Search results for: Lactobacillus plantarum
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 157

Search results for: Lactobacillus plantarum

67 Supplementation of Citrulline with Lactic Acid Bacteria Protects Foodborne Pathogens Adhesion and Improves the Cell Integrity on the Intestinal Epithelial Cell

Authors: Sze Wing Ho, Nagendra P. Shah

Abstract:

Lactic acid bacteria (LAB) have shown the beneficial effects on human gastrointestinal tract, such as protects diarrhea induced by lactose intolerance or enteric pathogens. Citrulline is a non-protein amino acid and also the precursors of arginine and nitric oxide, it has shown to enhance intestinal barrier function. Citrulline has shown to improve the growth of some strains of LAB, it is important for LAB to have a sufficient cell concentration to contribute the effects. Therefore, the aims of this study were to investigate the effect of combining citrulline with LAB on the anti-adhesion effect against pathogens and the effect on the cell integrity. The effect of citrulline on selected LAB was determined by incubating in 0%, 0.1% or 0.2% citrulline enriched MRS broth for 18 h. The adhesion ability of LAB and the anti-adhesion effect of LAB and citrulline against pathogens were performed on IPEC-J2 cell line. Transepithelial electrical resistance (TEER) assay was used to measure the tight junction (TJ) integrity. TJ proteins (claudin-1, occludin and zonula occluden-1 (ZO-1)) were determined by western blot analysis. It found that the growth of Lactobacillus helveticus ASCC 511 was significantly stimulated by 0.2% citrulline compared with control during 18 h fermentation. The adhesion of L. helveticus ASCC 511 and Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) ASCC 756 was increased when supplemented with citrulline. Citrulline has shown significant inhibitory effect on the adhesion of Escherichia coli PELI0480 (O157:H7), Shigella sonnei ATCC 25931, Staphyloccocus aureus CMCC26003 and Cronobacter sakazakii ATCC 29544. The anti-adhesion effect of L. helveticus ASCC 511, L. bulgaricus ASCC 756 and Lactobacillus paracasei ASCC 276 against Cronobacter sakazakii ATCC 29544 was significantly enhanced with citrulline supplementation. Treatments with citrulline and LAB were able to maintain the TEER of IPEC-J2 cell and shown the positive effect on the TJ proteins. In conclusion, citrulline had stimulating effect on some strains of LAB and determined to improve the adhesion of LAB on intestinal epithelial cell, to enhance the inhibitory effect on enteric pathogens adhesion as well as had beneficial effects on maintaining cell integrity. It implied LAB supplemented with citrulline might have advantageous effects on gastrointestinal tracts.

Keywords: citrulline, lactic acid bacteria, amino acid, anti-adhesion effect, cell integrity

Procedia PDF Downloads 210
66 Effect of Fat Percentage and Prebiotic Composition on Proteolysis, ACE-Inhibitory and Antioxidant Activity of Probiotic Yogurt

Authors: Mohammad B. HabibiNajafi, Saeideh Sadat Fatemizadeh, Maryam Tavakoli

Abstract:

In recent years, the consumption of functional foods, including foods containing probiotic bacteria, has come to notice. Milk proteins have been identified as a source of angiotensin-I-converting enzyme )ACE( inhibitory peptides and are currently the best-known class of bioactive peptides. In this study, the effects of adding prebiotic ingredients (inulin and wheat fiber) and fat percentage (0%, 2% and 3.5%) in yogurt containing probiotic Lactobacillus casei on physicochemical properties, degree of proteolysis, antioxidant and ACE-inhibitory activity within 21 days of storage at 5 ± 1 °C were evaluated. The results of statistical analysis showed that the application of prebiotic compounds led to a significant increase in water holding capacity, proteolysis and ACE-inhibitory of samples. The degree of proteolysis in yogurt increases as storage time elapses (P < 0.05) but when proteolysis exceeds a certain threshold, this trend begins to decline. Also, during storage time, water holding capacity reduced initially but increased thereafter. Moreover, based on our findings, the survival of Lactobacillus casei in samples treated with inulin and wheat fiber increased significantly in comparison to the control sample (P < 0.05) whereas the effect of fat percentage on the survival of probiotic bacteria was not significant (P = 0.095). Furthermore, the effect of prebiotic ingredients and the presence of probiotic cultures on the antioxidant activity of samples was significant (P < 0.05).

Keywords: probiotic yogurt, proteolysis, ACE-inhibitory, antioxidant activity

Procedia PDF Downloads 216
65 An Antidiabetic Dietary Defence Weapon: Oats and Milk Based Probiotic Fermented Product

Authors: Rameshwar Singh Seema

Abstract:

In today’s world where diabetes has become an epidemic, our aim was to potentiate the effect of probiotics by integrating probiotics with cereals to formulate composite foods using Lactobacillus rhamnosus GG (LGG) and Lactobacillus casei NCDC19 against type 2 diabetes. After optimizing the product by Response Surface Methodology, it was studied for their effect on induction and progression of type 2 diabetes in HFD-fed Wistar rats. After 9 weeks study, best results were shown by the group fed with oat and milk based product fermented with LGG and L. casei NCDC19 which resulted in a significant decrease in blood glucose, HBA1c, improved OGTT, oxidative stress, cholesterol and triglycerides level during progression study of type 2 diabetes. During induction study also, there was significant reduction in blood glucose level, oxidative stress, cholesterol level and triglycerides level but slightly less as compared to progression study. Real time PCR gene expression studies were done for 5 genes (GLUT-4, IRS-2, ppar-γ, TNF-α, IL-6) whose expression is directly related to type 2 diabetes. The relative fold change expression was increased in case of GLUT-4, IRS-2, ppar-γ and decreased in case of TNF-α and IL-6 during both induction and progression study of diabetes but more significantly during progression study. Hence it was concluded that oat and milk based probiotic fermented product showed the synergistic effect of probiotics and oats especially in case of progression of type 2 diabetes. The benefits of these probiotic formulations may be further validated by clinical trials.

Keywords: type 2 diabetes, LGG, L.casei NCDC19, food science

Procedia PDF Downloads 378
64 The Instablity of TetM Gene Encode Tetracycline Resistance Gene in Lactobacillus casei FNCC 0090

Authors: Sarah Devi Silvian, Hanna Shobrina Iqomatul Haq, Fara Cholidatun Nabila, Agustin Krisna Wardani

Abstract:

Bacteria ability to survive in antibiotic is controlled by the presence of gene that encodes the antibiotic resistance protein. The instability of the antibiotic resistance gene can be observed by exposing the bacteria under the lethal dose of antibiotic. Low concentration of antibiotic can induce mutation, which may take a role in bacterial adaptation through the antibiotic concentration. Lactobacillus casei FNCC 0090 is one of the probiotic bacteria that has an ability to survive in tetracycline by expressing the tetM gene. The aims of this study are to observe the possibilities of mutation happened in L.casei FNCC 0090 by exposing in sub-lethal dose of tetracycline and also observing the instability of the tetM gene by comparing the sequence between the wild type and mutant. L.casei FNCC 0090 has a lethal dose in 60 µg/ml, low concentration is applied to induce the mutation, the range from 10 µg/ml, 15 µg/ml, 30 µg/ml, 45 µg/ml, and 50 µg/ml. L.casei FNCC 0090 is exposed to the low concentration from lowest to the highest concentration to induce the adaptation. Plasmid is isolated from the highest concentration culture which is 50 µg/ml by using modified alkali lysis method with the addition of lysozyme. The tetM gene is isolated by using PCR (Polymerase Chain Reaction) method, then PCR amplicon is purified and sequenced. Sequencing is done on both samples, wild type and mutant. Both sequences are compared and the mutations can be traced in the presence of nucleotides changes. The changing of the nucleotides means that the tetM gene is instable.

