Search results for: Loop-Mediated Isothermal Amplification (LAMP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 529

Search results for: Loop-Mediated Isothermal Amplification (LAMP)

109 Relationship of Epidermal Growth Factor Receptor Gene Mutations Andserum Levels of Ligands in Non-Small Cell Lung Carcinoma Patients

Authors: Abdolamir Allameh, Seyyed Mortaza Haghgoo, Adnan Khosravi, Esmaeil Mortaz, Mihan Pourabdollah-Toutkaboni, Sharareh Seifi

Abstract:

Non-Small Cell Lung Carcinoma (NSCLC) is associated with a number of gene mutations in epidermal growth factor receptor (EGFR). The prognostic significance of mutations in exons 19 and 21, together with serum levels of EGFR, amphiregulin (AR), and Transforming Growth Factor-alpha (TGF-α) are implicated in diagnosis and treatment. The aim of this study was to examine the relationship of EGFR mutations in selected exons with the expression of relevant ligands in sera samples of NSCLC patients. For this, a group of NSCLC patients (n=98) referred to the hospital for lung surgery with a mean age of 59±10.5 were enrolled (M/F: 75/23). Blood specimen was collected from each patient. Besides, formalin fixed paraffin embedded tissues were processed for DNA extraction. Gene mutations in exons 19 and 21 were detected by direct sequencing, following DNA amplification which was done by PCR (Polymerase Chain Reaction). Also, serum levels of EGFR, AR, and TGF-α were measured by ELISA. The results of our study show that EGFR mutations were present in 37% of Iranian NSCLC patients. The most frequently identified mutations were deletions in exon 19 (72.2%) and substitutions in exon 21 (27.8%). The most frequently identified alteration, which is considered as a rare mutation, was the E872K mutation in exon 21, which was found in 90% (9 out of 10) cases. EGFR mutation detected in exon 21 was significantly (P<0.05) correlated with the levels of its ligands, EGFR and TGF-α in serum samples. Furthermore, it was found that increased serum AR (>3pg/ml) and TGF-α (>10.5 pg/ml) were associated with shorter overall survival (P<0.05). The results clearly showed a close relationship between EGFR mutations and serum EGFR and serum TGF-α. Increased serum EGFR was associated with TGF-α and AR and linked to poor prognosis of NSCLC. These findings are implicated in clinical decision-making related to EGFR-Tyrosine kinase inhibitors (TKIs).

Keywords: lung cancer, Iranian patients, epidermal growth factor, mutation, prognosis

Procedia PDF Downloads 38
108 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 371
107 DNA Fingerprinting of Some Major Genera of Subterranean Termites (Isoptera) (Anacanthotermes, Psammotermes and Microtermes) from Western Saudi Arabia

Authors: AbdelRahman A. Faragalla, Mohamed H. Alqhtani, Mohamed M. M.Ahmed

Abstract:

Saudi Arabia has currently been beset by a barrage of bizarre assemblages of subterranean termite fauna, inflicting heavy catastrophic havocs on human valued properties in various homes, storage facilities, warehouses, agricultural and horticultural crops including okra, sweet pepper, tomatoes, sorghum, date palm trees, citruses and many forest domains and green lush desert oases. The most pressing urgent priority is to use modern technologies to alleviate the painstaking obstacle of taxonomic identification of these injurious noxious pests that might lead to effective pest control in both infested agricultural commodities and field crops. Our study has indicated the use of DNA fingerprinting technologies, in order to generate basic information of the genetic similarity between 3 predominant families containing the most destructive termite species. The methodologies included extraction and DNA isolation from members of the major families and the use of randomly selected primers and PCR amplifications with the nucleotide sequences. GC content and annealing temperatures for all primers, PCR amplifications and agarose gel electrophoresis were also conducted in addition to the scoring and analysis of Random Amplification Polymorphic DNA-PCR (RAPDs). A phylogenetic analysis for different species using statistical computer program on the basis of RAPD-DNA results, represented as a dendrogram based on the average of band sharing ratio between different species. Our study aims to shed more light on this intriguing subject, which may lead to an expedited display of the kinship and relatedness of species in an ambitious undertaking to arrive at correct taxonomic classification of termite species, discover sibling species, so that a logistic rational pest management strategy could be delineated.

Keywords: DNA fingerprinting, Western Saudi Arabia, DNA primers, RAPD

Procedia PDF Downloads 384
106 Environmental Performance of Different Lab Scale Chromium Removal Processes

Authors: Chiao-Cheng Huang, Pei-Te Chiueh, Ya-Hsuan Liou

Abstract:

Chromium-contaminated wastewater from electroplating industrial activity has been a long-standing environmental issue, as it can degrade surface water quality and is harmful to soil ecosystems. The traditional method of treating chromium-contaminated wastewater has been to use chemical coagulation processes. However, this method consumes large amounts of chemicals such as sulfuric acid, sodium hydroxide, and sodium bicarbonate in order to remove chromium. However, a series of new methods for treating chromium-containing wastewater have been developed. This study aimed to compare the environmental impact of four different lab scale chromium removal processes: 1.) chemical coagulation process (the most common and traditional method), in which sodium metabisulfite was used as reductant, 2.) electrochemical process using two steel sheets as electrodes, 3.) reduction by iron-copper bimetallic powder, and 4.) photocatalysis process by TiO2. Each process was run in the lab, and was able to achieve 100% removal of chromium in solution. Then a Life Cycle Assessment (LCA) study was conducted based on the experimental data obtained from four different case studies to identify the environmentally preferable alternative to treat chromium wastewater. The model used for calculating the environmental impact was TRACi, and the system scope includes the production phase and use phase of chemicals and electricity consumed by the chromium removal processes, as well as the final disposal of chromium containing sludge. The functional unit chosen in this study was the removal of 1 mg of chromium. Solution volume of each case study was adjusted to 1 L in advance and the chemicals and energy consumed were proportionally adjusted. The emissions and resources consumed were identified and characterized into 15 categories of midpoint impacts. The impact assessment results show that the human ecotoxicity category accounts for 55 % of environmental impact in Case 1, which can be attributed to the sulfuric acid used for pH adjustment. In Case 2, production of steel sheet electrodes is an energy-intensive process, thus contributed to 20 % of environmental impact. In Case 3, sodium bicarbonate is used as an anti-corrosion additive, which results mainly in 1.02E-05 Comparative Toxicity Unit (CTU) in the human toxicity category and 0.54E-05 (CTU) in acidification of air. In Case 4, electricity consumption for power supply of UV lamp gives 5.25E-05 (CTU) in human toxicity category, 1.15E-05 (kg Neq) in eutrophication. In conclusion, Case 3 and Case 4 have higher environmental impacts than Case 1 and Case 2, which can be attributed mostly to higher energy and chemical consumption, leading to high impacts in the global warming and ecotoxicity categories.

