Search results for: Motor Unit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3028

Search results for: Motor Unit

2848 Fuzzy-Sliding Controller Design for Induction Motor Control

Authors: M. Bouferhane, A. Boukhebza, L. Hatab

Abstract:

In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller.

Keywords: linear induction motor, vector control, backstepping, fuzzy-sliding mode control

Procedia PDF Downloads 455
2847 A Study on Traction Motor Design for Obtaining the Maximum Traction Force of Tram-Train

Authors: Geochul Jeong, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

This study is about IPMSM design for obtaining the maximum traction force of Tram-Train. Tram-Train is a Tram and Train-combined railway vehicles, which operates at a maximum speed of 70km/h in the city section (Tram section) and at a maximum speed of 150km/h in the out-of-city section (Train section). For this reason, tram-train was designed to be an IPMSM (Interior Permanent Synchronous Motor) with a wide range of speed variation. IPMSM’s magnetic path varies depending on the shape of rotor and in this case, the power characteristics are different in the constant torque area and the flux weakening area. Therefore, this study suggests a method to improve Tram-Train’s traction force, based on the relationship between magnetic torque and reluctance torque. The suggested method was applied through IPMSM rotor shape design and electromagnetic field finite element method was conducted to verify the validity of the suggested method.

Keywords: tram-train, traction motor, IPMSM, synchronous motor, railway vehicles

Procedia PDF Downloads 443
2846 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor

Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher

Abstract:

The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.

Keywords: efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application

Procedia PDF Downloads 159
2845 Analysis of Motor Nerve Conduction Velocity (MNCV) of Selected Nerves in Athletics

Authors: Jogbinder Singh Soodan, Ashok Kumar, Gobind Singh

Abstract:

Background: This study aims to describe the motor nerve conduction velocity of selected nerves of both the upper and lower extremities in athletes. Thirty high-level sprinters (100 mts and 200 mts) and thirty high level distance runners (3000 mts) were volunteered to participate in the study. Method: Motor nerve conduction velocities (MNCV) of radial and sural nerves were recorded with the help of computerized equipment, NEUROPERFECT (MEDICAID SYSTEMS, India), with standard techniques of supramaximal percutaneus stimulation. The anthropometric measurements taken were body height (cms), age (yrs) and body weight (kgs). The neurophysiological parameters taken were MNCV of radial nerve (upper extremity) and sural nerve (lower extremity) of both sides (i.e. dominant and non-dominant) of the body. The room temperature was maintained at 37 degree Celsius. Results: Significant differences in motor nerve conduction velocities were found between dominant and non-dominant limbs in each group. The MNCV of radial nerve was obtained was significantly higher in the sprinters than long distance runners. The MNCV of sural nerve recorded was significantly higher in sprinters as compared to distance runners. Conclusion: The motor nerve conduction velocity of radial nerve was found to be higher in sprinters as compared to the distance runners and also, the MNCV for sural nerve was found to be higher in sprinters as compared to distance runners. In case of sprinters, the MNCV of radial and sural nerves were higher in dominant limbs (i.e. arms and legs) of both sides of the body. But, in case of distance runners, the MNCV of radial and sural nerves is higher in non dominant limbs.

Keywords: motor nerve conduction velocity, radial nerve, sural nerve, sprinters

Procedia PDF Downloads 527
2844 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: nano-enhanced phase change material (NEPCM), phase change material (PCM), nanoparticles, latent heat storage unit (LHSU), melting.

Procedia PDF Downloads 374
2843 Motor Vehicle Accidents During Pregnancy: Analysis of Maternal and Fetal Outcome at a University Hospital

Authors: Manjunath Attibele, Alsawafi Manal, Al Dughaishi Tamima

Abstract:

Introduction: The purpose of this study was to describe the clinical characteristics and types of mechanisms of injuries caused by Motor vehicle accidents (MVA) during pregnancy. To analyze the patterns of accidents during pregnancy and its adverse consequences on both maternal and fetal outcome. Methods: This was a retrospective cohort study on pregnant patients who met with MVAs The study period was from January 1, 2010, to December 31, 2019. All relevant data were retrieved from electronic patients’ records from the hospital information system and from the antenatal ward admission register Results: Out of 168 women who had motor vehicle accidents during the study period, of which, 39 (23.2%) women during pregnancy. Twenty-one (53.8%) women were over 30 years old. Thirty-five (89.7%) women were Omanis, and 27 (69.2%) were in their third trimester. Twenty-three (59%) of accidents happened at night, and 31 (79.5%) of them happened on a weekday. Twenty-two (56.4%) of women were driving themselves, and 24 (61.5%) of them were not using any seatbelt. Accident related abdominal & back pain was seen in 23(59%) women. Regarding the outcome of pregnancy, 23 (74.2%) had a normal vaginal delivery. The mean accident to delivery interval was 7 weeks. Thirty (96.7%) of involved newborns were relatively healthy. One woman (3.2%) had a ruptured uterusleading to fetal death (3.2%). Conclusion: This study showed that the incidence of motor vehicle accidents during pregnancy is around 23.2% . Majority had trauma-associated pain. One serious injury to a woman causing a ruptured uterus which lead to fetal death. Majority of involved newborns were relatively healthy. No reported maternal death.

Keywords: motor vehicle accidents, pregnancy, maternal outcome, fetal outcome

Procedia PDF Downloads 59
2842 Design and Implementation of the Embedded Control System for the Electrical Motor Based Cargo Vehicle

Authors: Syed M. Rizvi, Yiqing Meng, Simon Iwnicki

Abstract:

With an increased demand in the land cargo industry, it is predicted that the freight trade will rise to a record $1.1 trillion in revenue and volume in the following years to come. This increase is mainly driven by the e-commerce model ever so popular in the consumer market. Many innovative ideas have stemmed from this demand and change in lifestyle likes of which include e-bike cargo and drones. Rural and urban areas are facing air quality challenges to keep pollution levels in city centre to a minimum. For this purpose, this paper presents the design and implementation of a non-linear PID control system, employing a micro-controller and low cost sensing technique, for controlling an electrical motor based cargo vehicle with various loads, to follow a leading vehicle (bike). Within using this system, the cargo vehicle will have no load influence on the bike rider on different gradient conditions, such as hill climbing. The system is being integrated with a microcontroller to continuously measure several parameters such as relative displacement between bike and the cargo vehicle and gradient of the road, and process these measurements to create a portable controller capable of controlling the performance of electrical vehicle without the need of a PC. As a result, in the case of carrying 180kg of parcel weight, the cargo vehicle can maintain a reasonable spacing over a short length of sensor travel between the bike and itself.

Keywords: cargo, e-bike, microcontroller, embedded system, nonlinear pid, self-adaptive, inertial measurement unit (IMU)

Procedia PDF Downloads 179
2841 OMTHD Strategy in Asymmetrical Seven-Level Inverter for High Power Induction Motor

Authors: Rachid Taleb, M’hamed Helaimi, Djilali Benyoucef, Ahmed Derrouazin

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the Optimal Minimization of the Total Harmonic Distortion (OMTHD) strategy of a uniform step asymmetrical seven-level inverter (USA7LI). The OMTHD approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the OMTHD controller in feeding a High Power Induction Motor (HPIM).

Keywords: uniform step asymmetrical seven-level inverter (USA7LI), optimal minimization of the THD (OMTHD), sinusoidal PWM (SPWM), high power induction motor (HPIM)

Procedia PDF Downloads 560
2840 The Role of the Internal Audit Unit in Detecting and Preventing Fraud at Public Universities in West Java, Indonesia

Authors: Fury Khristianty Fitriyah

Abstract:

This study aims to identify the extent of the role of the Satuan Pengawas Intern (Internal Audit Unit) in detecting and preventing fraud in public universities in West Java under the Ministry of Research, Technology and Higher Education. The research method applied was a qualitative case study approach, while the unit of analysis for this study is the Internal Audit Unit at each public university. Results of this study indicate that the Internal Audit Unit is able to detect and prevent fraud within a public university environment by means of red flags to mark accounting anomalies. These stem from inaccurate budget planning that prompts inappropriate use of funds, exacerbated by late disbursements of funds, which potentially lead to fictitious transactions, and discrepancies in recording state-owned assets into a state property management system (SIMAK BMN), which, if not conducted properly, potentially causes loss to the state.