Keywords: L. casei FNCC 0090, probiotic, tetM, tetracycline

Procedia PDF Downloads 151
63 Probiotics as an Alternative to Antibiotic Use in Pig Production

Authors: Z. C. Dlamini, R. L. S. Langa, A. I. Okoh, O. A. Aiyegoro

Abstract:

The indiscriminate usage of antibiotics in swine production have consequential outcomes; such as development of bacterial resistance to prophylactic antibiotics and possibility of antibiotic residues in animal products. The use of probiotics appears to be the most effective procedure with positive metabolic nutritional implications. The aim of this study was to investigate the efficacy of probiotic bacteria (Lactobacillus reuteri ZJ625, Lactobacillus reuteri VB4, Lactobacillus salivarius ZJ614 and Streptococcus salivarius NBRC13956) administered as direct-fed microorganisms in weaned piglets. 45 weaned piglets blocked by weight were dived into 5 treatments groups: diet with antibiotic, diet with no-antibiotic and no probiotic, and diet with probiotic and diet with combination of probiotics. Piglets performance was monitored during the trials. Faecal and Ileum samples were collected for microbial count analysis. Blood samples were collected from pigs at the end of the trial, for analysis of haematological, biochemical and IgG stimulation. The data was analysed by Split-Plot ANOVA using SAS statistically software (SAS 9.3) (2003). The difference was observed between treatments for daily weight and feed conversion ratio. No difference was observed in analysis of faecal samples in regards with bacterial counts, difference was observed in ileums samples with enteric bacteria colony forming unit being lower in P2 treatment group as compared with lactic acid and total bacteria. With exception of globulin and albumin, biochemistry blood parameters were not affected, likewise for haematology, only basophils and segmented neutrophils were differed by having higher concentration in NC treatment group as compared with other treatment groups. Moreover, in IgG stimulation analysis, difference was also observed, with P2 treatment group having high concentration of IgG in P2 treatment group as compared to other groups. The results of this study suggest that probiotics have a beneficial effect on growth performances, blood parameters and IgG stimulation of pigs, most effective when they are administered in synergy form. This means that it is most likely that these probiotics will offer a significant benefit in pig farming by reducing risk of morbidity and mortality and produce quality meat that is more affordable to poorer communities, and thereby enhance South African pig industry’s economy. In addition, these results indicate that there is still more research need to be done on probiotics in regards with, i.e. dosage, shelf life and mechanism of action.

Keywords: antibiotics, biochemistry, haematology, IgG-stimulation, microbial count, probiotics

Procedia PDF Downloads 251
62 Encapsulation of Probiotic Bacteria in Complex Coacervates

Authors: L. A. Bosnea, T. Moschakis, C. Biliaderis

Abstract:

Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3% w/v) and gum arabic (GA, 3% w/v) solutions mixed at different polymer ratio (1:1, 2:1 and 4:1). The effect of total biopolymer concentration on cell viability was assessed using WPI and GA solutions of 1, 3 and 6% w/v at a constant ratio of 2:1. Also, several parameters were examined for optimization of the microcapsule formation, such as inoculum concentration and the effect of ionic strength. The viability of the bacterial cells during heat treatment and under simulated gut conditions was also evaluated. Among the different WPI/GA weight ratios tested (1:1, 2:1, and 4:1), the highest survival rate was observed for the coacervate structures made with the ratio of 2:1. The protection efficiency at low pH values is influenced by both concentration and the ratio of the added biopolymers. Moreover, the inoculum concentration seems to affect the efficiency of microcapsules to entrap the bacterial cells since an optimum level was noted at less than 8 log cfu/ml. Generally, entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73%), especially in comparison with non-encapsulated (free) cells (<19%). The encapsulated lactobacilli also exhibited enhanced viability after 10–30 min of heat treatment (65oC) as well as at different NaCl concentrations (pH 4.0). Overall, the results of this study suggest that complex coacervation with WPI/GA has a potential to deliver live probiotics in low pH food systems and fermented dairy products; the complexes can dissolve at pH 7.0 (gut environment), releasing the microbial cells.

Keywords: probiotic, complex coacervation, whey, encapsulation

Procedia PDF Downloads 260
61 Comparing Pathogen Inhibition Effect of Different Preparations of Probiotic L. reuteri Strains

Authors: Tejinder Pal Singh, Ravinder Kumar Malik, Gurpreet Kaur

Abstract:

Adhesion is key factor for colonization of the gastrointestinal tract and the ability of probiotic strains to inhibit pathogens. Therefore, the adhesion ability is considered as a suitable biomarker for the selection of potential probiotic. In the present study, eight probiotic Lactobacillus reuteri strains were evaluated as viable, LiCl treated or heat-killed forms and compared with probiotic reference strains (L. reuteri ATCC55730). All strains investigated were able to adhere to Caco-2 cells. All probiotic L. reuteri strains tested were able to inhibit and displace (P < 0.05) the adhesion of Escherichia coli ATCC25922, Salmonella typhi NCDC113, Listeria monocytogenes ATCC53135 and Enterococcus faecalis NCDC115. The probiotic strain L. reuteri LR6 showed the strongest adhesion and pathogen inhibition ability among the eight L. reuteri strains tested. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting the involvement of various mechanisms. The adhesion and antagonistic potential of the probiotic strains were significantly decreased upon exposure to 5M LiCl, showing that surface molecules, proteinaceous in nature, are involved. The heat-killed forms of the probiotic L. reuteri strains also inhibited the attachment of selected pathogens to Caco-2 cells. In conclusion, in vitro assays showed that L. reuteri strains, as viable or heat-killed forms, are adherent to Caco-2 cell line model and are highly antagonistic to selected pathogens in which surface molecules, proteinaceous molecules in particular, plays an important role.

