Search results for: Mahadev Bhise
3 Association between Carbon Dioxide (CO2) Emission and Under-Five Mortality: Panel Data Evidence from 100 Countries
Authors: Mahadev Bhise, Nabanita Majumder
Abstract:
Recent studies have found association between air pollutants and mortality, particularly how concentration of air pollutant explains under-five mortality across the countries. Thus, the present study evaluates the relationship between Carbon dioxide (CO2) emission and under-five mortality, while controlling other well-being determinant of Under-five mortality in 100 countries using panel unbalanced cross sectional data. We have used PCSE and GMM model for the period 1990-2011 to meet our objectives. Our findings suggest that, the positive relationship between lagged periods of carbon dioxide and under-five mortality; the percentage of rural population with access of improved water is negatively associated with under-five mortality, while in case of urban population with access of improved water, is positively related to under-five mortality. Access of sanitation facility, food production index, GDP per capita, and concentration of urban population have significant negative impact on under-five mortality. Further, total fertility rate is significantly associated (positive) with under-five mortality which indicates relative change in fertility is related to relative change in under-five mortality.Keywords: arbon dioxide (CO2), under-five mortality (0q5), gross domestic product (GDP), urban population, food production, panel corrected standard errors (PCSE), generalized method of moments (GMM)
Procedia PDF Downloads 3082 Digital Image Correlation Based Mechanical Response Characterization of Thin-Walled Composite Cylindrical Shells
Authors: Sthanu Mahadev, Wen Chan, Melanie Lim
Abstract:
Anisotropy dominated continuous-fiber composite materials have garnered attention in numerous mechanical and aerospace structural applications. Tailored mechanical properties in advanced composites can exhibit superiority in terms of stiffness-to-weight ratio, strength-to-weight ratio, low-density characteristics, coupled with significant improvements in fatigue resistance as opposed to metal structure counterparts. Extensive research has demonstrated their core potential as more than just mere lightweight substitutes to conventional materials. Prior work done by Mahadev and Chan focused on formulating a modified composite shell theory based prognosis methodology for investigating the structural response of thin-walled circular cylindrical shell type composite configurations under in-plane mechanical loads respectively. The prime motivation to develop this theory stemmed from its capability to generate simple yet accurate closed-form analytical results that can efficiently characterize circular composite shell construction. It showcased the development of a novel mathematical framework to analytically identify the location of the centroid for thin-walled, open cross-section, curved composite shells that were characterized by circumferential arc angle, thickness-to-mean radius ratio, and total laminate thickness. Ply stress variations for curved cylindrical shells were analytically examined under the application of centric tensile and bending loading. This work presents a cost-effective, small-platform experimental methodology by taking advantage of the full-field measurement capability of digital image correlation (DIC) for an accurate assessment of key mechanical parameters such as in-plane mechanical stresses and strains, centroid location etc. Mechanical property measurement of advanced composite materials can become challenging due to their anisotropy and complex failure mechanisms. Full-field displacement measurements are well suited for characterizing the mechanical properties of composite materials because of the complexity of their deformation. This work encompasses the fabrication of a set of curved cylindrical shell coupons, the design and development of a novel test-fixture design and an innovative experimental methodology that demonstrates the capability to very accurately predict the location of centroid in such curved composite cylindrical strips via employing a DIC based strain measurement technique. Error percentage difference between experimental centroid measurements and previously estimated analytical centroid results are observed to be in good agreement. The developed analytical modified-shell theory provides the capability to understand the fundamental behavior of thin-walled cylindrical shells and offers the potential to generate novel avenues to understand the physics of such structures at a laminate level.Keywords: anisotropy, composites, curved cylindrical shells, digital image correlation
Procedia PDF Downloads 3161 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 78