Keywords: chromium, lab scale, life cycle assessment, wastewater

Procedia PDF Downloads 223
105 The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures

Authors: Radhwane Boudjelthia

Abstract:

The most recent earthquakes that occurred in the world and particularly in Algeria, have killed thousands of people and severe damage. The example that is etched in our memory is the last earthquake in the regions of Boumerdes and Algiers (Boumerdes earthquake of May 21, 2003). For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation" to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes.

Keywords: earthquake, building, seismic forces, displacement, resonance, response

Procedia PDF Downloads 83
104 The Effectiveness of an Educational Program on Awareness of Cancer Signs, Symptoms, and Risk Factors among School Students in Oman

Authors: Khadija Al-Hosni, Moon Fai Chan, Mohammed Al-Azri

Abstract:

Background: Several studies suggest that most school-age adolescents are poorly informed on cancer warning signs and risk factors. Providing adolescents with sufficient knowledge would increase their awareness in adulthood and improve seeking behaviors later. Significant: The results will provide a clear vision in assisting key decision-makers in formulating policies on the students' awareness programs towards cancer. So, the likelihood of avoiding cancer in the future will be increased or even promote early diagnosis. Objectives: to evaluate the effectiveness of an education program designed to increase awareness of cancer signs and symptoms risk factors, improve the behavior of seeking help among school students in Oman, and address the barriers to obtaining medical help. Methods: A randomized controlled trial with two groups was conducted in Oman. A total of 1716 students (n=886/control, n= 830/education), aged 15-17 years, at 10th and 11th grade from 12 governmental schools 3 in governorates from 20-February-2022 to 12-May-2022. Basic demographic data were collected, and the Cancer Awareness Measure (CAM) was used as the primary outcome. Data were collected at baseline (T0) and 4 weeks after (T1). The intervention group received an education program about cancer's cause and its signs and symptoms. In contrast, the control group did not receive any education related to this issue during the study period. Non-parametric tests were used to compare the outcomes between groups. Results: At T0, the lamp was the most recognized cancer warning sign in control (55.0%) and intervention (55.2%) groups. However, there were no significant changes at T1 for all signs in the control group. In contrast, all sign outcomes were improved significantly (p<0.001) in the intervention group, the highest response was unexplained pain (93.3%). Smoking was the most recognized risk factor in both groups: (82.8% for control; 84.1% for intervention) at T0. However, there was no significant change in T1 for the control group, but there was for the intervention group (p<0.001), the highest identification was smoking cigarettes (96.5%). Too scared was the largest barrier to seeking medical help by students in the control group at T0 (63.0%) and T1 (62.8%). However, there were no significant changes in all barriers in this group. Otherwise, being too embarrassed (60.2%) was the largest barrier to seeking medical help for students in the intervention group at T0 and too scared (58.6%) at T1. Although there were reductions in all barriers, significant differences were found in six of ten only (p<0.001). Conclusion: The intervention was effective in improving students' awareness of cancer symptoms, warning signs (p<0.001), and risk factors (p<0.001 reduced the most addressed barriers to seeking medical help (p<0.001) in comparison to the control group. The Ministry of Education in Oman could integrate awareness of cancer within the curriculum, and more interventions are needed on the sociological part to overcome the barriers that interfere with seeking medical help.

Keywords: adolescents, awareness, cancer, education, intervention, student

Procedia PDF Downloads 46
103 Relationship between Structure of Some Nitroaromatic Pollutants and Their Degradation Kinetic Parameters in UV-VIS/TIO2 System

Authors: I. Nitoi, P. Oancea, M. Raileanu, M. Crisan, L. Constantin, I. Cristea

Abstract:

Hazardous organic compounds like nitroaromatics are frequently found in chemical and petroleum industries discharged effluents. Due to their bio-refractory character and high chemical stability cannot be efficiently removed by classical biological or physical-chemical treatment processes. In the past decades, semiconductor photocatalysis has been frequently applied for the advanced degradation of toxic pollutants. Among various semiconductors titania was a widely studied photocatalyst, due to its chemical inertness, low cost, photostability and nontoxicity. In order to improve optical absorption and photocatalytic activity of TiO2 many attempts have been made, one feasible approach consists of doping oxide semiconductor with metal. The degradation of dinitrobenzene (DNB) and dinitrotoluene (DNT) from aqueous solution under UVA-VIS irradiation using heavy metal (0.5% Fe, 1%Co, 1%Ni ) doped titania was investigated. The photodegradation experiments were carried out using a Heraeus laboratory scale UV-VIS reactor equipped with a medium-pressure mercury lamp which emits in the range: 320-500 nm. Solutions with (0.34-3.14) x 10-4 M pollutant content were photo-oxidized in the following working conditions: pH = 5-9; photocatalyst dose = 200 mg/L; irradiation time = 30 – 240 minutes. Prior to irradiation, the photocatalyst powder was added to the samples, and solutions were bubbled with air (50 L/hour), in the dark, for 30 min. Dopant type, pH, structure and initial pollutant concentration influence on the degradation efficiency were evaluated in order to set up the optimal working conditions which assure substrate advanced degradation. The kinetics of nitroaromatics degradation and organic nitrogen mineralization was assessed and pseudo-first order rate constants were calculated. Fe doped photocatalyst with lowest metal content (0.5 wt.%) showed a considerable better behaviour in respect to pollutant degradation than Co and Ni (1wt.%) doped titania catalysts. For the same working conditions, degradation efficiency was higher for DNT than DNB in accordance with their calculated adsobance constants (Kad), taking into account that degradation process occurs on catalyst surface following a Langmuir-Hinshalwood model. The presence of methyl group in the structure of DNT allows its degradation by oxidative and reductive pathways, while DNB is converted only by reductive route, which also explain the highest DNT degradation efficiency. For highest pollutant concentration tested (3 x 10-4 M), optimum working conditions (0.5 wt.% Fe doped –TiO2 loading of 200 mg/L, pH=7 and 240 min. irradiation time) assures advanced nitroaromatics degradation (ηDNB=89%, ηDNT=94%) and organic nitrogen mineralization (ηDNB=44%, ηDNT=47%).