Keywords: probiotics, Lactobacillus reuteri, adhesion, Caco-2 cells

Procedia PDF Downloads 225
60 Screening of Lactobacilli and Bifidobacteria from Bangladeshi Indigenous Poultry for Their Potential Use as Probiotics

Authors: K. B. M. Islam, Syeeda Shiraj-Um-Mahmuda, Afroj Jahan, A. A. Bhuiyan

Abstract:

In Bangladesh, the use of imported probiotics in poultry is gradually being increased. But surprisingly, no probiotic bacteria have been isolated yet in Bangladesh despite the existence of scavenging native poultry as potential source that is seemingly more resistant to GIT infection as well as other diseases. Therefore, the study was undertaken to isolate, identify and characterize the potential probiotic Lactobacillus and Bifidobacteria strains from Bangladeshi indigenous poultry, and to evaluate their suitability to use in poultry industry. Crop and cecal samples from 61 healthy indigenous birds were used to isolate potential probiotics strains following conventional cultural methods. A total of 216 isolates were identified following physical, biochemical and molecular methods that belonged to the genus Lactobacillus and Bifidobacteria. An auto-aggregation test was performed for 180 and 136 isolated lactobacilli and bifidobacteria strains, respectively. Twelve lactobacilli isolates and 7 bifidobacteria isolates were selected because of their convenient aggregation. In vitro tests including antibacterial activity, resistance to low pH, hemolytic activities etc. were performed for evaluation of probiotic potential of each strain. Under the in vitro conditions and with respects to the probiotic traits, three lactobacilli; LS16, LS45, LS133 and two bifidobacteria, BS21 and BS90 were found to be potential probiotic strains. Thus, they are proposed to be evaluated for their in vivo probiotic properties. If the proposed strains are found suitable as the probiotics to be used in commercial poultry industry, it is expected that the local probiotics would be more beneficial and would save the huge amount of money that Bangladesh spends every year for the importation of such materials from abroad.

Keywords: Bangladeshi poultry, gut microbiota, lactic acid bacteria, scavenging chicken, GIT health

Procedia PDF Downloads 270
59 Combained Cultivation of Endemic Strains of Lactic Acid Bacteria and Yeast with Antimicrobial Properties

Authors: A. M. Isakhanyan, F. N. Tkhruni, N. N. Yakimovich, Z. I. Kuvaeva, T. V. Khachatryan

Abstract:

Introduction: At present, the simbiotics based on different genera and species of lactic acid bacteria (LAB) and yeasts are used. One of the basic properties of probiotics is presence of antimicrobial activity and therefore selection of LAB and yeast strains for their co-cultivation with the aim of increasing of the activity is topical. Since probiotic yeast and bacteria have different mechanisms of action, natural synergies between species, higher viability and increasing of antimicrobial activity might be expected from mixing both types of probiotics. Endemic strains of LAB Enterococcus faecium БТK-64, Lactobaccilus plantarum БТK-66, Pediococcus pentosus БТK-28, Lactobacillus rhamnosus БТK-109 and Kluyveromyces lactis БТX-412, Saccharomycopsis sp. БТX- 151 strains of yeast, with probiotic properties and hight antimicrobial activity, were selected. Strains are deposited in "Microbial Depository Center" (MDC) SPC "Armbiotechnology". Methods: LAB and yeast strains were isolated from different dairy products from rural households of Armenia. The genotyping by 16S rRNA sequencing for LAB and 26S RNA sequencing for yeast were used. Combined cultivation of LAB and yeast strains was carried out in the nutrient media on the basis of milk whey, in anaerobic conditions (without shaker, in a thermostat at 37oC, 48 hours). The complex preparations were obtained by purification of cell free culture broth (CFC) broth by the combination of ion-exchange chromatography and gel filtration methods. The spot-on-lawn method was applied for determination of antimicrobial activity and expressed in arbitrary units (AU/ml). Results. The obtained data showed that at the combined growth of bacteria and yeasts, the cultivation conditions (medium composition, time of growth, genera of LAB and yeasts) affected the display of antimicrobial activity. Purification of CFC broth allowed obtaining partially purified antimicrobial complex preparation which contains metabiotics from both bacteria and yeast. The complex preparation inhibited the growth of pathogenic and conditionally pathogenic bacteria, isolated from various internal organs from diseased animals and poultry with greater efficiency than the preparations derived individually alone from yeast and LAB strains. Discussion. Thus, our data shown perspectives of creation of a new class of antimicrobial preparations on the basis of combined cultivation of endemic strains of LAB and yeast. Obtained results suggest the prospect of use of the partially purified complex preparations instead antibiotics in the agriculture and for food safety. Acknowledgments: This work was supported by the RA MES State Committee of Science and Belarus National Foundation for Basic Research in the frames of the joint Armenian - Belarusian joint research project 13РБ-064.

Keywords: co-cultivation, antimicrobial activity, biosafety, metabiotics, lactic acid bacteria, yeast

Procedia PDF Downloads 302
58 Comparative Study of Antimicrobial Activity of Bacteriocin Producing Lactic Acid Bacteria from Fermented Batter of Green Gram And Bengal Gram Against Food-Borne Pathogens

Authors: Bandi Aruna

Abstract:

The increase of multidrug-resistant pathogens and the restriction on the use of antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are ribosomally synthesized antimicrobial peptides that are active against Gram-positive and Gram-negative bacteria. The bacteriocins from lactic acid bacteria represent an important application of these peptides as clinical drugs or as food biopreservatives. The present study describes the isolation of bacteriocin producing lactic acid bacteria (LAB) from fermented batter of green gram and bengal gram using Man, Rogosa and Sharpe (MRS) media. The bacteriocin produced by these organisms inhibited the growth of Staphylococcus aureus, Escherichia coli, Klebsiella species, Pseudomonas aeruginosa, The isolates G1, G2 were isolated from green gram; B1 and B2 were isolated from fermented bengal gram batter. G1 and G2 were identified as Lactobacillus casie and B1 and B2 were identified as Streptococcus species. Antimicrobial activity of the bacteriocin produced by these strains was studied by agar well diffusion method. Bacteriocins produced by the Lactobacillus casie and Streptococcus secies retained their antagonistic property at pH of 5 and pH of 7. Exposure of bacteriocin to UV light for 4 min showed antibacterial activity. The antagonistic property was observed even at 100°C demonstrating stability at higher temperatures of the bacteriocin. The bacteriocins were stable for a period of 15 days at 27°C. The bacteriocins of G1, G2, and B2 exhibited highest antagonistic activity at pH of 5 and B1 at pH of 7. Therefore, the bacteriocins of the isolates may find important application in controlling the food-borne pathogens.

Keywords: Keywords: Antibacterial activity, Lactic acid bacteria, Bacteriocin

Procedia PDF Downloads 366
57 Antimicrobial Value of Olax subscorpioidea and Bridelia ferruginea on Micro-Organism Isolates of Dental Infection

Authors: I. C. Orabueze, A. A. Amudalat, S. A. Adesegun, A. A. Usman

Abstract:

Dental and associated oral diseases are increasingly affecting a considerable portion of the population and are considered some of the major causes of tooth loss, discomfort, mouth odor and loss of confidence. This study focused on the ethnobotanical survey of medicinal plants used in oral therapy and evaluation of the antimicrobial activities of methanolic extracts of two selected plants from the survey for their efficacy against dental microorganisms. The ethnobotanical survey was carried out in six herbal markets in Lagos State, Nigeria by oral interviewing and information obtained from an old family manually complied herbal medication book. Methanolic extracts of Olax subscorpioidea (stem bark) and Bridelia ferruginea (stem bark) were assayed for their antimicrobial activities against clinical oral isolates (Aspergillus fumigatus, Candida albicans, Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa). In vitro microbial technique (agar well diffusion method and minimum inhibitory concentration (MIC) assay) were employed for the assay. Chlorhexidine gluconate was used as the reference drug for comparison with the extract results. And the preliminary phytochemical screening of the constituents of the plants were done. The ethnobotanical survey produced plants (28) of diverse family. Different parts of plants (seed, fruit, leaf, root, bark) were mentioned but 60% mentioned were either the stem or the bark. O. subscorpioidea showed considerable antifungal activity with zone of inhibition ranging from 2.650 – 2.000 cm against Aspergillus fumigatus but no such encouraging inhibitory activity was observed in the other assayed organisms. B. ferruginea showed antibacterial sensitivity against Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa with zone of inhibitions ranging from 3.400 - 2.500, 2.250 - 1.600, 2.700 - 1.950, 2.225 – 1.525 cm respectively. The minimum inhibitory concentration of O. subscorpioidea against Aspergillus fumigatus was 51.2 mg ml-1 while that of B. ferruginea against Streptococcus spp was 0.1mg ml-1 and for Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa were 25.6 mg ml-1. A phytochemical analysis reveals the presence of alkaloids, saponins, cardiac glycoside, tannins, phenols and terpenoids in both plants, with steroids only in B. ferruginea. No toxicity was observed among mice given the two methanolic extracts (1000 mg Kg-1) after 21 days. The barks of both plants exhibited antimicrobial properties against periodontal diseases causing organisms assayed, thus up-holding their folkloric use in oral disorder management. Further research could be done viewing these extracts as combination therapy, checking for possible synergistic value in toothpaste and oral rinse formulations for reducing oral bacterial flora and fungi load.

Keywords: antimicrobial activities, Bridelia ferruginea, dental disinfection, methanolic extract, Olax subscorpioidea, ethnobotanical survey

Procedia PDF Downloads 211
56 In vitro Evaluation of Prebiotic Potential of Wheat Germ

Authors: Lígia Pimentel, Miguel Pereira, Manuela Pintado

Abstract:

Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry.

Keywords: by-products, functional ingredients, prebiotic potential, wheat germ

Procedia PDF Downloads 450
55 Microbiological and Physicochemical Evaluation of Traditional Greek Kopanisti Cheese Produced by Different Starter Cultures

Authors: M. Kazou, A. Gavriil, O. Kalagkatsi, T. Paschos, E. Tsakalidou

Abstract:

Kopanisti cheese is a Greek soft Protected Designation of Origin (PDO) cheese made of raw cow, sheep or goat milk, or mixtures of them, with similar organoleptic characteristics to that of Roquefort cheese. Traditional manufacturing of Kopanisti cheese is limited in small-scale dairies, without the addition of starter cultures. Instead, an amount of over-mature Kopanisti cheese, called Mana Kopanisti, is used to initiate ripening. Therefore, the selection of proper starter cultures and the understanding of the contribution of various microbial groups to its overall quality is crucial for the production of a high-quality final product with standardized organoleptic and physicochemical characteristics. Taking the above into account, the aim of the present study was the investigation of Kopanisti cheese microbiota and its role in cheese quality. For this purpose, four different types of Kopanisti were produced in triplicates, all with pasteurized cow milk, with the addition of (A) the typical mesophilic species Lactococcus lactis and Lactobacillus paracasei used as starters in the production of soft spread cheeses, (B) strains of Lactobacillus acidipiscis and Lactobacillus rennini previously isolated from Kopanisti and Mana Kopanisti, (C) all the species from (A) and (B) as inoculum, and finally (D) the species from (A) and Mana Kopanisti. Physicochemical and microbiological analysis was performed for milk and cheese samples during ripening. Enumeration was performed for major groups of lactic acid bacteria (LAB), total mesophilic bacteria, yeasts as well as hygiene indicator microorganisms. Bacterial isolates from all the different LAB groups, apart from enterococci, alongside yeasts isolates, were initially grouped using repetitive sequence-based polymerase chain reaction (rep-PCR) and then identified at the species level using 16S rRNA gene and internal transcribed spacer (ITS) DNA region sequencing, respectively. Sensory evaluation was also performed for final cheese samples at the end of the ripening period (35 days). Based on the results of the classical microbiological analysis, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, ranged between 7 and 10 log colony forming unit (CFU) g⁻¹, phychrotrophic bacteria, and yeast extract glucose chloramphenicol (YGC) isolates between 4 and 8 log CFU g⁻¹, while coliforms and enterococci up to 2 log CFU g⁻¹ throughout ripening in cheese samples A, C and D. In contrast, in cheese sample B, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, phychrotrophic bacteria, and YGC isolates ranged between 0 and 10 log CFU g⁻¹ and coliforms and enterococci up to 2 log CFU g⁻¹. Although the microbial counts were not that different among samples, identification of the bacterial and yeasts isolates revealed the complex microbial community structure present in each cheese sample. Differences in the physicochemical characteristics among the cheese samples were also observed, with pH ranging from 4.3 to 5.3 and moisture from 49.6 to 58.0 % in the final cheese products. Interestingly, the sensory evaluation also revealed differences among samples, with cheese sample B ranking first based on the total score. Overall, the combination of these analyses highlighted the impact of different starter cultures on the Kopanisti microbiota as well as on the physicochemical and sensory characteristics of the final product.

Keywords: Kopanisti cheese, microbiota, classical microbiological analysis, physicochemical analysis

Procedia PDF Downloads 99
54 Genotypic Identification of Oral Bacteria Using 16S rRNA in Children with and without Early Childhood Caries in Kelantan, Malaysia

Authors: Zuliani Mahmood, Thirumulu Ponnuraj Kannan, Yean Yean Chan, Salahddin A. Al-Hudhairy

Abstract:

Caries is the most common childhood disease which develops due to disturbances in the physiological equilibrium in the dental plaque resulting in demineralization of tooth structures. Plaque and dentine samples were collected from three different tooth surfaces representing caries progression (intact, over carious lesion and dentine) in children with early childhood caries (ECC, n=36). In caries free (CF) children, plaque samples were collected from sound tooth surfaces at baseline and after one year (n=12). The genomic DNA was extracted from all samples and subjected to 16S rRNA PCR amplification. The end products were cloned into pCR®2.1-TOPO® Vector. Five randomly selected positive clones collected from each surface were sent for sequencing. Identification of the bacterial clones was performed using BLAST against GenBank database. In the ECC group, the frequency of Lactobacillus sp. detected was significantly higher in the dentine surface (p = 0.031) than over the cavitated lesion. The highest frequency of bacteria detected in the intact surfaces was Fusobacterium nucleatum subsp. polymorphum (33.3%) while Streptococcus mutans was detected over the carious lesions and dentine surfaces at a frequency of 33.3% and 52.7% respectively. Fusobacterium nucleatum subsp. polymorphum was also found to be highest in the CF group (41.6%). Follow up at the end of one year showed that the frequency of Corynebacterium matruchotii detected was highest in those who remained caries free (16.6%), while Porphyromonas catoniae was highest in those who developed caries (25%). In conclusion, Streptococcus mutans and Porphyromonas catoniae are strongly associated with caries progression, while Lactobacillus sp. is restricted to deep carious lesions. Fusobacterium nucleatum subsp. polymorphum and Corynebacterium matruchotii may play a role in sustaining the healthy equilibrium in the dental plaque. These identified bacteria show promise as potential biomarkers in diagnosis which could help in the management of dental caries in children.