Keywords: governance, internal control, fraud, public university

Procedia PDF Downloads 243
2839 A Theoretical Model for a Humidification Dehumidification (HD) Solar Desalination Unit

Authors: Yasser El-Henawy, M. Abd El-Kader, Gamal H. Moustafa

Abstract:

A theoretical study of a humidification dehumidification solar desalination unit has been carried out to increase understanding the effect of weather conditions on the unit productivity. A humidification-dehumidification (HD) solar desalination unit has been designed to provide fresh water for population in remote arid areas. It consists of solar water collector and air collector; to provide the hot water and air to the desalination chamber. The desalination chamber is divided into humidification and dehumidification towers. The circulation of air between the two towers is maintained by the forced convection. A mathematical model has been formulated, in which the thermodynamic relations were used to study the flow, heat and mass transfer inside the humidifier and dehumidifier. The present technique is performed in order to increase the unit performance. Heat and mass balance has been done and a set of governing equations has been solved using the finite difference technique. The unit productivity has been calculated along the working day during the summer and winter sessions and has compared with the available experimental results. The average accumulative productivity of the system in winter has been ranged between 2.5 to 4 kg/m2.day, while the average summer productivity has been found between 8 to 12 kg/m2 day.

Keywords: solar desalination, solar collector, humidification and dehumidification, simulation, finite difference, water productivity

Procedia PDF Downloads 382
2838 Experimental Investigation of Hybrid Rocket Motor: Ignition, Throttling and Re-Ignition Phenomena

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

Ignition phenomena are of great interest area over the past many years, and it has a direct impact on many propulsion and combustion applications. The direct goal of the paper is to realize and evaluate a functioning ignition method, shut-off, throttling and re-start operations for the hybrid rocket motor. A small-scale hybrid rocket motor (SSHRM) is designed, manufactured, demonstrated at various operating conditions and finally equipped for laboratory firing tests with high level of safety. Various solid fuel grains as Polymethyle-methacrylate (PMMA) and Polyethylene (PE) are selected, and it is decided to use the commercial gaseous oxygen (GO2) for its availability and low cost. Examine different types of ignition methods, pyrotechnic charge, fuse wire, heat wire and finally hot oxidizer method by using the heat exchanger, which are proposed as very safe ignition methods. Finally; recognize phenomena of throttling and re-start operations. Ignition by hot GO2 impingement is proved to be a very attractive ignition method for laboratory SSHRM, for its high safety, reliability and acceptable delay time. Finally; the throttling and re-start operations are demonstrated several times and can be carried out more easily with hot air ignition method.

Keywords: hybrid rocket motor, ignition system, re-start phenomena, throttling

Procedia PDF Downloads 273
2837 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 374
2836 Effects of Synchronous Music in Gymnastics' Motor Skill Performance among Undergraduate Female Students in Physical Education College

Authors: Sanaa Ali Ahmed Alrashid

Abstract:

The present study aimed to investigate the effect of synchronous music in gymnastics' motor skill performance among undergraduate female students in physical education college at Basra University. The researcher used an experimental design. 20 female students of physical education divided equally into two groups, (10)experimental group with music, (10) control group without music. All participants complete 8 weeks in testing. Data analysis based on T-test shows a significant difference at (α = 0.05) in all skills level between experimental and control groups in favor of the experimental group. Results of this study contribute to developing the role of synchronous music in improving gymnastic skills performance.

Keywords: performance, motor skill, music, synchronous

Procedia PDF Downloads 458
2835 Design and Burnback Analysis of Three Dimensional Modified Star Grain

Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed

Abstract:

The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.

Keywords: burnback analysis, rocket motor, star grain, three dimensional grains

Procedia PDF Downloads 201
2834 Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks

Authors: H. Kiani, S. Moradi, B. Soltani Soulgani, S. Mousavian

Abstract:

Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data.

Keywords: desalting unit, crude oil, neural networks, simulation, recovery, separation

Procedia PDF Downloads 400
2833 Neuronal Mechanisms of Observational Motor Learning in Mice

Authors: Yi Li, Yinan Zheng, Ya Ke, Yungwing Ho

Abstract:

Motor learning is a process that frequently happens among humans and rodents, which is defined as the changes in the capability to perform a skill that is conformed to have a relatively permanent improvement through practice or experience. There are many ways to learn a behavior, among which is observational learning. Observational learning is the process of learning by watching the behaviors of others, for example, a child imitating parents, learning a new sport by watching the training videos or solving puzzles by watching the solutions. Many research explores observational learning in humans and primates. However, the neuronal mechanism of which, especially observational motor learning, was uncertain. It’s well accepted that mirror neurons are essential in the observational learning process. These neurons fire when the primate performs a goal-directed action and sees someone else demonstrating the same action, which suggests they have high firing activity both completing and watching the behavior. The mirror neurons are assumed to mediate imitation or play a critical and fundamental role in action understanding. They are distributed in many brain areas of primates, i.e., posterior parietal cortex (PPC), premotor cortex (M2), and primary motor cortex (M1) of the macaque brain. However, few researchers report the existence of mirror neurons in rodents. To verify the existence of mirror neurons and the possible role in motor learning in rodents, we performed customised string-pulling behavior combined with multiple behavior analysis methods, photometry, electrophysiology recording, c-fos staining and optogenetics in healthy mice. After five days of training, the demonstrator (demo) mice showed a significantly quicker response and shorter time to reach the string; fast, steady and accurate performance to pull down the string; and more precisely grasping the beads. During three days of observation, the mice showed more facial motions when the demo mice performed behaviors. On the first training day, the observer reduced the number of trials to find and pull the string. However, the time to find beads and pull down string were unchanged in the successful attempts on the first day and other training days, which indicated successful action understanding but failed motor learning through observation in mice. After observation, the post-hoc staining revealed that the c-fos expression was increased in the cognitive-related brain areas (medial prefrontal cortex) and motor cortices (M1, M2). In conclusion, this project indicated that the observation led to a better understanding of behaviors and activated the cognitive and motor-related brain areas, which suggested the possible existence of mirror neurons in these brain areas.

Keywords: observation, motor learning, string-pulling behavior, prefrontal cortex, motor cortex, cognitive

Procedia PDF Downloads 53
2832 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.

Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay

Procedia PDF Downloads 206
2831 Dual-Rail Logic Unit in Double Pass Transistor Logic

Authors: Hamdi Belgacem, Fradi Aymen

Abstract:

In this paper we present a low power, low cost differential logic unit (LU). The proposed LU receives dual-rail inputs and generates dual-rail outputs. The proposed circuit can be used in Arithmetic and Logic Units (ALU) of processor. It can be also dedicated for self-checking applications based on dual duplication code. Four logic functions as well as their inverses are implemented within a single Logic Unit. The hardware overhead for the implementation of the proposed LU is lower than the hardware overhead required for standard LU implemented with standard CMOS logic style. This new implementation is attractive as fewer transistors are required to implement important logic functions. The proposed differential logic unit can perform 8 Boolean logical operations by using only 16 transistors. Spice simulations using a 32 nm technology was utilized to evaluate the performance of the proposed circuit and to prove its acceptable electrical behaviour.

Keywords: differential logic unit, double pass transistor logic, low power CMOS design, low cost CMOS design

Procedia PDF Downloads 422
2830 A 3Y/3Y Pole-Changing Winding of High-Power Asynchronous Motors

Authors: Gábor Kovács

Abstract:

Requirement for pole-changing motors emerged at the very early times of asynchronous motor design. Different solutions have been elaborated and some of them are generally used. An alternative is the so called 3 Y/3 Y pole-changing winding. This paper deals with high power application of this solution. A complete and comprehensive study is introduced, including features and design guidelines. The method presented in this paper is especially suitable for pole numbers being close to each other. The study also reveals that the method is more advantageous then the existing solutions for high power motors with 1:3 pole ratio. Using this motor, a new and complete drive supply system has been proposed as most appropriate arrangement of high power main naval propulsion drive. Further, the method makes possible to extend the pole ratio to 1:6, 1:9, 1:12, etc. At the end, the proposal is further extended to the here so far missing 1:4, 1:5, 1:7 etc. pole ratios. A complete proposal for the theoretically infinite range has been given in this way.

Keywords: induction motor, pole changing 3Y/3Y, pole phase modulation, pole changing 1:3, 1:6

Procedia PDF Downloads 143
2829 An Improved Parameter Identification Method for Three Phase Induction Motor

Authors: Liang Zhao, Chong-quan Zhong

Abstract:

In order to improve the control performance of vector inverter, an improved parameter identification solution for induction motor is proposed in this paper. Dc or AC voltage is applied to the induction motor using the SVPWM through the inverter. Then stator resistance, stator leakage inductance, rotor resistance, rotor leakage inductance and mutual inductance are obtained according to the signal response. The discrete Fourier transform (DFT) is used to deal with the noise and harmonic. The impact on parameter identification caused by delays in the inverter switch tube, tube voltage drop and dead-time is avoided by effective compensation measures. Finally, the parameter identification experiment is conducted based on the vector inverter which using TMS320F2808 DSP as the core processor and results show that the strategy is verified.