Keywords: hazardous organic compounds, irradiation, nitroaromatics, photocatalysis

Procedia PDF Downloads 269
102 Phylogenetic Studies of Six Egyptian Sheep Breeds Using Cytochrome B

Authors: Othman Elmahdy Othman, Agnés Germot, Daniel Petit, Muhammad Khodary, Abderrahman Maftah

Abstract:

Recently, the control (D-loop) and cytochrome b (Cyt b) regions of mtDNA have received more attention due to their role in the genetic diversity and phylogenetic studies in different livestock which give important knowledge towards the genetic resource conservation. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. By using cytochrome B sequencing, we aimed to clarify the genetic affinities and phylogeny of six Egyptian sheep breeds. Blood samples were collected from 111 animals belonging to six Egyptian sheep breeds; Barki, Rahmani, Ossimi, Saidi, Sohagi and Fallahi. The total DNA was extracted and the specific primers were used for conventional PCR amplification of the cytochrome B region of mtDNA. PCR amplified products were purified and sequenced. The alignment of sequences was done using BioEdit software and DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 39 polymorphic sites leading to the formation of 29 haplotypes. The haplotype diversity in six tested breeds ranged from 0.643 in Rahmani breed to 0.871 in Barki breed. The lowest genetic distance was observed between Rahmani and Saidi (D: 1.436 and Dxy: 0.00127) while the highest distance was observed between Ossimi and Sohagi (D: 6.050 and Dxy: 0.00534). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of 111 analyzed samples were aligned with references sequences of different haplogroups; A, B, C, D and E. The phylogeny result showed the presence of four haplogroups; HapA, HapB, HapC and HapE in the examined samples whereas the haplogroup D was not found. The result showed that 88 out of 111 tested animals cluster with haplogroup B (79.28%), whereas 12 tested animals cluster with haplogroup A (10.81%), 10 animals cluster with haplogroup C (9.01%) and one animal belongs to haplogroup E (0.90%).

Keywords: phylogeny, genetic biodiversity, MtDNA, cytochrome B, Egyptian sheep

Procedia PDF Downloads 307
101 A Study to Explore the Effectiveness of an Educational Program on Awareness of Cancer Signs, Symptoms, and Risk Factors Among School Students in Oman

Authors: Khadija Al-Hosni, Moon Fai Chan, Mohammed Al-Azri

Abstract:

Background: Several studies suggest that most school-age adolescents are poorly informed on cancer warning signs and risk factors. Providing adolescents with sufficient knowledge would increase their awareness in adulthood and improve seeking behaviors later. Significant: The results will provide a clear vision in assisting key decision-makers in formulating policies on the students' awareness programs towards cancer. So, the likelihood of avoiding cancer in the future will be increased or even promote early diagnosis. Objectives: to evaluate the effectiveness of an education program designed to increase awareness of cancer signs and symptoms risk factors, improve the behavior of seeking help among school students in Oman, and address the barriers to obtaining medical help. Methods: A randomized controlled trial with two groups was conducted in Oman. A total of 1716 students (n=886/control, n= 830/education), aged 15-17 years, at 10th and 11th grade from 12 governmental schools 3 in governorates from 20-February-2022 to 12-May-2022. Basic demographic data were collected, and the Cancer Awareness Measure (CAM) was used as the primary outcome. Data were collected at baseline (T0) and 4 weeks after (T1). The intervention group received an education program about cancer's cause and its signs and symptoms. In contrast, the control group did not receive any education related to this issue during the study period. Non-parametric tests were used to compare the outcomes between groups. Results: At T0, the lamp was the most recognized cancer warning sign in the control (55.0%) and intervention (55.2%) groups. However, there were no significant changes at T1 for all signs in the control group. In contrast, all sign outcomes were improved significantly (p<0.001) in the intervention group, and the highest response was unexplained pain (93.3%). Smoking was the most recognized risk factor in both groups: (82.8% for control; 84.1% for intervention) at T0. However, there was no significant change in T1 for the control group, but there was for the intervention group (p<0.001), the highest identification was smoking cigarettes (96.5%). Too scared was the largest barrier to seeking medical help by students in the control group at T0 (63.0%) and T1 (62.8%). However, there were no significant changes in all barriers in this group. Otherwise, being too embarrassed (60.2%) was the largest barrier to seeking medical help for students in the intervention group at T0 and too scared (58.6%) at T1. Although there were reductions in all barriers, significant differences were found in six of ten only (p<0.001). Conclusion: The intervention was effective in improving students' awareness of cancer symptoms, warning signs (p<0.001), and risk factors (p<0.001 reduced the most addressed barriers to seeking medical help (p<0.001) in comparison to the control group. The Ministry of Education in Oman could integrate awareness of cancer within the curriculum, and more interventions are needed on the sociological part to overcome the barriers that interfere with seeking medical help.

Keywords: adolescents, awareness, cancer, education, intervention, student

Procedia PDF Downloads 63
100 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.

Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number

Procedia PDF Downloads 86
99 Targeting Mre11 Nuclease Overcomes Platinum Resistance and Induces Synthetic Lethality in Platinum Sensitive XRCC1 Deficient Epithelial Ovarian Cancers

Authors: Adel Alblihy, Reem Ali, Mashael Algethami, Ahmed Shoqafi, Michael S. Toss, Juliette Brownlie, Natalie J. Tatum, Ian Hickson, Paloma Ordonez Moran, Anna Grabowska, Jennie N. Jeyapalan, Nigel P. Mongan, Emad A. Rakha, Srinivasan Madhusudan

Abstract:

Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n=331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p=0.002). In the ovarian cancer genome atlas (TCGA) cohort (n=498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p<0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n=1259), Mre11 overexpression was associated with poor PFS (p=0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.

Keywords: MRE11; XRCC1, ovarian cancer, platinum sensitization, synthetic lethality

Procedia PDF Downloads 85
98 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity

Procedia PDF Downloads 184
97 Photochemical Behaviour of Carbamazepine in Natural Waters

Authors: Fanny Desbiolles, Laure Malleret, Isabelle Laffont-Schwob, Christophe Tiliacos, Anne Piram, Mohamed Sarakha, Pascal Wong-Wah-Chung

Abstract:

Pharmaceuticals in the environment have become a very hot topic in the recent years. This interest is related to the large amounts dispensed and to their release in urine or faeces from treated patients, resulting in their ubiquitous presence in water resources and wastewater treatment plants (WWTP) effluents. Thereby, many studies focused on the prediction of pharmaceuticals’ behaviour, to assess their fate and impacts in the environment. Carbamazepine is a widely consumed psychotropic pharmaceutical, thus being one of the most commonly detected drugs in the environment. This organic pollutant was proved to be persistent, especially with respect to its non-biodegradability, rendering it recalcitrant to usual biological treatment processes. Consequently, carbamazepine is very little removed in WWTP with a maximum abatement rate of 5 % and is then often released in natural surface waters. To better assess the environmental fate of carbamazepine in aqueous media, its photochemical transformation was undertaken in four natural waters (two French rivers, the Berre salt lagoon, Mediterranean Sea water) representative of coastal and inland water types. Kinetic experiments were performed in the presence of light using simulated solar irradiation (Xe lamp 300W). Formation of short-lifetime species was highlighted using chemical trap and laser flash photolysis (nanosecond). Identification of transformation by-products was assessed by LC-QToF-MS analyses. Carbamazepine degradation was observed after a four-day exposure and an abatement of 20% maximum was measured yielding to the formation of many by-products. Moreover, the formation of hydroxyl radicals (•OH) was evidenced in waters using terephthalic acid as a probe, considering the photochemical instability of its specific hydroxylated derivative. Correlations were implemented using carbamazepine degradation rate, estimated hydroxyl radical formation and chemical contents of waters. In addition, laser flash photolysis studies confirmed •OH formation and allowed to evidence other reactive species, such as chloride (Cl2•-)/bromine (Br2•-) and carbonate (CO3•-) radicals in natural waters. Radicals mainly originate from dissolved phase and their occurrence and abundance depend on the type of water. Rate constants between reactive species and carbamazepine were determined by laser flash photolysis and competitive reactions experiments. Moreover, LC-QToF-MS analyses of by-products help us to propose mechanistic pathways. The results will bring insights to the fate of carbamazepine in various water types and could help to evaluate more precisely potential ecotoxicological effects.

Keywords: carbamazepine, kinetic and mechanistic approaches, natural waters, photodegradation

Procedia PDF Downloads 330
96 In vitro and in vivo Potential Effect of the N-Acylsulfonamide Bis-oxazolidin-2-ones on Toxoplasma gondii

Authors: Benlaifa Meriem, Berredjem Hajira, Bouasla Radia, Berredjem Malika, Djebar Med Reda

Abstract:

Toxoplasmosis is a cosmopolitan infection due to Toxoplasma gondii (T.gondii). It is a significant cause of congenital disease and an important opportunistic pathogen which has become a worldwide increasing problem due to the AIDS epidemic. Current available drugs do not give satisfactory results and often have only a static and several adverse side effects as it is the case of pyrimethamine. So, the need to develop and evaluate new drugs is critical. The purpose of this study is to investigate the in vitro and in vivo effects of the new chiral N-acylsulfonamide bis-oxazolidin-2-ones on T.gondii. In this study, anti-T.gondii RH strain activities, of two new chiral N-acylsulfonamide bis-oxazolidin-2-ones were evaluated in vitro, using a MRC-5 fibroblast tissue cultures to determine the concentration that inhibit parasite multiplication by 50% (IC50) of each drug and in vivo, by PCR detection of the tachyzoites in mice ascites after new molecules treatment, using the 35-fold repetitive B1 gene of T.gondii. The in vitro results demonstrated that the treatment with the tested molecules decreased the amount of tachyzoites in cell culture in a dose-dependent manner. The inhibition was complete for concentrations over 4 mg/ml. The IC50 of Mol 1 and Mol 2 were 1.5 and 3 mg/ml, respectively, and were quite similar to the control one (2 mg/ml). The Mol 1 was highly active against T.gondii in cell cultures than Mol 2; these results were similar to those of sulfadiazine-treated group (p < 0.05). Toxoplasma-specific DNA was demonstrated in all ascites samples from infected mice of the different tested groups. Mol 1 showed better effect than Mol 2, but it did not completely inhibit the parasite proliferation. The intensity of amplification products increased when the treatment started late after infection. These findings suggest continuous parasite replication despite the treatment. In conclusion, our results showed a promising treatment effect of the tested molecules and suggest that in vitro, the Mol 1, and Mol 2 have a dose-dependent effect and a high cytotoxicity on the studied cells. The present study revealed that concentration and duration of tested molecules treatment are major factors that influence the course of Toxoplasma infection in infected mice.

Keywords: cytotoxicity, PCR, sulfonamide, Toxoplasma gondii

Procedia PDF Downloads 463
95 Investigation p53 Codon 72 Polymorphism and miR-146a rs2910164 Polymorphism in Breast Cancer

Authors: Marjan Moradi Fard, Hossein Rassi, Masoud Houshmand

Abstract:

Aim: Breast cancer is one of the most common cancers affecting the morbidity and mortality of Iranian women. This disease is a result of collective alterations of oncogenes and tumor suppressor genes. Studies have produced conflicting results concerning the role of p53 codon 72 polymorphism (G>C) and miR-146a rs2910164 polymorphism (G>C) on the risk of several cancers; therefore, a research was performed to estimate the association between the p53 codon 72 polymorphism and miR-146a rs2910164 polymorphism in breast cancer. Methods and Materials: A total of 45 archival breast cancer samples from khatam hospital and 40 healthy samples were collected. Verification of each cancer reported in a relative was sought through the pathology reports of the hospital records. Then, DNA extracted from all samples by standard methods and p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes were analyzed using multiplex PCR. The tubules, mitotic activity, necrosis, polymorphism and grade of breast cancer were staged by Nottingham histological grading and immunohistochemical staining of the sections from the paraffin wax embedded tissues for the expression of ER, PR and p53 was carried out using a standard method. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Results: Successful DNA extraction was assessed by PCR amplification of b-actin gene (99 bp). According to the results, p53 GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of breast cancer in the study population. In this study, we established that tumors of p53 GG genotype and miR-146a rs2910164 CC genotype exhibited higher mitotic activity, higher polymorphism, lower necrosis, lower tubules, higher ER- and PR-negatives and lower TP53-positives than the other genotypes. Conclusion: The present study provided preliminary evidence that a p53 GG genotype may effect breast cancer risk in the study population, interacting synergistically with miR-146a rs2910164 CC genotype. Our results demonstrate that the testing of p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes in combination with clinical parameters can serve as major risk factors in the early identification of breast cancers.