Keywords: early childhood caries, genotypic identification, oral bacteria, 16S rRNA

Procedia PDF Downloads 245
53 Compositional Assessment of Fermented Rice Bran and Rice Bran Oil and Their Effect on High Fat Diet Induced Animal Model

Authors: Muhammad Ali Siddiquee, Md. Alauddin, Md. Omar Faruque, Zakir Hossain Howlader, Mohammad Asaduzzaman

Abstract:

Rice bran (RB) and rice bran oil (RBO) are explored as prominent food components worldwide. In this study, fermented rice bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus, and Bifidobacterium bifidum) at 125 x 10⁵ spore g⁻¹ of rice bran, and investigated to evaluate nutritional quality. The crude rice bran oil (CRBO) was extracted from RB, and its quality was also investigated compared to market-available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (methionine, tryptophan, threonine, valine, leucine, lysine, histidine, and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, proline, serine, and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content, and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00mg/g) was found in CRBO compared to MRBO (ranging from 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% was found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO, whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%), respectively. The physiochemical parameters were found satisfactory in all samples except acid value and peroxide value higher in CRBO. Finally, animal experiments showed that FRB and CRBO reduce the body weight, glucose, and lipid profile in high-fat diet-induced animal models. Thus, FRB and RBO could be value-added food supplements for human health.

Keywords: fermented rice bran, crude rice bran oil, amino acids, proximate composition, gamma-oryzanol, fatty acids, heavy metals, physiochemical parameters

Procedia PDF Downloads 28
52 Effects of Brewer's Yeast Peptide Extract on the Growth of Probiotics and Gut Microbiota

Authors: Manuela Amorim, Cláudia S. Marques, Maria Conceição Calhau, Hélder J. Pinheiro, Maria Manuela Pintado

Abstract:

Recently it has been recognized peptides from different food sources with biological activities. However, no relevant study has proven the potential of brewer yeast peptides in the modulation of gut microbiota. The importance of human intestinal microbiota in maintaining host health is well known. Probiotics, prebiotics and the combination of these two components, can contribute to support an adequate balance of the bacterial population in the human large intestine. The survival of many bacterial species inhabiting the large bowel depends essentially on the substrates made available to them, most of which come directly from the diet. Some of these substrates can be selectively considered as prebiotics, which are food ingredients that can stimulate beneficial bacteria such as Lactobacilli or Bifidobacteria growth in the colon. Moreover, conventional food can be used as vehicle to intake bioactive compounds that provide those health benefits and increase people well-being. In this way, the main objective of this work was to study the potential prebiotic activity of brewer yeast peptide extract (BYP) obtained via hydrolysis of yeast proteins by cardosins present in Cynara cardunculus extract for possible use as a functional ingredient. To evaluate the effect of BYP on the modulation of gut microbiota in diet-induced obesity model, Wistar rats were fed either with a standard or a high-fat diet. Quantified via 16S ribosomal RNA (rRNA) expression by quantitative PCR (qPCR), genera of beneficial bacteria (Lactobacillus spp. and Bifidobacterium spp.) and three main phyla (Firmicutes, Bacteroidetes and Actinobacteria) were assessed. Results showed relative abundance of Lactobacillus spp., Bifidobacterium spp. and Bacteroidetes was significantly increased (P < 0.05) by BYP. Consequently, the potential health-promoting effects of WPE through modulation of gut microbiota were demonstrated in vivo. Altogether, these findings highlight the possible intervention of BYP as gut microbiota enhancer, promoting healthy life style, and the incorporation in new food products, leads them bringing associated benefits endorsing a new trend in the improvement of new value-added food products.

Keywords: functional ingredients, gut microbiota, prebiotics, brewer yeast peptide extract

Procedia PDF Downloads 453
51 Microorganism and Laurus nobilis from Mascara - Algeria

Authors: Karima Oldyerou, B. Meddah, A. Tirtouil

Abstract:

Laurusnobilis is an aromatic plant, common in Algeria and widely used by local people as a source of spice and for medicinal purposes. The essential oil of this plant is the subject of this work in a physicochemical and microbiological study. The extraction of the essential oil was carried by steam distillation and the highest yield (1.5%) was determined in May. The organoleptic and physico-chemical characters are consistent with those obtained in the literature with some differences that can be attributed to certain factors. Evaluation of antibacterial activity showed a sensitivity of Salmonella spp. with an MIC of 2,5 mg.ml-1, and other bacteria of the intestinal flora of Wistar rats: E. coli and Lactobacillus sp. have a high potential for resistance with MICs respectively equal to 10 and 20 mg.ml-1.

Keywords: laurus nobilis, essential oil, physicochemical character, MIC, intestinal flora, antibacterial activity

Procedia PDF Downloads 290
50 Gut Microbiota in Patients with Opioid Use Disorder: A 12-week Follow up Study

Authors: Sheng-Yu Lee

Abstract:

Aim: Opioid use disorder is often characterized by repetitive drug-seeking and drug-taking behaviors with severe public health consequences. Animal model showed that opioid-induced perturbations in the gut microbiota causally relate to neuroinflammation, deficits in reward responding, and opioid tolerance, possibly due to changes in gut microbiota. Therefore, we propose that the dysbiosis of gut microbiota can be associated with pathogenesis of opioid dependence. In this current study, we explored the differences in gut microbiota between patients and normal controls and in patients before and after initiation of methadone treatment program for 12 weeks. Methods: Patients with opioid use disorder between 20 and 65 years were recruited from the methadone maintenance outpatient clinic in 2 medical centers in the Southern Taiwan. Healthy controls without any family history of major psychiatric disorders (schizophrenia, bipolar disorder and major depressive disorder) were recruited from the community. After initial screening, 15 patients with opioid use disorder joined the study for initial evaluation (Week 0), 12 of them completed the 12-week follow-up while receiving methadone treatment and ceased heroin use (Week 12). Fecal samples were collected from the patients at baseline and the end of 12th week. A one-time fecal sample was collected from the healthy controls. The microbiota of fecal samples were investigated using 16S rRNA V3V4 amplicon sequencing, followed by bioinformatics and statistical analyses. Results: We found no significant differences in species diversity in opioid dependent patients between Week 0 and Week 12, nor compared between patients at both points and controls. For beta diversity, using principal component analysis, we found no significant differences between patients at Week 0 and Week 12, however, both patient groups showed significant differences compared to control (P=0.011). Furthermore, the linear discriminant analysis effect size (LEfSe) analysis was used to identify differentially enriched bacteria between opioid use patients and healthy controls. Compared to controls, the relative abundance of Lactobacillaceae Lactobacillus (L. Lactobacillus), Megasphaera Megasphaerahexanoica (M. Megasphaerahexanoica) and Caecibacter Caecibactermassiliensis (C Caecibactermassiliensis) were increased in patients at Week 0, while Coriobacteriales Atopobiaceae (C. Atopobiaceae), Acidaminococcus Acidaminococcusintestini (A. Acidaminococcusintestini) and Tractidigestivibacter Tractidigestivibacterscatoligenes (T. Tractidigestivibacterscatoligenes) were increased in patients at Week 12. Conclusion: In conclusion, we suggest that the gut microbiome community maybe linked to opioid use disorder, such differences may not be altered even after 12-week of cessation of opioid use.

