Search results for: M. A. R. Sarkar
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 90

Search results for: M. A. R. Sarkar

60 Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes

Authors: Chandra Shekhar Maurya, Chiranjit Sarkar

Abstract:

The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off.

Keywords: magnetorheological fluid, rheological properties, shears stress, shears strain, viscosity

Procedia PDF Downloads 147
59 Current Status of Ir-192 Brachytherapy in Bangladesh

Authors: M. Safiqul Islam, Md Arafat Hossain Sarkar

Abstract:

Brachytherapy is one of the most important cancer treatment management systems in radiotherapy department. Brachytherapy treatment is moved into High Dose Rate (HDR) after loader from Low Dose Rate (LDR) after loader due to radiation protection advantage. HDR Brachytherapy is a highly multipurpose system for enhancing cure and achieving palliation in many common cancers disease of developing countries. High-dose rate (HDR) Brachytherapy is a type of internal radiation therapy that delivers radiation from implants placed close to or inside, the tumor(s) in the body. This procedure is very effective at providing localized radiation to the tumor site while minimizing the patient’s whole body dose. Brachytherapy has proven to be a highly successful treatment for cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck, as well as soft tissue sarcomas and several other types of cancer. For the time being in our country we have 10 new HDR Remote after loading Brachytherapy. Right now 4 HDR Brachytherapy is already installed and running for patient’s treatment out of 10 HDR Brachytherapy. Ir-192 source is more comfortable than Co-60. In that case people or expert personnel prefer Ir-192 source for different kind of cancer patients. Ir-192 are economically, more flexible and familiar in our country.

Keywords: Ir-192, brachytherapy, cancer treatment, prostate, cervix, endometrium, breast, skin, bronchus, esophagus, soft tissue sarcomas

Procedia PDF Downloads 394
58 Trace Element Phytoremediation Potential of Mangrove Plants in Indian Sundarban

Authors: Ranju Chowdhury, Santosh K. Sarkar

Abstract:

Trace element accumulation potential of ten mangrove species in individual plant tissues (leaves, bark and root/pneumatophore) along with host sediments was carried out at 2 study sites of diverse environmental stresses of Indian Sundarban Wetland, a UNESCO world heritage site. The study was undertaken with the following objectives: (i) to investigate the extent of accumulation and the distribution of trace metals in plant tissues (ii) to determine whether sediment trace metal levels are correlated with trace metal levels in tissues and (iii) to find out the suitable candidate for phytoremediation species. Mangrove sediments showed unique potential in many- fold increase for most trace metals than plant tissues due to their inherent physicochemical properties. The concentrations of studied 11 trace elements (expressed in µg g -1) showed wide range of variations in host sediment with the following descending order: Fe (2865.31-3019.62) > Mn (646.04- 648.47 > Cu (35.03- 41.55) > Zn (32.51- 36.33) > Ni (34.4- 36.60) > Cr (27.5- 29.54) > Pb (11.6- 20.34) > Co (6.79- 8.55) > As (3.22- 4.41) > Cd (0.19- 0.22) > Hg (0.06- 0.07). The ranges of concentration of trace metals (expressed in µg g -1) for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in plant tissues were 0.006- 0.31, 0.02- 2.97, 0.10- 4.80, 0.13- 6.49, 4.46- 48.30, 9.20- 938.13, 0.02- 0.13, 9.8- 1726.24, 5.41- 11.34, 0.04 - 7.64, 3.81- 52.20 respectively. Among all trace elements, Cd and Zn were highly bioaccumulated in Excoecaria agallocha (2.97 and 52.20 µg g -1 respectively). The bio- concentration factor (BCF) showed its maximum value (15.5) in E. agallocha for Cd, suggesting that it can be considered as a high-efficient plant for trace metal bioaccumulation. Therefore, phytoremediation could be extensively used for the removal of the toxic contaminants for sustainable management of Sundarban coastal regions.

Keywords: Indian Sundarban, mangroves, phytoremediation, trace elements

Procedia PDF Downloads 344
57 Sensitivity and Reliability Analysis of Masonry Infilled Frames

Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar

Abstract:

The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.

Keywords: fragility curve, sensitivity analysis, reliability index, RC frames

Procedia PDF Downloads 294
56 Frictional Behavior of Glass Epoxy and Aluminium Particulate Glass Epoxy Composites Sliding against Smooth Stainless Steel Counterface

Authors: Pujan Sarkar

Abstract:

Frictional behavior of glass epoxy and Al particulate glass-epoxy composites sliding against mild steel are investigated experimentally at normal atmospheric condition. Glass epoxy (0 wt% Al) and 5, 10 and 15 wt% Al particulate filled glass-epoxy composites are fabricated in conventional hand lay-up technique followed by light compression moulding process. A pin on disc type friction apparatus is used under dry sliding conditions. Experiments are carried out at a normal load of 5-50 N, and sliding speeds of 0.5-5.0 m/s for a fixed duration. Variations of friction coefficient with sliding time at different loads and speeds for all the samples are considered. Results show that the friction coefficient is influenced by sliding time, normal loads, sliding speeds, and wt% of Al content. In general, with respect to time, friction coefficient increases initially with a lot of fluctuations for a certain duration. After that, it becomes stable for the rest of the experimental time. With the increase of normal load, friction coefficient decreases at all speed levels and for all the samples whereas, friction coefficient increases with the increase of sliding speed at all normal loads for glass epoxy and 5 wt% Al content glass-epoxy composites. But for 10 and 15 wt%, Al content composites at all loads, reverse trend of friction coefficient has been recorded. Under different tribological conditions, the suitability of composites in respect of wt% of Al content is noted, and 5 wt% Al content glass-epoxy composite reports as the lowest frictional material at all loads compared to other samples.

