Search results for: Einstein’s Coefficients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 923

Search results for: Einstein’s Coefficients

173 How Social Support, Interaction with Clients and Work-Family Conflict Contribute to Mental Well-Being for Employees in the Human Service System

Authors: Uwe C. Fischer

Abstract:

Mental health and well-being for employees working in the human service system are getting more and more important given the increasing rate of absenteeism at work. Besides individual capacities, social and community factors seem to be important in the working setting. Starting from a demand resource framework including the classical demand control aspects, social support systems, specific demands and resources of the client work, and work-family conflict were considered in the present study. We state hypothetically, that these factors have a meaningful association with the mental quality of life of employees working in the field of social, educational and health sectors. 1140 employees, working in human service organizations (education, youth care, nursing etc.) were asked for strains and resources at work (selected scales from Salutogenetic Subjective Work Assessment SALSA and own new scales for client work), work-family conflict, and mental quality of life from the German Short Form Health Survey. Considering the complex influences of the variables, we conducted a multiple hierarchical regression analysis. One third of the whole variance of the mental quality of life can be declared by the different variables of the model. When the variables concerning social influences were included in the hierarchical regression, the influence of work related control resource decreased. Excessive workload, work-family conflict, social support by supervisors, co-workers and other persons outside work, as well as strains and resources associated with client work had significant regression coefficients. Conclusions: Social support systems are crucial in the social, educational and health related service sector, regarding the influence on mental well-being. Especially the work-family conflict focuses on the importance of the work-life balance. Also the specific strains and resources of the client work, measured with new constructed scales, showed great impact on mental health. Therefore occupational health promotion should focus more on the social factors within and outside the working place.

Keywords: client interaction, human service system, mental health, social support, work-family conflict

Procedia PDF Downloads 402
172 Small-Group Case-Based Teaching: Effects on Student Achievement, Critical Thinking, and Attitude toward Chemistry

Authors: Reynante E. Autida, Maria Ana T. Quimbo

Abstract:

The chemistry education curriculum provides an excellent avenue where students learn the principles and concepts in chemistry and at the same time, as a central science, better understand related fields. However, the teaching approach used by teachers affects student learning. Cased-based teaching (CBT) is one of the various forms of inductive method. The teacher starts with specifics then proceeds to the general principles. The students’ role in inductive learning shifts from being passive in the traditional approach to being active in learning. In this paper, the effects of Small-Group Case-Based Teaching (SGCBT) on college chemistry students’ achievement, critical thinking, and attitude toward chemistry including the relationships between each of these variables were determined. A quasi-experimental counterbalanced design with pre-post control group was used to determine the effects of SGCBT on Engineering students of four intact classes (two treatment groups and two control groups) in one of the State Universities in Mindanao. The independent variables are the type of teaching approach (SGCBT versus pure lecture-discussion teaching or PLDT) while the dependent variables are chemistry achievement (exam scores) and scores in critical thinking and chemistry attitude. Both Analysis of Covariance (ANCOVA) and t-tests (within and between groups and gain scores) were used to compare the effects of SGCBT versus PLDT on students’ chemistry achievement, critical thinking, and attitude toward chemistry, while Pearson product-moment correlation coefficients were calculated to determine the relationships between each of the variables. Results show that the use of SGCBT fosters positive attitude toward chemistry and provides some indications as well on improved chemistry achievement of students compared with PLDT. Meanwhile, the effects of PLDT and SGCBT on critical thinking are comparable. Furthermore, correlational analysis and focus group interviews indicate that the use of SGCBT not only supports development of positive attitude towards chemistry but also improves chemistry achievement of students. Implications are provided in view of the recent findings on SGCBT and topics for further research are presented as well.

Keywords: case-based teaching, small-group learning, chemistry cases, chemistry achievement, critical thinking, chemistry attitude

Procedia PDF Downloads 258
171 Teaching the Temperature Dependence of Electrical Resistance of Materials through Arduino Investigation

Authors: Vinit Srivastava, Abhay Singh Thakur, Shivam Dubey, Rahul Vaish, Bharat Singh Rajpurohit

Abstract:

This study examines the problem of students' poor comprehension of the thermal dependence of resistance by investigating this idea using an evidence-based inquiry approach. It suggests a practical exercise to improve secondary school students' comprehension of how materials' resistance to temperature changes. The suggested exercise uses an Arduino and Peltier device to test the resistance of aluminum and graphite at various temperatures. The study attempts to close the knowledge gap between the theoretical and practical facets of the subject, which students frequently find difficult to grasp. With the help of a variety of resistors made of various materials and pencils of varying grades, the Arduino experiment investigates the resistance of a metallic conductor (aluminum) and a semiconductor (graphite) at various temperatures. The purpose of the research is to clarify for students the relationship between temperature and resistance and to emphasize the importance of resistor material choice and measurement methods in obtaining precise and stable resistance values over dynamic temperature variations. The findings show that while the resistance of graphite decreases with temperature, the resistance of metallic conductors rises with temperature. The results also show that as softer lead pencils or pencils of a lower quality are used, the resistance values of the resistors drop. In addition, resistors showed greater stability at lower temperatures when their temperature coefficients of resistance (TCR) were smaller. Overall, the results of this article show that the suggested experiment is a useful and practical method for teaching students about resistance's relationship to temperature. It emphasizes how crucial it is to take into account the resistor material selection and the resistance measurement technique when designing and picking out resistors for various uses. The results of the study are anticipated to guide the creation of more efficient teaching methods to close the gap between science education's theoretical and practical components.