Keywords: breast cancer, p53 codon 72 polymorphism, miR-146a rs2910164 polymorphism, genotypes

Procedia PDF Downloads 301
94 Genotypic Identification of Oral Bacteria Using 16S rRNA in Children with and without Early Childhood Caries in Kelantan, Malaysia

Authors: Zuliani Mahmood, Thirumulu Ponnuraj Kannan, Yean Yean Chan, Salahddin A. Al-Hudhairy

Abstract:

Caries is the most common childhood disease which develops due to disturbances in the physiological equilibrium in the dental plaque resulting in demineralization of tooth structures. Plaque and dentine samples were collected from three different tooth surfaces representing caries progression (intact, over carious lesion and dentine) in children with early childhood caries (ECC, n=36). In caries free (CF) children, plaque samples were collected from sound tooth surfaces at baseline and after one year (n=12). The genomic DNA was extracted from all samples and subjected to 16S rRNA PCR amplification. The end products were cloned into pCR®2.1-TOPO® Vector. Five randomly selected positive clones collected from each surface were sent for sequencing. Identification of the bacterial clones was performed using BLAST against GenBank database. In the ECC group, the frequency of Lactobacillus sp. detected was significantly higher in the dentine surface (p = 0.031) than over the cavitated lesion. The highest frequency of bacteria detected in the intact surfaces was Fusobacterium nucleatum subsp. polymorphum (33.3%) while Streptococcus mutans was detected over the carious lesions and dentine surfaces at a frequency of 33.3% and 52.7% respectively. Fusobacterium nucleatum subsp. polymorphum was also found to be highest in the CF group (41.6%). Follow up at the end of one year showed that the frequency of Corynebacterium matruchotii detected was highest in those who remained caries free (16.6%), while Porphyromonas catoniae was highest in those who developed caries (25%). In conclusion, Streptococcus mutans and Porphyromonas catoniae are strongly associated with caries progression, while Lactobacillus sp. is restricted to deep carious lesions. Fusobacterium nucleatum subsp. polymorphum and Corynebacterium matruchotii may play a role in sustaining the healthy equilibrium in the dental plaque. These identified bacteria show promise as potential biomarkers in diagnosis which could help in the management of dental caries in children.

Keywords: early childhood caries, genotypic identification, oral bacteria, 16S rRNA

Procedia PDF Downloads 240
93 CFD Simulation of the Pressure Distribution in the Upper Airway of an Obstructive Sleep Apnea Patient

Authors: Christina Hagen, Pragathi Kamale Gurmurthy, Thorsten M. Buzug

Abstract:

CFD simulations are performed in the upper airway of a patient suffering from obstructive sleep apnea (OSA) that is a sleep related breathing disorder characterized by repetitive partial or complete closures of the upper airways. The simulations are aimed at getting a better understanding of the pathophysiological flow patterns in an OSA patient. The simulation is compared to medical data of a sleep endoscopic examination under sedation. A digital model consisting of surface triangles of the upper airway is extracted from the MR images by a region growing segmentation process and is followed by a careful manual refinement. The computational domain includes the nasal cavity with the nostrils as the inlet areas and the pharyngeal volume with an outlet underneath the larynx. At the nostrils a flat inflow velocity profile is prescribed by choosing the velocity such that a volume flow rate of 150 ml/s is reached. Behind the larynx at the outlet a pressure of -10 Pa is prescribed. The stationary incompressible Navier-Stokes equations are numerically solved using finite elements. A grid convergence study has been performed. The results show an amplification of the maximal velocity of about 2.5 times the inlet velocity at a constriction of the pharyngeal volume in the area of the tongue. It is the same region that also shows the highest pressure drop from about 5 Pa. This is in agreement with the sleep endoscopic examinations of the same patient under sedation showing complete contractions in the area of the tongue. CFD simulations can become a useful tool in the diagnosis and therapy of obstructive sleep apnea by giving insight into the patient’s individual fluid dynamical situation in the upper airways giving a better understanding of the disease where experimental measurements are not feasible. Within this study, it could been shown on one hand that constriction areas within the upper airway lead to a significant pressure drop and on the other hand a good agreement of the area of pressure drop and the area of contraction could be shown.

Keywords: biomedical engineering, obstructive sleep apnea, pharynx, upper airways

Procedia PDF Downloads 266
92 Characterization of Fungal Endophytes in Leaves, Stems and Roots of African Yam Bean (Sphenostylis sternocarpa Hochst ex. A. Rich Harms)

Authors: Iyabode A. Kehinde, Joshua O. Oyekanmi, Jumoke T. Abimbola, Olajumoke E. Ayanda

Abstract:

African yam bean (AYB), (Sphenostylis stenocarpa) is a leguminous crop that provides nutritionally rich seeds, tubers and leaves for human consumption. AYB potentials as an important food security crop is yet to be realized and thus classified as underutilized crop. Underutilization of the crop has been partly associated with scarce information on the incidence and characterization of fungal endophytes infecting vascular parts of AYB. Accurate and robust detection of these endophytic fungi is essential for diagnosis, modeling, surveillance and protection of germplasm (seed) health. This work aimed at isolating and identifying fungal endophytes associated with leaves, stems and roots of AYB in Ogun State, Nigeria. This study investigated both cultural and molecular properties of endophytic fungi in AYB for its characterization and diversity. Fungal endophytes were isolated and culturally identified. DNA extraction, PCR amplification using ITS primers and analyses of nucleotide sequences of ribosomal DNA fragments were conducted on selected isolates. BLAST analysis was conducted on consensus nucleotide sequences of 28 out of 30 isolates and results showed similar homology with genera of Rhizopus, Cunninghamella, Fusarium, Aspergillus, Penicillium, Alternaria, Diaporthe, Nigrospora, Purpureocillium, Corynespora, Magnaporthe, Macrophomina, Curvularia, Acrocalymma, Talaromyces and Simplicillium. Slight similarity was found with endophytes associated with soybean. Phylogenetic analysis by maximum likelihood method showed high diversity among the general. These organisms have high economic importance in crop improvement. For an instance, Purpureocillium lilacinum showed high potential in control of root rot caused by nematodes in tomatoes. Though some can be pathogens, but many of the fungal endophytes have beneficial attributes to plant in host health, uptake of nutrients, disease suppression, and host immunity.

Keywords: molecular characterization, African Yam Bean, fungal endophyte, plant parts

Procedia PDF Downloads 161
91 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes

Authors: Mohsen Tehranizadeh, Mahboobe Forghani

Abstract:

The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.

Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design

Procedia PDF Downloads 395
90 Isolation, Characterization and Screening of Antimicrobial Producing Actinomycetes from Sediments of Persian Gulf

Authors: H. Alijani, M. Jabari, S. Matroodi, H. Zolqarnein, A. Sharafi, I. Zamani

Abstract:

Actinomycetes, Gram-positive bacteria, are interesting as a main producer of secondary metabolites and are important industrially and pharmaceutically. The marine environment is a potential source for new actinomycetes, which can provide novel bioactive compounds and industrially important enzymes. The aims of this study were to isolate and identify novel actinomycetes from Persian Gulf sediments and screen these isolates for the production of secondary metabolites, especially antibiotics, Using phylogenetic (16S rRNA gene sequence), morphological and biochemical analyses. 15 different actinomycete strains from Persian Gulf sediments at a depth of 5-10 m were identified. DNA extraction was done using Cinnapure DNA Kit. PCR amplification of 16S rDNA gene was performed using F27 and R1492 primers. Phylogenetic tree analysis was performed using the MEGA 6 software. Most of the isolated strains belong to the genus namely Streptomyces (14), followed by Nocardiopsis (1). Antibacterial assay of the isolates supernatant was performed using a standard disc diffusion assay with replication (n=3). The results of disk diffusion assay showed that most active strain against Proteus volgaris and Bacillus cereus was AMJ1 (16.46±0.2mm and 13.78±0.2mm, respectively), against Salmonella sp. AMJ7 was the most effective strain (10.13±0.2mm), and AMJ1 and AHA5 showed more inhibitory activity against Escherichia coli (8.04±0.02 mm and 8.2±0.03 ). The AMJ6 strain showed best antibacterial activity against Klebsiella sp. (8.03±0.02mm). Antifungal activity of AMJ2 showed that it was most active strain against complex (16.05±0.02mm) and against Aspergillus flavus strain AMJ1 was most active strain (16.4±0.2mm) and highest antifungal activity against Trichophyton mentagrophytes, Microsporum gyp serum and Candida albicans, were shown by AHA1 (21.03±0.02mm), AHA3 and AHA7 (18±0.03mm), AMJ6 (21.03±0.2mm) respectively. Our results revealed that the marine actinomycetes of Persian Gulf sediments were potent source of novel antibiotics and bioactive compounds and indicated that the antimicrobial metabolites were extracellular. Most of the secondary metabolites and antibiotics are extracellular in nature and extracellular products of actinomycetes show potent antimicrobial activities.

Keywords: antibacterial activity, antifungal activity, marine actinomycetes, Persian Gulf

Procedia PDF Downloads 257
89 New Insulation Material for Solar Thermal Collectors

Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka

Abstract:

1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.

Keywords: clay, insulation material, polystyrene, solar collector, straw

Procedia PDF Downloads 421
88 Evaluation of Differential Interaction between Flavanols and Saliva Proteins by Diffusion and Precipitation Assays on Cellulose Membranes

Authors: E. Obreque-Slier, V. Contreras-Cortez, R. López-Solís

Abstract:

Astringency is a drying, roughing, and sometimes puckering sensation that is experienced on the various oral surfaces during or immediately after tasting foods. This sensation has been closely related to the interaction and precipitation between salivary proteins and polyphenols, specifically flavanols or proanthocyanidins. In addition, the type and concentration of proanthocyanidin influences significantly the intensity of the astringency and consequently the protein/proanthocyanidin interaction. However, most of the studies are based on the interaction between saliva and highly complex polyphenols, without considering the effect of monomeric proanthoancyanidins present in different foods. The aim of this study was to evaluate the effect of different monomeric proanthocyanidins on the diffusion and precipitation of salivary proteins. Thus, solutions of catechin, epicatechin, epigallocatechin and gallocatechin (0, 2.0, 4.0, 6.0, 8.0 and 10 mg/mL) were mixed with human saliva (1: 1 v/v). After incubation for 5 min at room temperature, 15 µL aliquots of each mix were dotted on a cellulose membrane and allowed to dry spontaneously at room temperature. The membrane was fixed, rinsed and stained for proteins with Coomassie blue. After exhaustive washing in 7% acetic acid, the membrane was rinsed once in distilled water and dried under a heat lamp. Both diffusion area and stain intensity of the protein spots were semiqualitative estimates for protein-tannin interaction (diffusion test). The rest of the whole saliva-phenol solution mixtures of the diffusion assay were centrifuged, and 15-μL aliquots from each of the supernatants were dotted on a cellulose membrane. The membrane was processed for protein staining as indicated above. The blue-stained area of protein distribution corresponding to each of the extract dilution-saliva mixtures was quantified by Image J 1.45 software. Each of the assays was performed at least three times. Initially, salivary proteins display a biphasic distribution on cellulose membranes, that is, when aliquots of saliva are placed on absorbing cellulose membranes, and free diffusion of saliva is allowed to occur, a non-diffusible protein fraction becomes surrounded by highly diffusible salivary proteins. In effect, once diffusion has ended, a protein-binding dye shows an intense blue-stained roughly circular area close to the spotting site (non-diffusible fraction) (NDF) which becomes surrounded by a weaker blue-stained outer band (diffusible fraction) (DF). Likewise, the diffusion test showed that epicatechin caused the complete disappearance of DF from saliva with 2 mg/mL. Also, epigallocatechin and gallocatechin caused a similar effect with 4 mg/mL, while catechin generated the same effect at 8 mg/mL. In the precipitation test, the use of epicatechin and gallocatechin generated evident precipitates at the bottom of the Eppendorf tubes. In summary, the flavanol type differentially affects the diffusion and precipitation of saliva, which would affect the sensation of astringency perceived by consumers.

Keywords: astringency, polyphenols, tannins, tannin-protein interaction

Procedia PDF Downloads 167
87 Recirculation Type Photocatalytic Reactor for Degradation of Monocrotophos Using TiO₂ and W-TiO₂ Coated Immobilized Clay Beads

Authors: Abhishek Sraw, Amit Sobti, Yamini Pandey, R. K. Wanchoo, Amrit Pal Toor

Abstract:

Monocrotophos (MCP) is a widely used pesticide in India, which belong to an extremely toxic organophosphorus family, is persistent in nature and its toxicity is widely reported in all environmental segments in the country. Advanced Oxidation Process (AOP) is a promising solution to the problem of water pollution. TiO₂ is being widely used as a photocatalyst because of its many advantages, but it has a large band gap, due to which it is modified using metal and nonmetal dopant to make it active under sunlight and visible light. The use of nanosized powdered catalysts makes the recovery process extremely complicated. Hence the aim is to use low cost, easily available, eco-friendly clay material in form of bead as the support for the immobilization of catalyst, to solve the problem of post-separation of suspended catalyst from treated water. A recirculation type photocatalytic reactor (RTPR), using ultraviolet light emitting source (blue black lamp) was designed which work effectively for both suspended catalysts and catalyst coated clay beads. The bare, TiO₂ and W-TiO₂ coated clay beads were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and N₂ adsorption–desorption measurements techniques (BET) for their structural, textural and electronic properties. The study involved variation of different parameters like light conditions, recirculation rate, light intensity and initial MCP concentration under UV and sunlight for the degradation of MCP. The degradation and mineralization studies of the insecticide solution were performed using UV-Visible spectrophotometer, and COD vario-photometer and GC-MS analysis respectively. The main focus of the work lies in checking the recyclability of the immobilized TiO₂ over clay beads in the developed RTPR up to 30 continuous cycles without reactivation of catalyst. The results demonstrated the economic feasibility of the utilization of developed RTPR for the efficient purification of pesticide polluted water. The prepared TiO₂ clay beads delivered 75.78% degradation of MCP under UV light with negligible catalyst loss. Application of W-TiO₂ coated clay beads filled RTPR for the degradation of MCP under sunlight, however, shows 32% higher degradation of MCP than the same system based on undoped TiO₂. The COD measurements of TiO₂ coated beads led to 73.75% COD reduction while W-TiO₂ resulted in 87.89% COD reduction. The GC-MS analysis confirms the efficient breakdown of complex MCP molecules into simpler hydrocarbons. This supports the promising application of clay beads as a support for the photocatalyst and proves its eco-friendly nature, excellent recyclability, catalyst holding capacity, and economic viability.