Keywords: Al powder, composite, epoxy, friction, glass fiber

Procedia PDF Downloads 96
55 Microstructural and Optical Characterization of High-quality ZnO Nano-rods Deposited by Simple Electrodeposition Process

Authors: Somnath Mahato, Minarul Islam Sarkar, Luis Guillermo Gerling, Joaquim Puigdollers, Asit Kumar Kar

Abstract:

Nanostructured Zinc Oxide (ZnO) thin films have been successfully deposited on indium tin oxide (ITO) coated glass substrates by a simple two electrode electrodeposition process at constant potential. The preparative parameters such as deposition time, deposition potential, concentration of solution, bath temperature and pH value of electrolyte have been optimized for deposition of uniform ZnO thin films. X-ray diffraction studies reveal that the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal (wurtzite) structure. Surface morphological studies show that the ZnO films are smooth, continuous, uniform without cracks or holes and compact with nanorod-like structure on the top of the surface. Optical properties reveal that films exhibit higher absorbance in the violet region of the optical spectrum; it gradually decreased in the visible range with increases in wavelength and became least at the beginning of NIR region. The photoluminescence spectra shows that the observed peaks are attributed to the various structural defects in the nanostructured ZnO crystal. The microstructural and optical properties suggest that the electrodeposited ZnO thin films are suitable for application in photosensitive devices such as photovoltaic solar cells photoelectrochemical cells and light emitting diodes etc.

Keywords: electrodeposition, microstructure, optical properties, ZnO thin films

Procedia PDF Downloads 289
54 Reviewing the Effect of Healing Design on Mental Health Establishments in the Context of India

Authors: Aratrika Sarkar, Jayita Guha Niyogi

Abstract:

This paper focuses on the application of general healing design theories to modulate them into case-specific and contextual design considerations. Existing literature focuses on the relationship between architecture and mental health. Primary case studies are selected in India to focus on the effect of a specific location on design considerations. They are qualitatively analysed to further contextualise the inferences from the literature study. An academic project is cited as an example to apply the learnings from the study and understand the influence of various parameters on the design process for further conclusion. Literature studies, case studies and hypothetical design applications helped in finding the different ways of achieving the similar goal of a sensitive approach toward mental health. Along with salutogenic parameters, category of establishment, age group, location of the site and user preference plays a crucial role in the design process. Design of mental health establishments, especially in India, has to involve transparency between stakeholders and users. Owing to different climatic zones and diverse sociocultural traditions, the approach toward healing should adapt accordingly. It should be an effort towards striking a balance between contradictory elements of healing design and resolving the dilemmas with sensitivity and consensus. Lastly, the design should not force a person towards communication or companionship but rather let the person realise that naturally through the healing process.

Keywords: contextual healing design, deinstitutionalisation, Indian mental healthcare establishments, environmental psychology, salutogenesis, therapeutic design

Procedia PDF Downloads 74
53 Integrated Clean Development Mechanism and Risk Management Approach for Infrastructure Transportation Project

Authors: Debasis Sarkar

Abstract:

Clean development mechanism (CDM) can act as an effective instrument for mitigating climate change. This mechanism can effectively reduce the emission of CO2 and other green house gases (GHG). Construction of a mega infrastructure project like underground corridor construction for metro rail operation involves in consumption of substantial quantity of concrete which consumes huge quantity of energy consuming materials like cement and steel. This paper is an attempt to develop an integrated clean development mechanism and risk management approach for sustainable development for an underground corridor metro rail project in India during its construction phase. It was observed that about 35% reduction in CO2 emission can be obtained by adding fly ash as a part replacement of cement. The reduced emission quantity of CO2 which is of the quantum of about 21,646.36 MT would result in cost savings of approximately INR 8.5 million (USD 1,29,878).But construction and operation of such infrastructure projects of the present era are subject to huge risks and uncertainties throughout all the phases of the project, thus reducing the probability of successful completion of the project within stipulated time and cost frame. Thus, an integrated approach of combining CDM with risk management would enable the metro rail authorities to develop a sustainable risk mitigation measure framework to ensure more cost and energy savings and lesser time and cost over-run.

