Search results for: Jiangbo Shi
4 Non-linear Analysis of Spontaneous EEG After Spinal Cord Injury: An Experimental Study
Authors: Jiangbo Pu, Hanhui Xu, Yazhou Wang, Hongyan Cui, Yong Hu
Abstract:
Spinal cord injury (SCI) brings great negative influence to the patients and society. Neurological loss in human after SCI is a major challenge in clinical. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. Here we used sample entropy as an indicator of nonlinear dynamical in the brain to quantify plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the entropy values were increased after the injury during the recovery in one week. The increasing tendency of sample entropy values is consistent with that of behavioral evaluation scores. It is indicated the potential application of sample entropy analysis for the evaluation of neural plasticity in spinal cord injury rat model.Keywords: spinal cord injury (SCI), sample entropy, nonlinear, complex system, firing pattern, EEG, spontaneous activity, Basso Beattie Bresnahan (BBB) score
Procedia PDF Downloads 4653 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 1402 A Visualization Classification Method for Identifying the Decayed Citrus Fruit Infected by Fungi Based on Hyperspectral Imaging
Authors: Jiangbo Li, Wenqian Huang
Abstract:
Early detection of fungal infection in citrus fruit is one of the major problems in the postharvest commercialization process. The automatic and nondestructive detection of infected fruits is still a challenge for the citrus industry. At present, the visual inspection of rotten citrus fruits is commonly performed by workers through the ultraviolet induction fluorescence technology or manual sorting in citrus packinghouses to remove fruit subject with fungal infection. However, the former entails a number of problems because exposing people to this kind of lighting is potentially hazardous to human health, and the latter is very inefficient. Orange is used as a research object. This study would focus on this problem and proposed an effective method based on Vis-NIR hyperspectral imaging in the wavelength range of 400-1000 nm with a spectroscopic resolution of 2.8 nm. In this work, three normalization approaches are applied prior to analysis to reduce the effect of sample curvature on spectral profiles, and it is found that mean normalization was the most effective pretreatment for decreasing spectral variability due to curvature. Then, principal component analysis (PCA) was applied to a dataset composing of average spectra from decayed and normal tissue to reduce the dimensionality of data and observe the ability of Vis-NIR hyper-spectra to discriminate data from two classes. In this case, it was observed that normal and decayed spectra were separable along the resultant first principal component (PC1) axis. Subsequently, five wavelengths (band) centered at 577, 702, 751, 808, and 923 nm were selected as the characteristic wavelengths by analyzing the loadings of PC1. A multispectral combination image was generated based on five selected characteristic wavelength images. Based on the obtained multispectral combination image, the intensity slicing pseudocolor image processing method is used to generate a 2-D visual classification image that would enhance the contrast between normal and decayed tissue. Finally, an image segmentation algorithm for detection of decayed fruit was developed based on the pseudocolor image coupled with a simple thresholding method. For the investigated 238 independent set samples including infected fruits infected by Penicillium digitatum and normal fruits, the total success rate is 100% and 97.5%, respectively, and, the proposed algorithm also used to identify the orange infected by penicillium italicum with a 100% identification accuracy, indicating that the proposed multispectral algorithm here is an effective method and it is potential to be applied in citrus industry.Keywords: citrus fruit, early rotten, fungal infection, hyperspectral imaging
Procedia PDF Downloads 2991 Mealtime Talk as a Context of Learning: A Multiple Case Study of Australian Chinese Parents' Interaction with Their Preschool Aged Children at Dinner Table
Authors: Jiangbo Hu, Frances Hoyte, Haiquan Huang
Abstract:
Research identifies that mealtime talk can be a significant learning context that provides children with rich experiences to foster their language and cognitive development. Middle-classed parents create an extended learning discourse for their children through sophisticated vocabulary, narrative and explanation genres at dinner table. However, mealtime opportunities vary with some parents having little interaction with their children and some parents focusing on directive of children’s behaviors. This study investigated five Chinese families’ parent-child interaction during mealtime that was rarely reported in the literature. The five families differ in terms of their living styles. Three families are from professional background where both mothers the fathers work in Australian companies and both of them present at dinner time. The other two families own business. The mothers are housemakers and the fathers are always absent at dinner time due to their busy business life. Employing case study method, the five Chinese families’ parent-child interactions at dinner table were recorded using a video camera. More than 3000 clauses were analyzed with the framework of 'systems of clause complexing' from systemic functional linguistic theory. The finding shows that mothers played a critical role in the interaction with their children by initiating most conversations. The three mothers from professional background tended to use more language in extending and expanding pattern that is beneficial for children’s language development and high level of thinking (e.g., logical thinking). The two house making mothers’ language focused more on the directive of their children’s social manners and dietary behaviors. The fathers though seemed to be less active, contributing to the richness of the conversation through their occasional props such as asking open questions or initiating a new topic. In general, the families from professional background were more advantaged in providing learning opportunities for their children at dinner table than the families running business were. The home experiences of Chinese children is an important topic in research due to the rapidly increasing number of Chinese children in Australia and other English speaking countries. Such research assist educators in the education of Chinese children with more awareness of Chinese children experiences at home that could be very unlike the settings in English schools. This study contributes to the research in this area through the analysis of language in parent-child interaction during mealtime, which is very different from previous research that mainly investigated Chinese families through survey and interview. The finding of different manners in language use between the professional families and business families has implication for the understanding of the variation of Chinese children’s home experiences that is influenced not only by parents’ socioeconomic status but their lifestyles.Keywords: Chinese children, Chinese parents, mealtime talk, parent-child interaction
Procedia PDF Downloads 233