Keywords: electrical resistance, temperature dependence, science education, inquiry-based activity, resistor stability

Procedia PDF Downloads 39
170 Efficiency of Secondary Schools by ICT Intervention in Sylhet Division of Bangladesh

Authors: Azizul Baten, Kamrul Hossain, Abdullah-Al-Zabir

Abstract:

The objective of this study is to develop an appropriate stochastic frontier secondary schools efficiency model by ICT Intervention and to examine the impact of ICT challenges on secondary schools efficiency in the Sylhet division in Bangladesh using stochastic frontier analysis. The Translog stochastic frontier model was found an appropriate than the Cobb-Douglas model in secondary schools efficiency by ICT Intervention. Based on the results of the Cobb-Douglas model, it is found that the coefficient of the number of teachers, the number of students, and teaching ability had a positive effect on increasing the level of efficiency. It indicated that these are related to technical efficiency. In the case of inefficiency effects for both Cobb-Douglas and Translog models, the coefficient of the ICT lab decreased secondary school inefficiency, but the online class in school was found to increase the level of inefficiency. The coefficients of teacher’s preference for ICT tools like multimedia projectors played a contributor role in decreasing the secondary school inefficiency in the Sylhet division of Bangladesh. The interaction effects of the number of teachers and the classrooms, and the number of students and the number of classrooms, the number of students and teaching ability, and the classrooms and teaching ability of the teachers were recorded with the positive values and these have a positive impact on increasing the secondary school efficiency. The overall mean efficiency of urban secondary schools was found at 84.66% for the Translog model, while it was 83.63% for the Cobb-Douglas model. The overall mean efficiency of rural secondary schools was found at 80.98% for the Translog model, while it was 81.24% for the Cobb-Douglas model. So, the urban secondary schools performed better than the rural secondary schools in the Sylhet division. It is observed from the results of the Tobit model that the teacher-student ratio had a positive influence on secondary school efficiency. The teaching experiences of those who have 1 to 5 years and 10 years above, MPO type school, conventional teaching method have had a negative and significant influence on secondary school efficiency. The estimated value of σ-square (0.0625) was different from Zero, indicating a good fit. The value of γ (0.9872) was recorded as positive and it can be interpreted as follows: 98.72 percent of random variation around in secondary school outcomes due to inefficiency.

Keywords: efficiency, secondary schools, ICT, stochastic frontier analysis

Procedia PDF Downloads 105
169 Detection of Phoneme [S] Mispronounciation for Sigmatism Diagnosis in Adults

Authors: Michal Krecichwost, Zauzanna Miodonska, Pawel Badura

Abstract:

The diagnosis of sigmatism is mostly based on the observation of articulatory organs. It is, however, not always possible to precisely observe the vocal apparatus, in particular in the oral cavity of the patient. Speech processing can allow to objectify the therapy and simplify the verification of its progress. In the described study the methodology for classification of incorrectly pronounced phoneme [s] is proposed. The recordings come from adults. They were registered with the speech recorder at the sampling rate of 44.1 kHz and the resolution of 16 bit. The database of pathological and normative speech has been collected for the study including reference assessments provided by the speech therapy experts. Ten adult subjects were asked to simulate a certain type of stigmatism under the speech therapy expert supervision. In the recordings, the analyzed phone [s] was surrounded by vowels, viz: ASA, ESE, ISI, SPA, USU, YSY. Thirteen MFCC (mel-frequency cepstral coefficients) and RMS (root mean square) values are calculated within each frame being a part of the analyzed phoneme. Additionally, 3 fricative formants along with corresponding amplitudes are determined for the entire segment. In order to aggregate the information within the segment, the average value of each MFCC coefficient is calculated. All features of other types are aggregated by means of their 75th percentile. The proposed method of features aggregation reduces the size of the feature vector used in the classification. Binary SVM (support vector machine) classifier is employed at the phoneme recognition stage. The first group consists of pathological phones, while the other of the normative ones. The proposed feature vector yields classification sensitivity and specificity measures above 90% level in case of individual logo phones. The employment of a fricative formants-based information improves the sole-MFCC classification results average of 5 percentage points. The study shows that the employment of specific parameters for the selected phones improves the efficiency of pathology detection referred to the traditional methods of speech signal parameterization.