Keywords: clean development mechanism (CDM), infrastructure transportation, project risk management, underground metro rail

Procedia PDF Downloads 448
52 Analysis of Two-Phase Flow Instabilities in Conventional Channel of Nuclear Power Reactor

Authors: M. Abdur Rashid Sarkar, Riffat Mahmud

Abstract:

Boiling heat transfer plays a crucial role in cooling nuclear reactor for safe electricity generation. A two phase flow is susceptible to thermal-hydrodynamic instabilities, which may cause flow oscillations of constant amplitude or diverging amplitude. These oscillations may induce boiling crisis, disturb control systems, or cause mechanical damage. Based on their mechanisms, various types of instabilities can be classified for a nuclear reactor. From a practical engineering point of view one of the major design difficulties in dealing with multiphase flow is that the mass, momentum, and energy transfer rates and processes may be quite sensitive to the geometric configuration of the heat transfer surface. Moreover, the flow within each phase or component will clearly depend on that geometric configuration. The complexity of this two-way coupling presents a major challenge in the study of multiphase flows and there is much that remains to be done. Yet, the parametric effects on flow instability such as the effect of aspect ratio, pressure drop, channel length, its orientation inlet subcooling and surface roughness etc. have been analyzed. Another frequently occurring instability, known as the Kelvin–Helmholtz instability has been briefly reviewed. Various analytical techniques for predicting parametric effect on the instability are analyzed in terms of their applicability and accuracy.

Keywords: two phase flows, boiling crisis, thermal-hydrodynamic instabilities, water cooled nuclear reactors, kelvin–helmholtz instability

Procedia PDF Downloads 366
51 Survival Strategies of Street Children Using the Urban Space: A Case Study at Sealdah Railway Station Area, Kolkata, West Bengal, India

Authors: Sibnath Sarkar

Abstract:

Developing countries are facing many Social problems. In India, too there are several such problems. The problem of street children is one of them. No country or city anywhere in the world today is without the presence of street children, but the problem is most acute in developing countries. Thousands of street children can be seen in our populous cities like Mumbai, Kolkata, Delhi, and Chennai. Most of them are in the age group of 5-15 years. The number of street children is increasing gradually. Poverty, unemployment, rapid urbanization, rural-urban migrations are the root causes of street children. Being deprive from many of their, they have escaped to the street as a safe place for living. Street children always related with the urban spaces in the developing world and it represents a sad outcome of the rapid urbanization process. After coming to the streets, these children have to cope with the new situation every day. They also adopt or develop many complex survival strategies and a variety of different informal or even illegal activities in public space and form supportive social networks in order to survive in street life. Street children use the different suitable urban spaces as their earning, living, entertaining spot. Therefore, the livelihoods of young people on the street should analyze in relation to the spaces they use, as well as their age and length of stay on the streets. This paper tries to explore the livelihood strategies and copping situation of street children in Sealdah station area. One hundred seventy-five street living children are included in the study living in and around the railway station.

Keywords: strategies, street children, survive, urban-space

Procedia PDF Downloads 314
50 The Role of Volunteers in Quality Palliative Care Delivery

Authors: Aditya Manna, Lalit Kumar Khanra, Shyamal Kumar Sarkar

Abstract:

Introduction: Here in India almost 75% of cancer patient die a sad death of neglect due to lack of awareness about palliative care and low economic level. Surveys in India show that two third of cancer patient do not get proper care during the terminal phase of their life. Palliative care through volunteers can make a significant difference in this respect. Objective: To identify and try to solve, to the extent possible, the main difficulties in giving palliative care to the terminal cancer patients of the area. And evaluate the impact of volunteer’s direct care of palliative patients and their families. Methods: Feedback from patients and their relatives regarding the palliative care they receive from nursing home and from volunteers and compare the two. Also feedback from volunteers regarding their positive and negative experience while delivering palliative care service. Then evaluate the data to compare and improve the quality of service. Results: We carried out two studies. One study was undertaken in nursing home palliative care and another was in home setting by volunteers. Both studies were in adult palliative care services. Since January 2015, 496 cases were studied to enquire about their experience in both home based care and nursing home care. Both the studies fulfilled our quality appraisal criteria. One found that those families and patients who received home visits from volunteers were significantly more satisfied. The study highlighted the value of the role of volunteers in better satisfaction of patients and their families. Conclusions: Further research is needed to evaluate the role of volunteers in palliative care and how it can be delivered appropriately and effectively. We also wish to compare our findings with similar studies elsewhere.

Keywords: palliative care, terminal care, cancer, home care

Procedia PDF Downloads 597
49 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM

Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins

Abstract:

In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.

Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS

Procedia PDF Downloads 225
48 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 430
47 Developing an Exhaustive and Objective Definition of Social Enterprise through Computer Aided Text Analysis

Authors: Deepika Verma, Runa Sarkar

Abstract:

One of the prominent debates in the social entrepreneurship literature has been to establish whether entrepreneurial work for social well-being by for-profit organizations can be classified as social entrepreneurship or not. Of late, the scholarship has reached a consensus. It concludes that there seems little sense in confining social entrepreneurship to just non-profit organizations. Boosted by this research, increasingly a lot of businesses engaged in filling the social infrastructure gaps in developing countries are calling themselves social enterprise. These organizations are diverse in their ownership, size, objectives, operations and business models. The lack of a comprehensive definition of social enterprise leads to three issues. Firstly, researchers may face difficulty in creating a database for social enterprises because the choice of an entity as a social enterprise becomes subjective or based on some pre-defined parameters by the researcher which is not replicable. Secondly, practitioners who use ‘social enterprise’ in their vision/mission statement(s) may find it difficult to adjust their business models accordingly especially during the times when they face the dilemma of choosing social well-being over business viability. Thirdly, social enterprise and social entrepreneurship attract a lot of donor funding and venture capital. In the paucity of a comprehensive definitional guide, the donors or investors may find assigning grants and investments difficult. It becomes necessary to develop an exhaustive and objective definition of social enterprise and examine whether the understanding of the academicians and practitioners about social enterprise match. This paper develops a dictionary of words often associated with social enterprise or (and) social entrepreneurship. It further compares two lexicographic definitions of social enterprise imputed from the abstracts of academic journal papers and trade publications extracted from the EBSCO database using the ‘tm’ package in R software.

Keywords: EBSCO database, lexicographic definition, social enterprise, text mining

Procedia PDF Downloads 352
46 Elasticity Model for Easing Peak Hour Demand for Metrorail Transport System

Authors: P. K. Sarkar, Amit Kumar Jain

Abstract:

The demand for Urban transportation is characterised by a large scale temporal and spatial variations which causes heavy congestion inside metro trains in peak hours near Centre Business District (CBD) of the city. The conventional approach to address peak hour congestion, metro trains has been to increase the supply by way of introduction of more trains, increasing the length of the trains, optimising the time table to increase the capacity of the system. However, there is a limitation of supply side measures determined by the design capacity of the systems beyond which any addition in the capacity requires huge capital investments. The demand side interventions are essentially required to actually spread the demand across the time and space. In this study, an attempt has been made to identify the potential Transport Demand Management tools applicable to Urban Rail Transportation systems with a special focus on differential pricing. A conceptual price elasticity model has been developed to analyse the effect of various combinations of peak and nonpeak hoursfares on demands. The elasticity values for peak hour, nonpeak hour and cross elasticity have been assumed from the relevant literature available in the field. The conceptual price elasticity model so developed is based on assumptions which need to be validated with actual values of elasticities for different segments of passengers. Once validated, the model can be used to determine the peak and nonpeak hour fares with an objective to increase overall ridership, revenue, demand levelling and optimal utilisation of assets.

Keywords: urban transport, differential fares, congestion, transport demand management, elasticity

Procedia PDF Downloads 279
45 Drilling Quantification and Bioactivity of Machinable Hydroxyapatite : Yttrium phosphate Bioceramic Composite

Authors: Rupita Ghosh, Ritwik Sarkar, Sumit K. Pal, Soumitra Paul

Abstract:

The use of Hydroxyapatite bioceramics as restorative implants is widely known. These materials can be manufactured by pressing and sintering route to a particular shape. However machining processes are still a basic requirement to give a near net shape to those implants for ensuring dimensional and geometrical accuracy. In this context, optimising the machining parameters is an important factor to understand the machinability of the materials and to reduce the production cost. In the present study a method has been optimized to produce true particulate drilled composite of Hydroxyapatite Yttrium Phosphate. The phosphates are used in varying ratio for a comparative study on the effect of flexural strength, hardness, machining (drilling) parameters and bioactivity.. The maximum flexural strength and hardness of the composite that could be attained are 46.07 MPa and 1.02 GPa respectively. Drilling is done with a conventional radial drilling machine aided with dynamometer with high speed steel (HSS) and solid carbide (SC) drills. The effect of variation in drilling parameters (cutting speed and feed), cutting tool, batch composition on torque, thrust force and tool wear are studied. It is observed that the thrust force and torque varies greatly with the increase in the speed, feed and yttrium phosphate content in the composite. Significant differences in the thrust and torque are noticed due to the change of the drills as well. Bioactivity study is done in simulated body fluid (SBF) upto 28 days. The growth of the bone like apatite has become denser with the increase in the number of days for all the composition of the composites and it is comparable to that of the pure hydroxyapatite.

Keywords: Bioactivity, Drilling, Hydroxyapatite, Yttrium Phosphate

Procedia PDF Downloads 264
44 Telephonic Communication in Palliative Care for Better Management of Terminal Cancer Patients in Rural India: An NGO Based Approach

Authors: Aditya Manna, L. K. Khanra, S. K. Sarkar

Abstract:

Aim: Due to financial incapability and the absence of manpower-poor families often fail to carry their advanced cancer patients to the nodal centers. This pilot study will explore whether communication by mobile phone can lessen this burden. Method: Initially a plan was generated regarding management of an advanced cancer patient in a nodal center at District Head Quarter. Subsequently every two week a trained social worker attached to the nodal center will follow up and give necessary advice and emotional support to the patients and their families through their registered mobile phone number. Patient’s family were also encouraged to communicate with the team by phone in case of fresh complain and urgency in between. Results: Since initiation in January 2013, 193 cancer patients were contacted by mobile phone every two weeks to enquire about their difficulties. In 76% of the situation trained social workers could give necessary advice by phone regarding management of their physical symptoms. Moreover, patient’s family was really overwhelmed by the emotional support offered by the team over the phone. Only 24% of cancer patients have to attend the nodal center for expert advice from Palliative Care specialists. Conclusion: This novel approach helped: (a) In providing regular physical and emotional support to the patients and their families. (b) In significantly reducing the financial and manpower problems of carrying patients to the nodal units. (c) In improving the quality of life of patients by continuous guidance. More and more team members can take help of this new strategy for better communication and uninterrupted care.