Keywords: vector inverter, parameter identification, SVPWM; DFT, dead-time compensation

Procedia PDF Downloads 427
2828 Motor Speech Profile of Marathi Speaking Adults and Children

Authors: Anindita Banik, Anjali Kant, Aninda Duti Banik, Arun Banik

Abstract:

Speech is a complex, dynamic unique motor activity through which we express thoughts and emotions and respond to and control our environment. The aim was based to compare select Motor Speech parameters and their sub parameters across typical Marathi speaking adults and children. The subjects included a total of 300 divided into Group I, II, III including males and females. Subjects included were reported of no significant medical history and had a rating of 0-1 on GRBAS scale. The recordings were obtained utilizing three stimuli for the acoustic analysis of Diadochokinetic rate (DDK), Second Formant Transition, Voice and Tremor and its sub parameters. And these aforementioned parameters were acoustically analyzed in Motor Speech Profile software in VisiPitch IV. The statistical analyses were done by applying descriptive statistics and Two- Way ANOVA.The results obtained showed statistically significant difference across age groups and gender for the aforementioned parameters and its sub parameters.In DDK, for avp (ms) there was a significant difference only across age groups. However, for avr (/s) there was a significant difference across age groups and gender. It was observed that there was an increase in rate with an increase in age groups. The second formant transition sub parameter F2 magn (Hz) also showed a statistically significant difference across both age groups and gender. There was an increase in mean value with an increase in age. Females had a higher mean when compared to males. For F2 rate (/s) a statistically significant difference was observed across age groups. There was an increase in mean value with increase in age. It was observed for Voice and Tremor MFTR (%) that a statistically significant difference was present across age groups and gender. Also for RATR (Hz) there was statistically significant difference across both age groups and gender. In other words, the values of MFTR and RATR increased with an increase in age. Thus, this study highlights the variation of the motor speech parameters amongst the typical population which would be beneficial for comparison with the individuals with motor speech disorders for assessment and management.

Keywords: adult, children, diadochokinetic rate, second formant transition, tremor, voice

Procedia PDF Downloads 271
2827 A Two Tailed Secretary Problem with Multiple Criteria

Authors: Alaka Padhye, S. P. Kane

Abstract:

The following study considers some variations made to the secretary problem (SP). In a multiple criteria secretary problem (MCSP), the selection of a unit is based on two independent characteristics. The units that appear before an observer are known say N, the best rank of a unit being N. A unit is selected, if it is better with respect to either first or second or both the characteristics. When the number of units is large and due to constraints like time and cost, the observer might want to stop earlier instead of inspecting all the available units. Let the process terminate at r2th unit where r1Keywords: joint distribution, marginal distribution, real ranks, secretary problem, selection criterion, two tailed secretary problem

Procedia PDF Downloads 247
2826 Complex Dynamics in a Morphologically Heterogeneous Biological Medium

Authors: Turky Al-Qahtani, Roustem Miftahof

Abstract:

Introduction: Under common assumptions of excitabi-lity, morphological (cellular) homogeneity, and spatial structural anomalies added as required, it has been shown that biological systems are able to display travelling wave dynamics. Being not self-sustainable, existence depends on the electrophysiological state of transmembrane ion channels and it requires an extrinsic/intrinsic periodic source. However, organs in the body are highly multicellular, heterogeneous, and their functionality is the outcome of electro-mechanical conjugation, rather than excitability only. Thus, peristalsis in the gut relies on spatiotemporal myoelectrical pattern formations between the mechanical, represented by smooth muscle cells (SM), and the control, comprised of a chain of primary sensory and motor neurones, components. Synaptically linked through the afferent and efferent pathways, they form a functional unit (FU) of the gut. Aims: These are: i) to study numerically the complex dynamics, and ii) to investigate the possibility of self-sustained myoelectrical activity in the FU. Methods: The FU recreates the following sequence of physiological events: deformation of mechanoreceptors of located in SM; generation and propagation of electrical waves of depolarisation - spikes - along the axon to the soma of the primary neurone; discharge of the primary neurone and spike propagation towards the motor neurone; burst of the motor neurone and transduction of spikes to SM, subsequently producing forces of contraction. These are governed by a system of nonlinear partial and ordinary differential equations being a modified version of the Hodgkin-Huxley model and SM fibre mechanics. In numerical experiments; the source of excitation is mechanical stretches of SM at a fixed amplitude and variable frequencies. Results: Low frequency (0.5 < v < 2 Hz) stimuli cause the propagation of spikes in the neuronal chain and, finally, the generation of active forces by SM. However, induced contractions are not sufficient to initiate travelling wave dynamics in the control system. At frequencies, 2 < v < 4 Hz, multiple low amplitude and short-lasting contractions are observed in SM after the termination of stretching. For frequencies (0.5 < v < 4 Hz), primary and sensory neurones demonstrate strong connectivity and coherent electrical activity. Significant qualitative and quantitative changes in dynamics of myoelectical patterns with a transition to a self-organised mode are recorded with the high degree of stretches at v = 4.5 Hz. Increased rates of deformation lead to the production of high amplitude signals at the mechanoreceptors with subsequent self-sustained excitation within the neuronal chain. Remarkably, the connection between neurones weakens resulting in incoherent firing. Further increase in a frequency of stimulation (v > 4.5 Hz) has a detrimental effect on the system. The mechanical and control systems become disconnected and exhibit uncoordinated electromechanical activity. Conclusion: To our knowledge, the existence of periodic activity in a multicellular, functionally heterogeneous biological system with mechano-electrical dynamics, such as the FU, has been demonstrated for the first time. These findings support the notion of possible peristalsis in the gut even in the absence of intrinsic sources - pacemaker cells. Results could be implicated in the pathogenesis of intestinal dysrythmia, a medical condition associated with motor dysfunction.

Keywords: complex dynamics, functional unit, the gut, dysrythmia

Procedia PDF Downloads 175
2825 Design and Development of Hybrid Rocket Motor

Authors: Aniket Aaba Kadam, Manish Mangesh Panchal, Roushan Ashit Sharma

Abstract:

This project focuses on the design and development of a lab-scale hybrid rocket motor to accurately determine the regression rate of a fuel/oxidizer combination consisting of solid paraffin and gaseous oxygen (GOX). Hybrid motors offer the advantage of on-demand thrust control over both solid and liquid systems in certain applications. The thermodynamic properties of the propellant combination were calculated using NASA CEA at different chamber pressures and corresponding O/F values to determine initial operating conditions with suitable peak temperatures and optimal O/F values. The project also includes the design of the injector orifice and the determination of the final design configurations of the motor casing, pressure control setup, and valve configuration. This research will be valuable in advancing the understanding of paraffin-based propulsion and improving the performance of hybrid rocket motors.

Keywords: hybrid rocket, NASA CEA, injector, thrust control

Procedia PDF Downloads 58
2824 Comparative Analysis of SVPWM and the Standard PWM Technique for Three Level Diode Clamped Inverter fed Induction Motor

Authors: L. Lakhdari, B. Bouchiba, M. Bechar

Abstract:

The multi-level inverters present an important novelty in the field of energy control with high voltage and power. The major advantage of all multi-level inverters is the improvement and spectral quality of its generated output signals. In recent years, various pulse width modulation techniques have been developed. From these technics we have: Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM). This work presents a detailed analysis of the comparative advantage of space vector pulse width modulation (SVPWM) and the standard SPWM technique for Three Level Diode Clamped Inverter fed Induction Motor. The comparison is based on the evaluation of harmonic distortion THD.

Keywords: induction motor, multilevel inverters, SVPWM, SPWM, THD

Procedia PDF Downloads 307
2823 Manual Dexterity in Patients with Motor Neuron Disease

Authors: Magdalena Barbara Kaziuk, Ilona Hubner, Jacek Hubner, Slawomir Kroczka

Abstract:

Background: The motor neuron disease is a progressive neurodegenerative disease causing malfunction. Irrespective of the form of the disease and its onset always leads to the worsening of the quality of life, with patients usually depending on the family. Materials and methods: The study included 20 persons (5 females, 15 males, aged 65,5 ± 20 years) with clinically certain or probable diagnosis of the motor neuron disease. Patients were examined three times in the period of six months. The diagnosis was established based on the criteria of El Escorial. Manual dexterity was assessed using the test of the card Rene Zazzo and the test of shading in with lines Mira Stambak. Results: All patients achieved unsatisfactory results in Rene Zazzo’s test of the card and most of the patients (60%) in Mira Stambak’s test of shading with lines. Significantly higher test results were achieved for Rene Zazzo’s test and lower test results for Mira Stambak’s test in consecutive measurements. Conclusions: Impairment of manual dexterity is present already at the moment of diagnosing the disease and is growing significantly during its course. The quality of life for MND patients undergoes gradual deterioration as a result of the malfunction.