Keywords: immobilized clay beads, monocrotophos, recirculation type photocatalytic reactor, TiO₂

Procedia PDF Downloads 138
86 Efficacy of CAM Methods for Pain Reduction in Acute Non-specific Lower Back Pain

Authors: John Gaber

Abstract:

Objectives: Complementary and alternative medicine (CAM) is a medicine or health practice that is used alongside conventional practice. Nowadays, CAM is commonly used in North America and other countries, and there is a need for more scientific study to understand its efficacy in different clinical cases. This retrospective study explores the effectiveness and recovery time of CAMs such as cupping, acupuncture, and sotai to treat cases of non-specific low back pain (ANLBP). Methods: We assessed the effectiveness of acupuncture, cupping, and sotai methods on pain and for the treatment of ANLBP. We have compared the magnitude of pain relief using a pain scale assessment method to compare the efficacy of each treatment. The Face Pain Scale assessment was conducted before and 24 hours post-treatment. This retrospective study analyzed 40 patients and categorized them according to the treatment they received. The study included the control group, and the three intervention groups, each with ten patients. Each of the three intervention groups received one of the intervention methods. The first group received the cupping treatment, where cups were placed on the lower back of both sides on points: BL23, BL25, BL26, BL54, BL37, BL40, and BL57. After vacuuming, the cups will stay for 10-15 minutes under infrared light (IR) heating. IR heating is applied by an infrared heat lamp. The second group received the acupuncture treatment, placing needles on points: BL23, BL25, BL26, BL52BL54, GB30, BL37, BL40, BL57, BL59, BL60, and KI3. The needles will be simulated with IR light. The final group received the sotai treatment, a Japanese form of structural realignment that relieves pain, balance, and mobility -moving the body naturally and spontaneously towards a comfortable direction by focusing on the inner feeling and synchronizing with the patient’s breathing. The SPSS statistical software was used to analyze the data using repeated-measures ANOVA. The data collected demonstrates the change in the FPS assessment method value over the course of treatment. p<0.05 was considered statistically significant. Results: In the cupping, acupuncture, and sotai therapy groups, the mean of the FPS value reduced from 8.7±1.2, 8.8±1.2, 9.0±0.8 before the intervention to 3.5±1.4, 4.3±1.4, 3.3±1.3, 24 hours after the intervention, respectively. The data collected shows that the CAM methods included in this study all show improvements in pain relief 24 hours after treatment. Conclusion: Complementary and alternative medicine were developed to treat injuries and illnesses with the whole body in mind, designed to be used in addition to standard treatments. The data above shows that the use of these treatments can have a pain-relieving effect, but more research should be done on the matter, as finding CAM methods that are efficacious is crucial in the landscape of health sciences.

Keywords: acupuncture, cupping, alternative medicine, rehabilitation, acute injury

Procedia PDF Downloads 24
85 Estimates of Freshwater Content from ICESat-2 Derived Dynamic Ocean Topography

Authors: Adan Valdez, Shawn Gallaher, James Morison, Jordan Aragon

Abstract:

Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport and modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116 km3/year. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff. The total climatological freshwater content is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity driven pycnocline as opposed to the temperature driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and remotely sensed dynamic ocean topography (DOT). In-situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time consuming. NASA’s Advanced Topographic Laser Altimeter System (ATLAS) derived dynamic ocean topography (DOT), and Air Expendable CTD (AXCTD) derived Freshwater Content are used to develop a linear regression model. In-situ data for the regression model is collected across the 150° West meridian, which typically defines the centerline of the Beaufort Gyre. Two freshwater content models are determined by integrating the freshwater volume between the surface and an isopycnal corresponding to reference salinities of 28.7 and 34.8. These salinities correspond to those of the winter pycnocline and total climatological freshwater content, respectively. Using each model, we determine the strength of the linear relationship between freshwater content and satellite derived DOT. The result of this modeling study could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non in-situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially reduce reliance on field deployment platforms to characterize physical ocean properties.

Keywords: ICESat-2, dynamic ocean topography, freshwater content, beaufort gyre

Procedia PDF Downloads 44
84 Role of P53 Codon 72 Polymorphism and miR-146a Rs2910164 Polymorphism in Breast Cancer

Authors: Marjan Moradi fard, Hossein Rassi, Masoud Houshmand

Abstract:

Aim: Breast cancer is one of the most common cancers affecting the morbidity and mortality of Iranian women. This disease is a result of collective alterations of oncogenes and tumor suppressor genes. Studies have produced conflicting results concerning the role of p53 codon 72 polymorphism (G>C) and miR-146a rs2910164 polymorphism (G>C) on the risk of several cancers; therefore, a research was performed to estimate the association between the p53 codon 72 polymorphism and miR-146a rs2910164 polymorphism in breast cancer. Methods and Materials: A total of 45 archival breast cancer samples from Khatam hospital and 40 healthy samples were collected. Verification of each cancer reported in a relative was sought through the pathology reports of the hospital records. Then, DNA extracted from all samples by standard methods and p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes were analyzed using multiplex PCR. The tubules, mitotic activity, necrosis, polymorphism and grade of breast cancer were staged by Nottingham histological grading and immunohistochemical staining of the sections from the paraffin wax embedded tissues for the expression of ER, PR and p53 was carried out using a standard method. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Results: Successful DNA extraction was assessed by PCR amplification of b-actin gene (99 bp). According to the results, p53 GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of breast cancer in the study population. In this study, we established that tumors of p53 GG genotype and miR-146a rs2910164 CC genotype exhibited higher mitotic activity, higher polymorphism, lower necrosis, lower tubules, higher ER- and PR-negatives and lower TP53-positives than the other genotypes. Conclusion: The present study provided preliminary evidence that a p53 GG genotype may effect breast cancer risk in the study population, interacting synergistically with miR-146a rs2910164 CC genotype. Our results demonstrate that the testing of p53 codon 72 polymorphism genotypes and miR-146a rs2910164 polymorphism genotypes in combination with clinical parameters can serve as major risk factors in the early identification of breast cancers.