Keywords: palliative care, terminal care, home based palliative care, rural india

Procedia PDF Downloads 278
43 Oxidosqualene Cyclase: A Novel Inhibitor

Authors: Devadrita Dey Sarkar

Abstract:

Oxidosqualene cyclase is a membrane bound enzyme in which helps in the formation of steroid scaffold in higher organisms. In a highly selective cyclization reaction oxidosqualene cyclase forms LANOSTEROL with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. In humans OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. The enzyme oxidosqualene: lanosterol cyclase (OSC) represents a novel target for the treatment of hypercholesterolemia. OSC catalyzes the cyclization of the linear 2,3-monoepoxysqualene to lanosterol, the initial four-ringed sterol intermediate in the cholesterol biosynthetic pathway. OSC also catalyzes the formation of 24(S), 25-epoxycholesterol, a ligand activator of the liver X receptor. Inhibition of OSC reduces cholesterol biosynthesis and selectively enhances 24(S),25-epoxycholesterol synthesis. Through this dual mechanism, OSC inhibition decreases plasma levels of low-density lipoprotein (LDL)-cholesterol and prevents cholesterol deposition within macrophages. The recent crystallization of OSC identifies the mechanism of action for this complex enzyme, setting the stage for the design of OSC inhibitors with improved pharmacological properties for cholesterol lowering and treatment of atherosclerosis. While studying and designing the inhibitor of oxidosqulene cyclase, I worked on the pdb id of 1w6k which was the most worked on pdb id and I used several methods, techniques and softwares to identify and validate the top most molecules which could be acting as an inhibitor for oxidosqualene cyclase. Thus, by partial blockage of this enzyme, both an inhibition of lanosterol and subsequently cholesterol formation as well as a concomitant effect on HMG-CoA reductase can be achieved. Both effects complement each other and lead to an effective control of cholesterol biosynthesis. It is therefore concluded that 2,3-oxidosqualene cyclase plays a crucial role in the regulation of intracellular cholesterol homeostasis. 2,3-Oxidosqualene cyclase inhibitors offer an attractive approach for novel lipid-lowering agents.

Keywords: anticholesteraemic, crystallization, statins, homeostasis

Procedia PDF Downloads 314
42 Effect of Austenitizing Temperature, Soaking Time and Grain Size on Charpy Impact Toughness of Quenched and Tempered Steel

Authors: S. Gupta, R. Sarkar, S. Pathak, D. H. Kela, A. Pramanick, P. Talukdar

Abstract:

Low alloy quenched and tempered steels are typically used in cast railway components such as knuckles, yokes, and couplers. Since these components experience extensive impact loading during their service life, adequate impact toughness of these grades need to be ensured to avoid catastrophic failure of parts in service. Because of the general availability of Charpy V Test equipment, Charpy test is the most common and economical means to evaluate the impact toughness of materials and is generally used in quality control applications. With this backdrop, an experiment was designed to evaluate the effect of austenitizing temperature, soaking time and resultant grain size on the Charpy impact toughness and the related fracture mechanisms in a quenched and tempered low alloy steel, with the aim of optimizing the heat treatment parameters (i.e. austenitizing temperature and soaking time) with respect to impact toughness. In the first phase, samples were austenitized at different temperatures viz. 760, 800, 840, 880, 920 and 960°C, followed by quenching and tempering at 600°C for 4 hours. In the next phase, samples were subjected to different soaking times (0, 2, 4 and 6 hours) at a fixed austenitizing temperature (980°C), followed by quenching and tempering at 600°C for 4 hours. The samples corresponding to different test conditions were then subjected to instrumented Charpy tests at -40°C and energy absorbed were recorded. Subsequently, microstructure and fracture surface of samples corresponding to different test conditions were observed under scanning electron microscope, and the corresponding grain sizes were measured. In the final stage, austenitizing temperature, soaking time and measured grain sizes were correlated with impact toughness and the fracture morphology and mechanism.

Keywords: heat treatment, grain size, microstructure, retained austenite and impact toughness

Procedia PDF Downloads 288
41 Strain-Driven Bidirectional Spin Orientation Control in Epitaxial High Entropy Oxide Films

Authors: Zhibo Zhao, Horst Hahn, Robert Kruk, Abhisheck Sarkar

Abstract:

High entropy oxides (HEOs), based on the incorporation of multiple-principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto-electronic states. Epitaxial (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄-HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel-HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual-phase coexistence appears as a universal phenomenon in (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)₃O₄ epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain-induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out-of-plane (OOP) axis increases significantly. On the other hand, compressive straining results in an easy OOP magnetization and a maze-like magnetic domain structure, indicating perpendicular magnetic anisotropy. Generally, this study emphasizes the adaptability of the high entropy design strategy, which, when combined with coherent strain engineering, opens additional prospects for fine-tuning properties in oxides.