Keywords: opioid use disorder, gut microbiota, methadone treatment, follow up study

Procedia PDF Downloads 71
49 Proximate Composition and Sensory Properties of Complementary Food from Fermented Acha (Digitaria exilis), Soybean and Orange-Flesh Sweet Potato Blends

Authors: N. C. Okoronkwo, I. E. Mbaeyi-Nwaoha, C. P. Agbata

Abstract:

Childhood malnutrition is one of the most persistent public health problems throughout developing countries, including Nigeria. Demographic and Health survey data from twenty-one developing countries indicated that poor complementary feeding of children aged 6- 23 months contributes to negative growth trends. To reduce malnutrition among children in the society, formulation of complimentary food rich in essential nutrient for optimum growth and development of infants is essential. This study focused on the evaluation of complementary food produced by solid-state fermentation of Acha and Soybean using Rhizopus oligosporus (2710) and Orange-fleshed sweet potatoes (OFSP) using Lactobacillus planterum (B-41621). The raw materials were soaked separately, each in four volumes of 0.9M acetic acid for 16 hours, rinsed with clean water, steam cooked and cooled. Solid-state fermentation (SSF) was carried out by inoculating Acha and Soybean with spore suspension (1x 10⁶spores/ml) of Rhizopus oligosporus (2710) and OFSP with spore suspension (1x 106spores/ml) of Lactobacillus planterum (B-41621). Fermentation which lasted for 72hours was carried out with 24hours sampling. The samples were blended in the following ratios: Acha and soybean 100: 100 (AS), Acha/soybean and OFSP 50: 50(ASO), made into gruel and compared with a commercial infant formula (Cerelac) which served as the control (CTRL). The samples were analyzed for proximate composition using AOAC methods and sensory attributes using a hedonic scale. Results showed that moisture, crude protein, fibre and ash content increased significantly (p<0.05) as fermentation progressed, while carbohydrate and fat content decreased. The protein, moisture, fibre and ash content ranged from 17.10-19.02%, 54.97-56.27%, 7.08-7.60% and2.09-2.38%, respectively, while carbohydrate and fat content ranged from 12.95-10.21% and 5.81-4.52%, respectively. In sensory scores, there were no significant (p>0.05) difference between the average mean scores of colours, texture and consistency of the samples. The sensory score for the overall acceptability ranged from 6.20-7.80. Sample CTRL had the highest score, while sample ASO had the least score. There was no significant (p>0.05) difference between samples CTRL and AS. Solid-state fermentation improved the nutritional content and flavour of the developed complementary food, which is needed for infant growth and development.

Keywords: Complementary food, malnutrition, proximate composition, solid-state fermentation

Procedia PDF Downloads 126
48 Mechanisms Leading to the Protective Behavior of Ethanol Vapour Drying of Probiotics

Authors: Shahnaz Mansouri, Xiao Dong Chen, Meng Wai Woo

Abstract:

A new antisolvent vapour precipitation approach was used to make ultrafine submicron probiotic encapsulates. The approach uses ethanol vapour to precipitate submicron encapsulates within relatively large droplets. Surprisingly, the probiotics (Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus) showed relatively high survival even under destructive ethanolic conditions within the droplet. This unusual behaviour was deduced to be caused by the denaturation and aggregation of the milk protein forming an ethanolic protective matrix for the probiotics. Skim milk droplets which is rich in casein and contains naturally occurring minerals provided higher ethanolic protection when compared whey protein isolate and lactose droplets.

Keywords: whey, skim milk, probiotic, antisolvent, precipitation, encapsulation, denaturation, aggregation

Procedia PDF Downloads 488
47 The Effects of Salts Concentration into Microbiological, Physio-Chemical and Sensory Properties of Tempoyak (Indonesian Fermented Durian Flesh)

Authors: Addion Nizori, Mursalin, Dharia Renathe, Lavlinesia, Fitry Tafzi

Abstract:

Tempoyak was made from fermented durian flesh, which very popular among Jambi people Indonesia. This study aims to isolate and identification of bacteria developed during fermentations, determine physical-chemical properties of Tempoyak as the effect of adding salts at various concentration and the sensory evaluations of Tempoyak produced is also evaluated. The predominant microorganisms present in Tempoyak were Lactobacillus bacteria. The results also showed that the level of salts concentration has a significant effect on pH, lactic acid content, however, not has a significant impact on sensory evaluations. The best results were 3% of adding salts with the product properties of pH 3.64, lactic acid content 3.11% and overall acceptance score is 3.41.

Keywords: Tempoyak, fermented foods, salts, sensory

Procedia PDF Downloads 162
46 Bacterial Diversity in Vaginal Microbiota in Patients with Different Levels of Cervical Lesions Related to Human Papillomavirus Infection

Authors: Michelle S. Pereira, Analice C. Azevedo, Julliane D. Medeiros, Ana Claudia S. Martins, Didier S. Castellano-Filho, Claudio G. Diniz, Vania L. Silva

Abstract:

Vaginal microbiota is a complex ecosystem, composed by aerobic and anaerobic bacteria, living in a dynamic equilibrium. Lactobacillus spp. are predominant in vaginal ecosystem, and factors such as immunity and hormonal variations may lead to disruptions, resulting in proliferation of opportunistic pathogens. Bacterial vaginosis (BV) is a polymicrobial syndrome, caused by an increasing of anaerobic bacteria replacing Lactobacillus spp. Microorganisms such as Gardnerella vaginalis, Mycoplasma hominis, Mobiluncus spp., and Atopobium vaginae can be found in BV, which may also be associated to other infections such as by Human Papillomavirus (HPV). HPV is highly prevalent in sexually active women, and is considered a risk factor for development of cervical cancer. As long as few data is available on vaginal microbiota of women with HPV-associated cervical lesions, our objectives were to evaluate the diversity in vaginal ecosystem in these women. To all patients, clinical and socio-demographic data were collected after gynecological examination. This study was approved by the Ethics Committee from Federal University of Juiz de Fora, Minas Gerais, Brazil. Vaginal secretion and cervical scraping were collected. Gram-stained smears were evaluated to establish Nugent score for BV determination. Viral and bacterial DNA obtained was used as template for HPV genotyping (PCR) and bacterial fingerprint (REP-PCR). In total 31 patients were included (mean age 35 and 93.6% sexually active). The Nugent score showed that 38.7% were BV. From the medical records, Pap smear tests showed that 32.3% had low grade squamous epithelial lesion (LSIL), 29% had high grade squamous epithelial lesion (HSIL), 25.8% had atypical squamous cells of undetermined significance (ASC-US) and 12.9% with atypical squamous cells that would not exclude high-grade lesion (ASC-H). All participants were HPV+. HPV-16 was the most frequent (87.1%), followed by HPV-18 (61.3%). HPV-31, HPV-52 and HPV-58 were also detected. Coinfection HPV-16/HPV-18 was observed in 75%. In the 18-30 age group, HPV-16 was detected in 40%, and HPV-16/HPV-18 coinfection in 35%. HPV-16 was associated to 30% of ASC-H and 20% of HSIL patients. BV was observed in 50% of HPV-16+ participants and in 45% of HPV-16/HPV-18+. Fingerprints of bacterial communities showed clusters with low similarity suggesting high heterogeneity in vaginal microbiota within the sampled group. Overall, the data is worrisome once cervical-cancer highly risk-associated HPV-types were identified. The high microbial diversity observed may be related to the different levels of cellular lesions, and different physiological conditions of the participants (age, social behavior, education). Further prospective studies are needed to better address correlations and BV and microbial imbalance in vaginal ecosystems which would be related to the different cellular lesions in women with HPV infections. Supported by FAPEMIG, CNPq, CAPES, PPGCBIO/UFJF.

