can be used to achieve high performance of learning algorithms that ultimately improves predictive accuracy of classifier. An endeavor to analyze dimensionality reduction techniques briefly with the purpose to investigate strengths and weaknesses of some widely used dimensionality reduction methods is presented.Keywords: age related macular degeneration, feature selection feature subset selection feature extraction/transformation, FSA’s, relief, correlation based method, PCA, ICA
Procedia PDF Downloads 4972140 Practice of Mutual Squiggle Story Making as a Variant of Squiggle Method
Authors: Toshiki Ito
Abstract:
Mutual squiggle story making (MSSM ) is the development of Winnicott’s squiggle method in Japan. In the MSSM Method, a therapist has the client freely divide a piece of drawing paper into six spaces, and both the therapist and client do squiggle in each space. All six pictures finished, the therapist then asks the client to create a story using all the pictures. Making a story has the effect of reintegrating what is projected by consciousness. In this paper, the author presented a case with a junior high school girl using MSSM. And it is considered that the advantage of this technique is that (1) it enables non-verbal communication with children and adults who cannot express their feelings verbally. (2) Through this communication, the psychological content of the client and the characteristics of the client's mind can be understood, and (3) It can be said that mutual rapport is deepened by the supportive reaction of the therapist.Keywords: MSSM, squiggle, Winnicott, drawing method
Procedia PDF Downloads 2012139 Story Readers’ Self-Reflection on Their past Study Experiences: In Comparison of the Languages Used in a Self-Regulated Learning -Themed Story
Authors: Mayuko Matsuoka
Abstract:
This presentation reports the relationships among EFL(English as a Foreign Language) students’ story comprehension in reading a story written in English and Japanese and empathic reactions. The main focus is put on their self-reflection on past study experiences, one of the empathic reactions after reading a story. One hundred fifty-five first-year university students in Japan read three SRL-themed stories written in English (their foreign language) and those written in Japanese (their mother tongue). The levels of the stories are equivalent, at CEFR(Common European Framework of Reference for Languages) B2 level. The result of categorical correlation analysis shows significant moderate correlations among three empathic reactions in a group reading English versions: having similar emotions as a protagonist, reflecting on their past study experiences, and getting lessons from a story. In addition, the result of logistic regression analysis for the data in a group reading English versions shows the chance of getting lessons from a story significantly approximately doubles if participants’ scores of a comprehension test increases by one, while it approximately triples if participants’ self-reflection occurs. These results do not appear in a group reading Japanese versions. The findings imply that self-reflection may support their comprehension of the English texts and leads to the participants’ getting lessons about SRL.Keywords: comprehension, lesson, self-reflection, SRL
Procedia PDF Downloads 1842138 Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads
Authors: Younghoo Choi, Yong Jun, Jinkoo Kim
Abstract:
In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories.Keywords: staggered wall systems, reinforced concrete, seismic performance
Procedia PDF Downloads 3922137 A Psychoanalytical Approach to Edgar A. Poe’s Short Story ‘The Tell-Tale Heart’
Authors: José Antonio Núñez
Abstract:
Sigmund Freud’s Theory of Psychoanalysis was a groundbreaking contribution to the province of the human psyche and behavior. Nowadays, psychoanalytic theory is applied to numerous fields. One of them is literature. Literary criticism has put into practice the basis of Freud’s idea to analyze literary works. This essay is about the analysis of Edgar A. Poe’s short story ‘The Tell-Tale Heart,’ under the lens of Freud’s psychoanalytical perspective. In 1919, it was published ‘Das Unheimliche’ (The Uncanny) by Freud. On this article, the famous Austrian psychoanalyst showed his explanations about what he called ‘the uncanny,’ and its relation to the human unconscious. In this paper, Freud’s famous article has been used to analyze Poe’s short story ‘The Tell-Tale Heart,’ and to find the analogies that exist between Poe’s macabre short story and Freud’s theory of ‘the uncanny.’Keywords: psychoanalysis, theory of the unconscious, the uncanny, unheimlich
Procedia PDF Downloads 6562136 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews
Authors: Vishnu Goyal, Basant Agarwal
Abstract:
Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.Keywords: feature selection, sentiment analysis, hybrid feature selection
Procedia PDF Downloads 3412135 Juxtaposition of the Past and the Present: A Pragmatic Stylistic Analysis of the Short Story “Too Much Happiness” by Alice Munro
Authors: Inas Hussein
Abstract:
Alice Munro is a Canadian short-story writer who has been regarded as one of the greatest writers of fiction. Owing to her great contribution to fiction, she was the first Canadian woman and the only short-story writer ever to be rewarded the Nobel Prize for Literature in 2013. Her literary works include collections of short stories and one book published as a novel. Her stories concentrate on the human condition and the human relationships as seen through the lens of daily life. The setting in most of her stories is her native Canada- small towns much similar to the one where she grew up. Her writing style is not only realistic but is also characterized by autobiographical, historical and regional features. The aim of this research is to analyze one of the key stylistic devices often adopted by Munro in her fictions: the juxtaposition of the past and the present, with reference to the title story in Munro's short story collection Too Much Happiness. The story under exploration is a brief biography of the Russian Mathematician and novelist Sophia Kovalevsky (1850 – 1891), the first woman to be appointed as a professor of Mathematics at a European University in Stockholm. Thus, the story has a historical protagonist and is set on the European continent. Munro dramatizes the severe historical and cultural constraints that hindered the career of the protagonist. A pragmatic stylistic framework is being adopted and the qualitative analysis is supported by textual reference. The stylistic analysis reveals that the juxtaposition of the past and the present is one of the distinctive features that characterize the author; in a typical Munrovian manner, the protagonist often moves between the units of time: the past, the present and, sometimes, the future. Munro's style is simple and direct but cleverly constructed and densely complicated by the presence of deeper layers and stories within the story. Findings of the research reveal that the story under investigation merits reading and analyzing. It is recommended that this story and other stories by Munro are analyzed to further explore the features of her art and style.Keywords: Alice Munro, Too Much Happiness, style, stylistic analysis
Procedia PDF Downloads 1452134 Feature Location Restoration for Under-Sampled Photoplethysmogram Using Spline Interpolation
Authors: Hangsik Shin
Abstract:
The purpose of this research is to restore the feature location of under-sampled photoplethysmogram using spline interpolation and to investigate feasibility for feature shape restoration. We obtained 10 kHz-sampled photoplethysmogram and decimated it to generate under-sampled dataset. Decimated dataset has 5 kHz, 2.5 k Hz, 1 kHz, 500 Hz, 250 Hz, 25 Hz and 10 Hz sampling frequency. To investigate the restoration performance, we interpolated under-sampled signals with 10 kHz, then compared feature locations with feature locations of 10 kHz sampled photoplethysmogram. Features were upper and lower peak of photplethysmography waveform. Result showed that time differences were dramatically decreased by interpolation. Location error was lesser than 1 ms in both feature types. In 10 Hz sampled cases, location error was also deceased a lot, however, they were still over 10 ms.Keywords: peak detection, photoplethysmography, sampling, signal reconstruction
Procedia PDF Downloads 3682133 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat.Keywords: feature selection, LIWC, machine learning, politics
Procedia PDF Downloads 3832132 Processing Big Data: An Approach Using Feature Selection
Authors: Nikat Parveen, M. Ananthi
Abstract:
Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.Keywords: big data, key value, feature selection, retrieval, performance
Procedia PDF Downloads 3412131 Analysis of Employed and Unemployed Mother’s Perspectives Towards Story Narration in Typically Developing Children between 2 to 5 Years
Authors: Bindu S., Malavika Anakkathil Anil, Jayashree S. Bhat
Abstract:
The dyadic interaction between the parent and child during story narration facilitates the emergence of early literacy skills. Early shared reading experiences positively predict better reading and language outcomes in children who experience rich communicative and effective interactions during shared book reading. However, research is yet to systematically explore mother’s perspective towards story narration and how employment may influence their perspectives. The study analysed the perspectives of employed and unemployed mothers of typically developing children between the age ranges of 2 to 5 years through a questionnaire which covered domains on story narration exposure and parental attitudes & beliefs. The results indicate no statistical difference between employed mothers (M=8.5, SD=3.4) and unemployed mothers (M=10.1, SD=1.06). Whereas, post-hoc comparisons using the scheffe test, revealed a significant difference in scores. An increasing score was obtained as the age of the child increased. This change could be attributed due to the integration of children in preschools which could have contributed to the change of perception towards story narration. Older children’s mother perceive story narration to be an important part of their curriculum, which could facilitate rich vocabulary and language output. Younger children’s parents are however not realising the significance of story narration and its impact on the emergent literacy skills. Parent-child interaction is a significant contributor to a healthy social and cultural development. The study emphasises on the need of mothers to engage in preliteracy based activities which contribute to better academic performance in later stages.Keywords: early literacy skill, employment, language development, mother’s perspective, story narration
Procedia PDF Downloads 1402130 Who Killed Kalief? Examining the Effects of Solitary Confinement on Juvenile Detainees in the United States
Authors: Esther Baldwin
Abstract:
It is well settled that the use of solitary confinement can cause psychological and physical harm to detainees. For juveniles, who are more susceptible to irreparable harm due to their underdeveloped psyches, the risks are exacerbated. Despite these risks, across the United States juvenile detainees are regularly held in isolation for prolonged periods of time. This essay will examine the broad impact of solitary confinement on juvenile detainees while giving particular focus to the story of Kalief Browder, a juvenile awaiting trial on Rikers Island in New York for a period of three years, nearly two years of which were spent in solitary confinement. Although sadly, his story is not uncommon, Kalief’s story offers a unique perspective in that it provides first-hand insight on the effects of solitary confinement on juveniles. It is our hope that by sharing his story, we will demand better detention practices and policies for juveniles under correctional control in the United States.Keywords: criminal justice system, juveniles, Kalief browder, solitary confinement
Procedia PDF Downloads 3222129 Identifying Children at Risk for Specific Language Impairment Using a Wordless Picture Narrative: A Study on Hindi, an Indian Language
Authors: Yozna Gurung
Abstract:
This paper presents preliminary findings from an on-going study on the use of Internal State Terms (IST) in the production of narratives of Hindi-English bilinguals in an attempt to identify children at risk for Specific Language Impairment. Narratives were examined for macrostructure (story structure and story complexity) and internal state terms or mental state terms (IST/MST). 31 students generated stories based on six pictures that were matched for content and story structure in L1 (Hindi) and L2 (English) using a wordless picture narrative. From 30 sample population, 2 students are at risk of Specific Language Impairment, according to this study i.e 6.45%. They showed least development in story grammar as well as IST in both their languages.Keywords: internal state terms, macrostructure, specific language impairment, wordless picture narrative
Procedia PDF Downloads 2312128 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm
Procedia PDF Downloads 3272127 K-Means Clustering-Based Infinite Feature Selection Method
Authors: Seyyedeh Faezeh Hassani Ziabari, Sadegh Eskandari, Maziar Salahi
Abstract:
Infinite Feature Selection (IFS) algorithm is an efficient feature selection algorithm that selects a subset of features of all sizes (including infinity). In this paper, we present an improved version of it, called clustering IFS (CIFS), by clustering the dataset in advance. To do so, first, we apply the K-means algorithm to cluster the dataset, then we apply IFS. In the CIFS method, the spatial and temporal complexities are reduced compared to the IFS method. Experimental results on 6 datasets show the superiority of CIFS compared to IFS in terms of accuracy, running time, and memory consumption.Keywords: feature selection, infinite feature selection, clustering, graph
Procedia PDF Downloads 1282126 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble
Authors: Jaehong Yu, Seoung Bum Kim
Abstract:
Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking
Procedia PDF Downloads 3392125 Product Feature Modelling for Integrating Product Design and Assembly Process Planning
Authors: Baha Hasan, Jan Wikander
Abstract:
This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.Keywords: assembly feature, assembly process planning, feature, feature-based modelling, form feature, ontology
Procedia PDF Downloads 3102124 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy
Authors: Kemal Polat
Abstract:
In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.Keywords: machine learning, data weighting, classification, data mining
Procedia PDF Downloads 3262123 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases
Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha
Abstract:
Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.Keywords: feature fusion, image retrieval, membership function, normalization
Procedia PDF Downloads 3462122 Triangular Geometric Feature for Offline Signature Verification
Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad
Abstract:
Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.Keywords: biometrics, euclidean classifier, features extraction, offline signature verification, voting-based classifier
Procedia PDF Downloads 3792121 Prediction of Maximum Inter-Story Drifts of Steel Frames Using Intensity Measures
Authors: Edén Bojórquez, Victor Baca, Alfredo Reyes-Salazar, Jorge González
Abstract:
In this paper, simplified equations to predict maximum inter-story drift demands of steel framed buildings are proposed in terms of two ground motion intensity measures based on the acceleration spectral shape. For this aim, the maximum inter-story drifts of steel frames with 4, 6, 8 and 10 stories subjected to narrow-band ground motion records are estimated and compared with the spectral acceleration at first mode of vibration Sa(T1) which is commonly used in earthquake engineering and seismology, and with a new parameter related with the structural response known as INp. It is observed that INp is the parameter best related with the structural response of steel frames under narrow-band motions. Finally, equations to compute maximum inter-story drift demands of steel frames as a function of spectral acceleration and INp are proposed.Keywords: intensity measures, spectral shape, steel frames, peak demands
Procedia PDF Downloads 3952120 The Investment of Islamic Education Values toward Children in the Early Age through Story-Telling Method
Authors: Abdul Rofiq Badril Rizal Muzammil
Abstract:
Education is an absolute necessity for human’s life that one must fulfill for the entire life. Without education it is impossible for human to develop her/himself well. The education process is an effort to maintain a good behavior within one’s life. Good behavior will be absolutely achieved if it is taught to early-aged children. This paper focuses on how the story telling method enables teachers to make the students have the construction of good behavior and obtain the goal of national education in Indonesia. The targeted students would involve students in As-Solihin kindergarten, Salafiyah-Syafi’iyah Mumbulsari, Jember, Indonesia. Story is what early-aged children like most. Thus, it is a gorgeous chance to make story telling activity as a method to invest Islamic education values to children. This paper, however, also focuses on some deliberately important aspects which of course teachers need to consider including objectives and strategies of the method’s implementation. The teachers will be in need of knowing each student’s characteristic in the classroom so that it would enable them to select appropriate stories that fit best to early aged students. The selected stories are taken from Islamic stories that tell the life of Prophet and heroes of Islam as well as well-known persons in Islam. In addition, there will be a number of activities done in the classroom after the delivery of the story is over on purpose of leading students to have the fundamental foundation of how to build self-awareness in order they could understand better about the importance of being a well-behaved person. After reviewing relevant theories, secondary research and scholars’ opinion involved in all aspects of early-aged children behavior, the author concludes that by leveraging trusted sources, a proactive, co-operative and creative strategy, the teacher can successfully build up children’s good behavior by instilling the Islamic value toward early-aged children through story telling method.Keywords: story, Islam, children, early age
Procedia PDF Downloads 3082119 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.Keywords: color space, neural network, random forest, skin detection, statistical feature
Procedia PDF Downloads 462