Keywords: high entropy oxides, thin film, strain tuning, perpendicular magnetic anistropy

Procedia PDF Downloads 18
40 Recovery of Selenium from Scrubber Sludge in Copper Process

Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu

Abstract:

The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.

Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂

Procedia PDF Downloads 168
39 Cold Formed Steel Sections: Analysis, Design and Applications

Authors: A. Saha Chaudhuri, D. Sarkar

Abstract:

In steel construction, there are two families of structural members. One is hot rolled steel and another is cold formed steel. Cold formed steel section includes steel sheet, strip, plate or flat bar. Cold formed steel section is manufactured in roll forming machine by press brake or bending operation. Cold formed steel (CFS), also known as Light Gauge Steel (LGS). As cold formed steel is a sustainable material, it is widely used in green building. Cold formed steel can be recycled and reused with no degradation in structural properties. Cold formed steel structures can earn credits for green building ratings such as LEED and similar programs. Cold formed steel construction satisfies international demand for better, more efficient and affordable buildings. Cold formed steel sections are used in building, car body, railway coach, various types of equipment, storage rack, grain bin, highway product, transmission tower, transmission pole, drainage facility, bridge construction etc. Various shapes of cold formed steel sections are available, such as C section, Z section, I section, T section, angle section, hat section, box section, square hollow section (SHS), rectangular hollow section (RHS), circular hollow section (CHS) etc. In building construction cold formed steel is used as eave strut, purlin, girt, stud, header, floor joist, brace, diaphragm and covering for roof, wall and floor. Cold formed steel has high strength to weight ratio and high stiffness. Cold formed steel is non shrinking and non creeping at ambient temperature, it is termite proof and rot proof. CFS is durable, dimensionally stable and non combustible material. CFS is economical in transportation and handling. At present days cold formed steel becomes a competitive building material. In this paper all these applications related present research work are described and how the CFS can be used as blast resistant structural system that is examined.

Keywords: cold form steel sections, applications, present research review, blast resistant design

Procedia PDF Downloads 108
38 An Analytical Study on the Politics of Defection in India

Authors: Diya Sarkar, Prafulla C. Mishra

Abstract:

In a parliamentary system, party discipline is the impulse; when it falls short, the government usually falls. Conceivably, the platform of Indian politics suffers with innumerous practical disorders. The politics of defection is one such specie entailing gross miscarriage of fair conduct turning politics into a game of thrones (powers). This practice of political nomaditude can trace its seed in the womb of British House of Commons. Therein, if a legislator was found to cross the floor, the party considered him disloyal. In other words, the legislator lost his allegiance to his former party by joining another party. This very phenomenon, in practice has a two way traffic i.e. ruling party to the opposition party or vice versa. The democracies like USA, Australia and Canada were also aware of this fashion of swapping loyalties. There have been several instances of great politicians changing party allegiance, for example Winston Churchill, Ramsay McDonald, William Gladstone etc. Nevertheless, it is interesting to cite that irrespective of such practice of changing party allegiance, none of the democracies in the west ever desired or felt the need to legislatively ban defections. But, exceptionally India can be traced to have passed anti-defection laws. The politics of defection had been a unique popular phenomenon on the floor of Indian Parliamentary system gradually gulping the democratic essence and synchronization of the Federation. This study is both analytical and doctrinal, which tries to examine whether representative democracy has lost its essence due to political nomadism. The present study also analyzes the classical as well as contemporary pulse of floor crossing amidst dynastic politics in a representative democracy. It will briefly discuss the panorama of defections under the Indian federal structure in the light of the anti-defection law and an attempt has been made to add valuable suggestions to streamline remedy for the still prevalent political defections.

Keywords: constitutional law, defection, democracy, polarization, political anti-trust

Procedia PDF Downloads 339
37 GIS Based Spatial Modeling for Selecting New Hospital Sites Using APH, Entropy-MAUT and CRITIC-MAUT: A Study in Rural West Bengal, India

Authors: Alokananda Ghosh, Shraban Sarkar

Abstract:

The study aims to identify suitable sites for new hospitals with critical obstetric care facilities in Birbhum, one of the vulnerable and underserved districts of Eastern India, considering six main and 14 sub-criteria, using GIS-based Analytic Hierarchy Process (AHP) and Multi-Attribute Utility Theory (MAUT) approach. The criteria were identified through field surveys and previous literature. After collecting expert decisions, a pairwise comparison matrix was prepared using the Saaty scale to calculate the weights through AHP. On the contrary, objective weighting methods, i.e., Entropy and Criteria Importance through Interaction Correlation (CRITIC), were used to perform the MAUT. Finally, suitability maps were prepared by weighted sum analysis. Sensitivity analyses of AHP were performed to explore the effect of dominant criteria. Results from AHP reveal that ‘maternal death in transit’ followed by ‘accessibility and connectivity’, ‘maternal health care service (MHCS) coverage gap’ were three important criteria with comparatively higher weighted values. Whereas ‘accessibility and connectivity’ and ‘maternal death in transit’ were observed to have more imprint in entropy and CRITIC, respectively. While comparing the predictive suitable classes of these three models with the layer of existing hospitals, except Entropy-MAUT, the other two are pointing towards the left-over underserved areas of existing facilities. Only 43%-67% of existing hospitals were in the moderate to lower suitable class. Therefore, the results of the predictive models might bring valuable input in future planning.