Keywords: human papillomavirus, bacterial vaginosis, bacterial diversity, cervical cancer

Procedia PDF Downloads 161
45 Evaluation of Bacterial Composition of the Aerosol of Selected Abattoirs in Akure, South Western Nigeria

Authors: Funmilola O. Omoya, Joseph O. Obameso, Titus A. Olukibiti

Abstract:

This study was carried out to reveal the bacterial composition of aerosol in the studied abattoirs. Bacteria isolated were characterized according to microbiological standards. Factors such as temperature and distance were considered as variable in this study. The isolation was carried out at different temperatures such as 27oC, 31oC and 29oC and at various distances of 100meters and 200meters away from the slaughter sites. Result obtained showed that strains of Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Lactobacillus alimentarius and Micrococcus sp. were identified. The total viable counts showed that more microorganisms were present in the morning while the least viable count of 388 cfu was recorded in the evening period of this study. This study also showed that more microbial loads were recorded the further the distance is to the slaughter site. Conclusively, the array of bacteria isolated suggests that abattoir sites may be a potential source of pathogenic organisms to commuters if located within residential environment.

Keywords: abattoir, aerosol, bacterial composition, environment

Procedia PDF Downloads 217
44 Production of Medicinal Bio-active Amino Acid Gamma-Aminobutyric Acid In Dairy Sludge Medium

Authors: Farideh Tabatabaee Yazdi, Fereshteh Falah, Alireza Vasiee

Abstract:

Introduction: Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is widely present in organisms. GABA is a kind of pharmacological and biological component and its application is wide and useful. Several important physiological functions of GABA have been characterized, such as neurotransmission and induction of hypotension. GABA is also a strong secretagogue of insulin from the pancreas and effectively inhibits small airway-derived lung adenocarcinoma and tranquilizer. Many microorganisms can produce GABA, and lactic acid bacteria have been a focus of research in recent years because lactic acid bacteria possess special physiological activities and are generally regarded as safe. Among them, the Lb. Brevis produced the highest amount of GABA. The major factors affecting GABA production have been characterized, including carbon sources and glutamate concentration. The use of food industry waste to produce valuable products such as amino acids seems to be a good way to reduce production costs and prevent the waste of food resources. In a dairy factory, a high volume of sludge is produced from a separator that contains useful compounds such as growth factors, carbon, nitrogen, and organic matter that can be used by different microorganisms such as Lb.brevis as carbon and nitrogen sources. Therefore, it is a good source of GABA production. GABA is primarily formed by the irreversible α-decarboxylation reaction of L-glutamic acid or its salts, catalysed by the GAD enzyme. In the present study, this aim was achieved for the fast-growing of Lb.brevis and producing GABA, using the dairy industry sludge as a suitable growth medium. Lactobacillus Brevis strains obtained from Microbial Type Culture Collection (MTCC) were used as model strains. In order to prepare dairy sludge as a medium, sterilization should be done at 121 ° C for 15 minutes. Lb. Brevis was inoculated to the sludge media at pH=6 and incubated for 120 hours at 30 ° C. After fermentation, the supernatant solution is centrifuged and then, the GABA produced was analyzed by the Thin Layer chromatography (TLC) method qualitatively and by the high-performance liquid chromatography (HPLC) method quantitatively. By increasing the percentage of dairy sludge in the culture medium, the amount of GABA increased. Also, evaluated the growth of bacteria in this medium showed the positive effect of dairy sludge on the growth of Lb.brevis, which resulted in the production of more GABA. GABA-producing LAB offers the opportunity of developing naturally fermented health-oriented products. Although some GABA-producing LAB has been isolated to find strains suitable for different fermentations, further screening of various GABA-producing strains from LAB, especially high-yielding strains, is necessary. The production of lactic acid, bacterial gamma-aminobutyric acid, is safe and eco-friendly. The use of dairy industry waste causes enhanced environmental safety. Also provides the possibility of producing valuable compounds such as GABA. In general, dairy sludge is a suitable medium for the growth of Lactic Acid Bacteria and produce this amino acid that can reduce the final cost of it by providing carbon and nitrogen source.

Keywords: GABA, Lactobacillus, HPLC, dairy sludge

Procedia PDF Downloads 89
43 The Effect of Probiotics Lactococcus plantarum and Prebiotic Purple Sweet Potato (Ipomoea batatas sp.) on Performance and Cholesterol Meat of Local Ducks

Authors: Husmaini, Rijal Zein, Zulkarnain, Marlito Latifa, Syahrul E. Rambee

Abstract:

The present study was conducted to evaluate the effects of probiotics–fermented purple sweet potato (PPSP) on performance and cholesterol meat of local ducks. One hundred two weeks old male local ducks placed in 4 treatment doses for ten weeks. The treatments were the dosage of PPSP, i.e., 0, 1, 2 and 3 grams of PPSP/bird/week. One gram PPSP contains 1.3 x 108 colony form unit. Data were analyzed statistically using SPSS and DMRT. The results showed that PPSP administration in local ducks did not affect intestinal villi height and fed consumption (P > 0.05), but highly significant (P < 0.01) increasing duodenum thickness, body weight, carcass yield and reducing both feed conversion and cholesterol meat content. The difference in PPSP dosage (1.2 and 3 grams) had the same effect on body weight gain. However, it has a different impact on feed conversion and meat cholesterol levels. The higher the PPSP dose given, the lower the feed conversion and meat cholesterol level. This study has shown that administration of PPSP can improve performance and reduce cholesterol levels of local duck meat. Giving PPSP as much as 3 grams per bird every week has provided the best results.

Keywords: cholesterol, local duck, performance, probiotics, purple sweet potato

Procedia PDF Downloads 134
42 Potential Probiotic Bacteria Isolated from Dairy Products of Saudi Arabia

Authors: Rashad Al-Hindi

Abstract:

The aims of the study were to isolate and identify potential probiotic lactic acid bacteria due to their therapeutic and food preservation importance. Sixty-three suspected lactic acid bacteria (LAB) strains were isolated from thirteen different raw milk and fermented milk product samples of various animal origins manufactured indigenously in the Kingdom of Saudi Arabia using de Man, Rogosa and Sharpe (MRS) agar medium and various incubation conditions. The identification of forty-six selected LAB strains was performed using molecular methods (16S rDNA gene sequencing). The LAB counts in certain samples were higher under microaerobic incubation conditions than under anaerobic conditions. The identified LAB belonged to the following genera: Enterococcus (16 strains), Lactobacillus (9 strains), Weissella (10 strains), Streptococcus (8 strains) and Lactococcus (3 strains), constituting 34.78%, 19.57%, 21.74%, 17.39% and 6.52% of the suspected isolates, respectively. This study noted that the raw milk and traditional fermented milk products of Saudi Arabia, especially stirred yogurt (Laban) made from camel milk, could be rich in LAB. The obtained LAB strains in this study will be tested for their probiotic potentials in another ongoing study.