Keywords: breast cancer, miR-146a rs2910164 polymorphism, p53 codon 72 polymorphism, tumors, pathology reports

Procedia PDF Downloads 342
83 CFD Simulation of Spacer Effect on Turbulent Mixing Phenomena in Sub Channels of Boiling Nuclear Assemblies

Authors: Shashi Kant Verma, S. L. Sinha, D. K. Chandraker

Abstract:

Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. The Computational Fluid Dynamics (CFD) methodology can be useful for investigating the spacer effect on turbulent mixing to predict turbulent flow behavior such as Dimensionless mixing scalar distributions, radial velocity and vortices in the nuclear fuel assembly. A Gibson and Launder (GL) Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-ε turbulence model that is widely used in industry. Despite being an isotropic turbulence model, it has also been used in the modeling of flow in rod bundles and to produce lateral velocities after thorough mixing of coolant fairly. Both these models have been solved numerically to find out fully developed isothermal turbulent flow in a 30º segment of a 54-rod bundle. Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to characterize the growth of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. The mixing with water has been numerically studied by means of steady state CFD simulations with the commercial code STAR-CCM+. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Turbulence intensity and hydraulic diameter of 1% and 5.9 mm respectively were used for the inlet. A passive scalar (Potassium nitrate) is injected through the mass fraction of 5.536 PPM at subchannel 2 (Upstream of the mixing section). Flow exited the domain through the pressure outlet boundary (0 Pa), and the reference pressure was 1 atm. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars.

Keywords: single-phase flow, turbulent mixing, tracer, sub channel analysis

Procedia PDF Downloads 175
82 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 174
81 Effect of Phenolic Acids on Human Saliva: Evaluation by Diffusion and Precipitation Assays on Cellulose Membranes

Authors: E. Obreque-Slier, F. Orellana-Rodríguez, R. López-Solís

Abstract:

Phenolic compounds are secondary metabolites present in some foods, such as wine. Polyphenols comprise two main groups: flavonoids (anthocyanins, flavanols, and flavonols) and non-flavonoids (stilbenes and phenolic acids). Phenolic acids are low molecular weight non flavonoid compounds that are usually grouped into benzoic (gallic, vanillinic and protocatechuic acids) and cinnamic acids (ferulic, p-coumaric and caffeic acids). Likewise, tannic acid is an important polyphenol constituted mainly by gallic acid. Phenolic compounds are responsible for important properties in foods and drinks, such as color, aroma, bitterness, and astringency. Astringency is a drying, roughing, and sometimes puckering sensation that is experienced on the various oral surfaces during or immediately after tasting foods. Astringency perception has been associated with interactions between flavanols present in some foods and salivary proteins. Despite the quantitative relevance of phenolic acids in food and beverages, there is no information about its effect on salivary proteins and consequently on the sensation of astringency. The objective of this study was assessed the interaction of several phenolic acids (gallic, vanillinic, protocatechuic, ferulic, p-coumaric and caffeic acids) with saliva. Tannic acid was used as control. Thus, solutions of each phenolic acids (5 mg/mL) were mixed with human saliva (1:1 v/v). After incubation for 5 min at room temperature, 15-μL aliquots of the mixtures were dotted on a cellulose membrane and allowed to diffuse. The dry membrane was fixed in 50 g/L trichloroacetic acid, rinsed in 800 mL/L ethanol and stained for protein with Coomassie blue for 20 min, destained with several rinses of 73 g/L acetic acid and dried under a heat lamp. Both diffusion area and stain intensity of the protein spots were semiqualitative estimates for protein-tannin interaction (diffusion test). The rest of the whole saliva-phenol solution mixtures of the diffusion assay were centrifuged and fifteen-μL aliquots of each supernatant were dotted on a cellulose membrane, allowed to diffuse and processed for protein staining, as indicated above. In this latter assay, reduced protein staining was taken as indicative of protein precipitation (precipitation test). The diffusion of the salivary protein was restricted by the presence of each phenolic acids (anti-diffusive effect), while tannic acid did not alter diffusion of the salivary protein. By contrast, phenolic acids did not provoke precipitation of the salivary protein, while tannic acid produced precipitation of salivary proteins. In addition, binary mixtures (mixtures of two components) of various phenolic acids with gallic acid provoked a restriction of saliva. Similar effect was observed by the corresponding individual phenolic acids. Contrary, binary mixtures of phenolic acid with tannic acid, as well tannic acid alone, did not affect the diffusion of the saliva but they provoked an evident precipitation. In summary, phenolic acids showed a relevant interaction with the salivary proteins, thus suggesting that these wine compounds can also contribute to the sensation of astringency.

Keywords: astringency, polyphenols, tannins, tannin-protein interaction

Procedia PDF Downloads 206
80 Transformation of ectA Gene From Halomonas elongata in Tomato Plant

Authors: Narayan Moger, Divya B., Preethi Jambagi, Krishnaveni C. K., Apsana M. R., B. R. Patil, Basvaraj Bagewadi

Abstract:

Salinity is one of the major threats to world food security. Considering the requirement for salt tolerant crop plants in the present study was undertaken to clone and transferred the salt tolerant ectA gene from marine ecosystem into agriculture crop system to impart salinity tolerance. Ectoine is the compatible solute which accumulates in the cell membrane, is known to be involved in salt tolerance activity in most of the Halophiles. The present situation is insisting to development of salt tolerant transgenic lines to combat abiotic stress. In this background, the investigation was conducted to develop transgenic tomato lines by cloning and transferring of ectA gene is an ectoine derivative capable of enzymatic action for the production of acetyl-diaminobutyric acid. The gene ectA is involved in maintaining the osmotic balance of plants. The PCR amplified ectA gene (579bp) was cloned into T/A cloning vector (pTZ57R/T). The construct pDBJ26 containing ectA gene was sequenced by using gene specific forward and reverse primers. Sequence was analyzed using BLAST algorithm to check similarity of ectA gene with other isolates. Highest homology of 99.66 per cent was found with ectA gene sequences of isolates Halomonas elongata with the available sequence information in NCBI database. The ectA gene was further sub cloned into pRI101-AN plant expression vector and transferred into E. coli DH5α for its maintenance. Further pDNM27 was mobilized into A. tumefaciens LBA4404 through tri-parental mating system. The recombinant Agrobacterium containing pDNM27 was transferred into tomato plants through In planta plant transformation method. Out of 300 seedlings, co-cultivated only twenty-seven plants were able to well establish under the greenhouse condition. Among twenty-seven transformants only twelve plants showed amplification with gene specific primers. Further work must be extended to evaluate the transformants at T1 and T2 generations for ectoine accumulation, salinity tolerance, plant growth and development and yield.

Keywords: salinity, computable solutes, ectA, transgenic, in planta transformation

Procedia PDF Downloads 46