Keywords: hospital site suitability, analytic hierarchy process, multi-attribute utility theory, entropy, criteria importance through interaction correlation, multi-criteria decision analysis

Procedia PDF Downloads 26
36 Studies on the Existing Status of MSW Management in Agartala City and Recommendation for Improvement

Authors: Subhro Sarkar, Umesh Mishra

Abstract:

Agartala Municipal Council (AMC) is the municipal body which regulates and governs the Agartala city. MSW management may be proclaimed as a tool which rests on the principles of public health, economy, engineering and other aesthetic or environmental factors by dealing with the controlled generation, collection, transport, processing and disposal of MSW. Around 220-250 MT of solid waste per day is collected by AMC out of which 12-14 MT is plastic and is disposed of in Devendra Chandra Nagar dumping ground (33 acres), nearly 12-15 km from the city. A survey was performed to list down the prevailing operations conducted by the AMC which includes road sweeping, garbage lifting, carcass removal, biomedical waste collection, dumping, and incineration. Different types of vehicles are engaged to carry out these operations. Door to door collection of garbage is done from the houses with the help of 220 tricycles issued by 53 NGOs. The location of the dustbin containers were earmarked which consisted of 4.5 cum, 0.6 cum containers and 0.1 cum containers, placed at various locations within the city. The total household waste was categorized as organic, recyclable and other wastes. It was found that East Pratapgarh ward produced 99.3% organic waste out of the total MSW generated in that ward which is maximum among all the wards. A comparison of the waste generation versus the family size has been made. A questionnaire for the survey of MSW from household and market place was prepared. The average waste generated (in kg) per person per day was found out for each of the wards. It has been noted that East Jogendranagar ward had a maximum per person per day waste generation of 0.493 kg/day.In view of the studies made, it has been found that AMC has failed to implement MSWM in an effective way because of the unavailability of suitable facilities for treatment and disposal of the large amount of MSW. It has also been noted that AMC is not following the standard procedures of handling MSW. Transportation system has also been found less effective leading to waste of time, money and manpower.

Keywords: MSW, waste generation, solid waste disposal, management

Procedia PDF Downloads 277
35 Formation of in-situ Ceramic Phase in N220 Nano Carbon Containing Low Carbon Mgo-C Refractory

Authors: Satyananda Behera, Ritwik Sarkar

Abstract:

In iron and steel industries, MgO–C refractories are widely used in basic oxygen furnaces, electric arc furnaces and steel ladles due to their excellent corrosion resistance, thermal shock resistance, and other excellent hot properties. Conventionally magnesia carbon refractories contain about 8-20 wt% of carbon but the use of carbon is also associate with disadvantages like oxidation, low fracture strength, high heat loss and higher carbon pick up in steel. So, MgO-C refractory having low carbon content without compromising the beneficial properties is the challenge. Nano carbon, having finer particles, can mix and distribute within the entire matrix uniformly and can result in improved mechanical, thermo-mechanical, corrosion and other refractory properties. Previous experiences with the use of nano carbon in low carbon MgO-C refractory have indicated an optimum range of use of nano carbon around 1 wt%. This optimum nano carbon content was used in MgO-C compositions with flaky graphite followed by aluminum and silicon metal powder as an anti-oxidant. These low carbon MgO-C refractory compositions were prepared by conventional manufacturing techniques. At the same time 16 wt. % flaky graphite containing conventional MgO-C refractory was also prepared parallel under similar conditions. The developed products were characterized for various refractory related properties. Nano carbon containing compositions showed better mechanical, thermo-mechanical properties, and oxidation resistance compared to that of conventional composition. Improvement in the properties is associated with the formation of in-situ ceramic phase-like aluminum carbide, silicon carbide, and magnesium aluminum spinel. Higher surface area and higher reactivity of N220 nano carbon black resulted in greater formation in-situ ceramic phases, even at a much lower amount. Nano carbon containing compositions were found to have improved properties in MgO-C refractories compared to that of the conventional ones at much lower total carbon content.