Keywords: manual dexterity, motor neuron disease, quality of life, malfunction

Procedia PDF Downloads 306
2822 Techno-Economic Analysis of Motor-Generator Pair System and Virtual Synchronous Generator for Providing Inertia of Power System

Authors: Zhou Yingkun, Xu Guorui, Wei Siming, Huang Yongzhang

Abstract:

With the increasing of the penetration of renewable energy in power system, the whole inertia of the power system is declining, which will endanger the frequency stability of the power system. In order to enhance the inertia, virtual synchronous generator (VSG) has been proposed. In addition, the motor-generator pair (MGP) system is proposed to enhance grid inertia. Both of them need additional equipment to provide instantaneous energy, so the economic problem should be considered. In this paper, the basic working principle of MGP system and VSG are introduced firstly. Then, the technical characteristics and economic investment of MGP/VSG are compared by calculation and simulation. The results show that the MGP system can provide same inertia with less cost than VSG.

Keywords: high renewable energy penetration, inertia of power system, motor-generator pair (MGP) system, virtual synchronous generator (VSG), techno-economic analysis

Procedia PDF Downloads 419
2821 Distributed Manufacturing (DM)- Smart Units and Collaborative Processes

Authors: Hermann Kuehnle

Abstract:

Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability.

Keywords: autonomous unit, networkability, smart manufacturing unit, virtualization

Procedia PDF Downloads 498
2820 Improving Fine Motor Skills in the Hands of Children with ASD with Applying the Fine Motor Activities in Montessori Method of Education

Authors: Yeganeh Faraji, Ned Faraji

Abstract:

The aim of the present study is to search for the effects of training on improving fine hand skills in children with autistic spectrum disorder through the case study statistic method. The sample group was selected by the available sampling method and included four participants. The methodology of this research was a single-subject semi-experimental of AB design. The data were gathered by natural observation. In the next stage, the data were recorded on data record sheets and then presented on diagrams. The sample group was evaluated by an assessment which the researcher created based on Lincoln-Oseretsky’ motor development scale in two pre-test and post-test phases. In order to promote fingers’ fine movement, the Montessori method was applied. Collecting and analyzing data which were shown by the data presentation method and diagrams, proved that it had no significant effect on improving fingers’ fine movement. Therefore, based on the current research findings, it is suggested that future researchers can apply various teaching methods and different tests for improving fine hand skills or increasing the period of training.

Keywords: autism spectrum disorder, Montessori method, fine motor skills, Lincoln-Oseretsky assessment

Procedia PDF Downloads 71
2819 Energy Saving and Performance Evaluation of an Air Handling Unit Integrated with a Membrane Energy Exchanger for Cold Climates

Authors: Peng Liu, Maria Justo Alonso, Hans Martin Mathisen

Abstract:

A theoretical model is developed to evaluate the performance and energy saving potential of an air handling unit integrated with a membrane energy exchanger in cold climates. The recovered sensible and latent heat, fan preheating use for frost prevention and heating energy consumed by heating coil after the ventilator is compared for the air handling unit combined heat and energy exchanger respectively. A concept of coefficient of performance of air handling unit is presented and applied to assess the energy use of air handling unit (AHU) in cold climates. The analytic results indicate downsizing of the preheating coil before exchanger and heating coils after exchanger are expected since the required power to preheat and condition the air is reduced compared to heat exchanger when the MEE is integrated with AHU. Simultaneously, a superior ratio of energy recovered (RER) is obtained from AHU build-in a counter-flow MEE. The AHU with sensible-only heat exchanger has noticeably low RER, around 1 at low outdoor air temperature where the maximum energy rate is desired to condition the severe cold and dry air.

Keywords: membrane energy exchanger, cold climate, energy efficient building, HVAC

Procedia PDF Downloads 295