Keywords: dairy, LAB, probiotic, Saudi Arabia

Procedia PDF Downloads 243
41 Molecular Characterization and Determination of Bioremediation Potentials of Some Bacteria Isolated from Spent Oil Contaminated Soil Mechanic Workshops in Kaduna Metropolis

Authors: David D. Adams, Ibrahim B. Bello

Abstract:

Spent oil contaminated Soil from ten selected mechanic workshops were investigated for their bacteria and bioremediation potentials. The bacterial isolates were morphologically and molecularly identified as Enterobacter hormaechei, Escherichia coli, Klebsiella pneumoniae, Shigella flexneri , Wesiella cibaria, Lactobacillus planetarium. The singles and a consortium of these bacteria incubated in the minimal salt medium incorporated with 1% engine oil exhibited various biodegradation rates, with the mixed consortium exhibiting the highest for this oil. The gene for the hydrocarbon enzyme Catechol 2, 3 dioxygenase (C2,30) was detected and amplified in Enterobacter hormaechei, Escherichia coli and Shigella flexneri using PCR and Agarose gel electrophoresis. The detection of the (C2,30) enzyme gene in, and the spent oil biodegradation activity exhibited by these bacteria suggest their possible possession of bioremediating potentials for the spent engine oil. It is therefore suggested that a pilot study on the field application of these bacteria for bioremediation and restoration of spent oil polluted environment should be done in mechanic workshops.

Keywords: spent engine oil, pollution, bacteria, enzyme, bioremediation, mechanic workshop

Procedia PDF Downloads 185
40 Development of Antimicrobial Properties Nutraceuticals: Gummy Candies with Addition of Bovine Colostrum, Essential Oils and Probiotics

Authors: E. Bartkiene, M. Ruzauskas, V. Lele, P. Zavistanaviciute, J. Bernatoniene, V. Jakstas, L. Ivanauskas, D. Zadeike, D. Klupsaite, P. Viskelis, J. Bendoraitiene, V. Navikaite-Snipaitiene, G. Juodeikiene

Abstract:

In this study, antimicrobial nutraceuticals; gummy candies (GC) from bovine colostrum (BC), essential oils (EOs), probiotic lactic acid bacteria (PLAB), and their combinations, were developed. For antimicrobial GC preparation, heteropolysaccharide (agar) was used. The antimicrobial properties of EOs (Eugenia caryophyllata, Thymus vulgaris, Citrus reticulata L., Citrus paradisi L.), BC, L. paracasei LUHS244, L. plantarum LUHS135, and their combinations against pathogenic bacteria strains (Streptococcus mutans, Enterococcus faecalis, Staphylococcus aureus, Salmonella enterica, Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa) were evaluated. The highest antimicrobial properties by EO’s (Eugenia caryophyllata and Thymus vulgaris) were established. The optimal ingredients composition for antimicrobial GC preparation was established, which incorporate the BC fermented with L. paracasei LUHS244 in combination with Thymus vulgaris or Eugenia caryophyllata. These ingredients showed high inhibition properties of all tested pathogenic strains (except Pseudomonas aeruginosa). Antimicrobial GC formula consisting of thyme EO (up to 0.2%) and fermented BC (up to 3%), and for taste masking, mandarin or grapefruit EOs (up to 0.2%) was used. Developed GC high overall acceptability and antimicrobial properties, thus, antimicrobial GC could be a preferred form of nutraceuticals. This study was fulfilled with the support of the LSMU-KTU joint project.

Keywords: antimicrobial activity, bovine colostrum, essential oil, gummy candy, probiotic

Procedia PDF Downloads 142
39 Dietary Gluten and the Balance of Gut Microbiota in the Dextran Sulphate Sodium Induced Colitis Model

Authors: Austin Belfiori, Kevin Rinek, Zach Barcroft, Jennifer Berglind

Abstract:

Diet influences the composition of the gut microbiota and host's health. Disruption of the balance among the microbiota, epithelial cells, and resident immune cells in the intestine is involved in the pathogenesis of inflammatory bowel disease (IBD). To study the role of gut microbiota in intestinal inflammation, the microbiome of control mice (C57BL6) given a gluten-containing standard diet versus C57BL6 mice given the gluten-free (GF) feed (n=10 in each group) was examined. All mice received the 3% DSS for 5 days. Throughout the study, feces were collected and processed for DNA extraction and MiSeq Illumina sequencing of V4 region of bacterial 16S rRNA gene. Alpha and beta diversities and compositional differences at phylum and genus levels were determined in intestinal microbiota. The mice receiving the GF diet showed a significantly increased abundance of Firmicutes and a decrease of Bacteroides and Lactobacillus at phylum level. Therefore, the gluten free diet led to reductions in beneficial gut bacteria populations. These findings indicate a role of wheat gluten in dysbiosis of the intestinal microbiota.

Keywords: gluten, colitis, microbiota, DSS, dextran sulphate sodium

Procedia PDF Downloads 172
38 Deproteination and Demineralization of Shrimp Waste Using Lactic Acid Bacteria for the Production of Crude Chitin and Chitosan

Authors: Farramae Francisco, Rhoda Mae Simora, Sharon Nunal

Abstract:

Deproteination and demineralization efficiencies of shrimp waste using two Lactobacillus species treated with different carbohydrate sources for chitin production, its chemical conversion to chitosan and the quality of chitin and chitosan produced were determined. Using 5% glucose and 5% cassava starch as carbohydrate sources, pH slightly increased from the initial pH of 6.0 to 6.8 and 7.2, respectively after 24 h and maintained their pH at 6.7 to 7.3 throughout the treatment period. Demineralization (%) in 5 % glucose and 5 % cassava was highest during the first day of treatment which was 82% and 83%, respectively. Deproteination (%) was highest in 5% cassava starch on the 3rd day of treatment at 84.4%. The obtained chitin from 5% cassava and 5% glucose had a residual ash and protein below 1% and solubility of 59% and 44.3%, respectively. Chitosan produced from 5% cassava and 5% glucose had protein content below 0.05%; residual ash was 1.1% and 0.8%, respectively. Chitosan solubility and degree of deacetylation were 56% and 33% in 5% glucose and 48% and 29% in 5% cassava, respectively. The advantage this alternative technology offers over that of chemical extraction is large reduction in chemicals needed thus less effluent production and generation of a protein-rich liquor, although the demineralization process should be improved to achieve greater degree of deacetylation.

Keywords: alternative carbon source, bioprocessing, lactic acid bacteria, waste utilization

Procedia PDF Downloads 452