Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: P. Bharathiraja
2 Measurement of Turbulence with PITOT Static Tube in Low Speed Subsonic Wind Tunnel
Authors: Gopikrishnan, Bharathiraja, Boopalan, Jensin Joshua
Abstract:
The Pitot static tube has proven their values and practicability in measuring velocity of fluids for many years. With the aim of extensive usage of such Pitot tube systems, one of the major enabling technologies is to use the design and fabricate a high sensitive pitot tube for the purpose of calibration of the subsonic wind tunnel. Calibration of wind tunnel is carried out by using different instruments to measure variety of parameters. Using too many instruments inside the tunnel may not only affect the fluid flow but also lead to drag or losses. So, it is essential to replace the different system with a single system that would give all the required information. This model of high sensitive Pitot tube has been designed to ease the calibration process. It minimizes the use of different instruments and this single system is capable of calibrating the wind tunnel test section. This Pitot static tube is completely digitalized and so that the velocity data`s can be collected directly from the instrument. Since the turbulence factors are dependent on velocity, the data’s that are collected from the pitot static tube are then processed and the level of turbulence in the fluid flow is calculated. It is also capable of measuring the pressure distribution inside the wind tunnel and the flow angularity of the fluid. Thus, the well-designed high sensitive Pitot static tube is utilized in calibrating the tunnel and also for the measurement of turbulence.Keywords: pitot static tube, turbulence, wind tunnel, velocity
Procedia PDF Downloads 5261 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 517