Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: Lai Wenfang
2 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service
Authors: Lai Wenfang
Abstract:
Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.Keywords: artificial intelligence, natural language processing, machine learning, visualization
Procedia PDF Downloads 1741 Heavy Oil Recovery with Chemical Viscosity-Reduction: An Innovative Low-Carbon and Low-Cost Technology
Authors: Lin Meng, Xi Lu, Haibo Wang, Yong Song, Lili Cao, Wenfang Song, Yong Hu
Abstract:
China has abundant heavy oil resources, and thermal recovery is the main recovery method for heavy oil reservoirs. However, high energy consumption, high carbon emission and high production costs make heavy oil thermal recovery unsustainable. It is urgent to explore a replacement for developing technology. A low Carbon and cost technology of heavy oil recovery, chemical viscosity-reduction in layer (CVRL), is developed by the petroleum exploration and development research institute of Sinopec via investigated mechanisms, synthesized products, and improved oil production technologies, as follows: (1) Proposed a cascade viscous mechanism of heavy oil. Asphaltene and resin grow from free molecules to associative structures further to bulk aggregations by π - π stacking and hydrogen bonding, which causes the high viscosity of heavy oil. (2) Aimed at breaking the π - π stacking and hydrogen bond of heavy oil, the copolymer of N-(3,4-dihydroxyphenethyl) acryl amide and 2-Acrylamido-2-methylpropane sulfonic acid was synthesized as a viscosity reducer. It achieves a viscosity reduction rate of>80% without shearing for heavy oil (viscosity < 50000 mPa‧s), of which fluidity is evidently improved in the layer. (3) Synthesized hydroxymethyl acrylamide-maleic acid-decanol ternary copolymer self-assembly plugging agent. The particle size is 0.1 μm-2 mm adjustable, and the volume is 10-500 times controllable, which can achieve the efficient transportation of viscosity reducer to enriched oil areas. CVRL has applied 400 wells until now, increasing oil production by 470000 tons, saving 81000 tons of standard coal, reducing CO2 emissions by 174000 tons, and reducing production costs by 60%. It promotes the transformation of heavy oil towards low energy consumption, low carbon emissions, and low-cost development.Keywords: heavy oil, chemical viscosity-reduction, low carbon, viscosity reducer, plugging agent
Procedia PDF Downloads 73