Keywords: N220nano carbon black, refractory properties, conventionally manufacturing techniques, conventional magnesia carbon refractories

Procedia PDF Downloads 335
34 Integrated Mass Rapid Transit System for Smart City Project in Western India

Authors: Debasis Sarkar, Jatan Talati

Abstract:

This paper is an attempt to develop an Integrated Mass Rapid Transit System (MRTS) for a smart city project in Western India. Integrated transportation is one of the enablers of smart transportation for providing a seamless intercity as well as regional level transportation experience. The success of a smart city project at the city level for transportation is providing proper integration to different mass rapid transit modes by way of integrating information, physical, network of routes fares, etc. The methodology adopted for this study was primary data research through questionnaire survey. The respondents of the questionnaire survey have responded on the issues about their perceptions on the ways and means to improve public transport services in urban cities. The respondents were also required to identify the factors and attributes which might motivate more people to shift towards the public mode. Also, the respondents were questioned about the factors which they feel might restrain the integration of various modes of MRTS. Furthermore, this study also focuses on developing a utility equation for respondents with the help of multiple linear regression analysis and its probability to shift to public transport for certain factors listed in the questionnaire. It has been observed that for shifting to public transport, the most important factors that need to be considered were travel time saving and comfort rating. Also, an Integrated MRTS can be obtained by combining metro rail with BRTS, metro rail with monorail, monorail with BRTS and metro rail with Indian railways. Providing a common smart card to transport users for accessing all the different available modes would be a pragmatic solution towards integration of the available modes of MRTS.

Keywords: mass rapid transit systems, smart city, metro rail, bus rapid transit system, multiple linear regression, smart card, automated fare collection system

Procedia PDF Downloads 235
33 Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach

Authors: Md. Asif Ullah, M. A. R. Sarkar

Abstract:

This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used.

Keywords: sub-channels, Reynold’s number, Nusselt number, convective heat transfer

Procedia PDF Downloads 333
32 Urea and Starch Detection on a Paper-Based Microfluidic Device Enabled on a Smartphone

Authors: Shashank Kumar, Mansi Chandra, Ujjawal Singh, Parth Gupta, Rishi Ram, Arnab Sarkar

Abstract:

Milk is one of the basic and primary sources of food and energy as we start consuming milk from birth. Hence, milk quality and purity and checking the concentration of its constituents become necessary steps. Considering the importance of the purity of milk for human health, the following study has been carried out to simultaneously detect and quantify the different adulterants like urea and starch in milk with the help of a paper-based microfluidic device integrated with a smartphone. The detection of the concentration of urea and starch is based on the principle of colorimetry. In contrast, the fluid flow in the device is based on the capillary action of porous media. The microfluidic channel proposed in the study is equipped with a specialized detection zone, and it employs a colorimetric indicator undergoing a visible color change when the milk gets in touch or reacts with a set of reagents which confirms the presence of different adulterants in the milk. In our proposed work, we have used iodine to detect the percentage of starch in the milk, whereas, in the case of urea, we have used the p-DMAB. A direct correlation has been found between the color change intensity and the concentration of adulterants. A calibration curve was constructed to find color intensity and subsequent starch and urea concentration. The device has low-cost production and easy disposability, which make it highly suitable for widespread adoption, especially in resource-constrained settings. Moreover, a smartphone application has been developed to detect, capture, and analyze the change in color intensity due to the presence of adulterants in the milk. The low-cost nature of the smartphone-integrated paper-based sensor, coupled with its integration with smartphones, makes it an attractive solution for widespread use. They are affordable, simple to use, and do not require specialized training, making them ideal tools for regulatory bodies and concerned consumers.

Keywords: paper based microfluidic device, milk adulteration, urea detection, starch detection, smartphone application

Procedia PDF Downloads 22
31 Improving Fluid Catalytic Cracking Unit Performance through Low Cost Debottlenecking

Authors: Saidulu Gadari, Manoj Kumar Yadav, V. K. Satheesh, Debasis Bhattacharyya, S. S. V. Ramakumar, Subhajit Sarkar

Abstract:

Most Fluid Catalytic Cracking Units (FCCUs) are big profit makers and hence, always operated with several constraints. It is the primary source for production of gasoline, light olefins as petrochemical feedstocks, feedstock for alkylate & oxygenates, LPG, etc. in a refinery. Increasing unit capacity and improving product yields as well as qualities such as gasoline RON have dramatic impact on the refinery economics. FCCUs are often debottlenecked significantly beyond their original design capacities. Depending upon the unit configuration, operating conditions, and feedstock quality, the FCC unit can have a variety of bottlenecks. While some of these are aimed to increase the feed rate, improve the conversion, etc., the others are aimed to improve the reliability of the equipment or overall unit. Apart from investment cost, the other factors considered generally while evaluating the debottlenecking options are shutdown days, faster payback, risk on investment, etc. A low-cost solution such as replacement of feed injectors, air distributor, steam distributors, spent catalyst distributor, efficient cyclone system, etc. are the preferred way of upgrading FCCU. It also has lower lead time from idea inception to implementation. This paper discusses various bottlenecks generally encountered in FCCU and presents a case study on improvement of performance of one of the FCCUs in IndianOil through implementation of cost-effective technical solution including use of improved internals in Reactor-Regeneration (R-R) section. After implementation reduction in regenerator air, gas superficial velocity in regenerator and cyclone velocities by about 10% and improvement of CLO yield from 10 to 6 wt% have been achieved. By ensuring proper pressure balance and optimum immersion of cyclone dipleg in the standpipe, frequent formation of perforations in regenerator cyclones could be addressed which in turn improved the unit on-stream factor.

Keywords: FCC, low-cost, revamp, debottleneck, internals, distributors, cyclone, dipleg

Procedia PDF Downloads 185