Keywords: computer-aided pronunciation evaluation, sibilants, sigmatism diagnosis, speech processing

Procedia PDF Downloads 248
168 Kinematic Analysis of the Calf Raise Test Using a Mobile iOS Application: Validation of the Calf Raise Application

Authors: Ma. Roxanne Fernandez, Josie Athens, Balsalobre-Fernandez, Masayoshi Kubo, Kim Hébert-Losier

Abstract:

Objectives: The calf raise test (CRT) is used in rehabilitation and sports medicine to evaluate calf muscle function. For testing, individuals stand on one leg and go up on their toes and back down to volitional fatigue. The newly developed Calf Raise application (CRapp) for iOS uses computer-vision algorithms enabling objective measurement of CRT outcomes. We aimed to validate the CRapp by examining its concurrent validity and agreement levels against laboratory-based equipment and establishing its intra- and inter-rater reliability. Methods: CRT outcomes (i.e., repetitions, positive work, total height, peak height, fatigue index, and peak power) were assessed in thirteen healthy individuals (6 males, 7 females) on three occasions and both legs using the CRapp, 3D motion capture, and force plate technologies simultaneously. Data were extracted from two markers: one placed immediately below the lateral malleolus and another on the heel. Concurrent validity and agreement measures were determined using intraclass correlation coefficients (ICC₃,ₖ), typical errors expressed as coefficient of variations (CV), and Bland-Altman methods to assess biases and precision. Reliability was assessed using ICC3,1 and CV values. Results: Validity of CRapp outcomes was good to excellent across measures for both markers (mean ICC ≥0.878), with precision plots showing good agreement and precision. CV ranged from 0% (repetitions) to 33.3% (fatigue index) and were, on average better for the lateral malleolus marker. Additionally, inter- and intra-rater reliability were excellent (mean ICC ≥0.949, CV ≤5.6%). Conclusion: These results confirm the CRapp is valid and reliable within and between users for measuring CRT outcomes in healthy adults. The CRapp provides a tool to objectivise CRT outcomes in research and practice, aligning with recent advances in mobile technologies and their increased use in healthcare.

Keywords: calf raise test, mobile application, validity, reliability

Procedia PDF Downloads 133
167 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change

Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems

Procedia PDF Downloads 27
166 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait

Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh

Abstract:

In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.

Keywords: innovative methods in transportation data collection, integrated public transportation system, traffic forecasts, transportation modeling, travel behavior

Procedia PDF Downloads 182
165 An Association Model to Correlate the Experimentally Determined Mixture Solubilities of Methyl 10-Undecenoate with Methyl Ricinoleate in Supercritical Carbon Dioxide

Authors: V. Mani Rathnam, Giridhar Madras

Abstract:

Fossil fuels are depleting rapidly as the demand for energy, and its allied chemicals are continuously increasing in the modern world. Therefore, sustainable renewable energy sources based on non-edible oils are being explored as a viable option as they do not compete with the food commodities. Oils such as castor oil are rich in fatty acids and thus can be used for the synthesis of biodiesel, bio-lubricants, and many other fine industrial chemicals. There are several processes available for the synthesis of different chemicals obtained from the castor oil. One such process is the transesterification of castor oil, which results in a mixture of fatty acid methyl esters. The main products in the above reaction are methyl ricinoleate and methyl 10-undecenoate. To separate these compounds, supercritical carbon dioxide (SCCO₂) was used as a green solvent. SCCO₂ was chosen as a solvent due to its easy availability, non-toxic, non-flammable, and low cost. In order to design any separation process, the preliminary requirement is the solubility or phase equilibrium data. Therefore, the solubility of a mixture of methyl ricinoleate with methyl 10-undecenoate in SCCO₂ was determined in the present study. The temperature and pressure range selected for the investigation were T = 313 K to 333 K and P = 10 MPa to 18 MPa. It was observed that the solubility (mol·mol⁻¹) of methyl 10-undecenoate varied from 2.44 x 10⁻³ to 8.42 x 10⁻³ whereas it varied from 0.203 x 10⁻³ to 6.28 x 10⁻³ for methyl ricinoleate within the chosen operating conditions. These solubilities followed a retrograde behavior (characterized by the decrease in the solubility values with the increase in temperature) throughout the range of investigated operating conditions. An association theory model, coupled with regular solution theory for activity coefficients, was developed in the present study. The deviation from the experimental data using this model can be quantified using the average absolute relative deviation (AARD). The AARD% for the present compounds is 4.69 and 8.08 for methyl 10-undecenoate and methyl ricinoleate, respectively in a mixture of methyl ricinoleate and methyl 10-undecenoate. The maximum solubility enhancement of 32% was observed for the methyl ricinoleate in a mixture of methyl ricinoleate and methyl 10-undecenoate. The highest selectivity of SCCO₂ was observed to be 12 for methyl 10-undecenoate in a mixture of methyl ricinoleate and methyl 10-undecenoate.

Keywords: association theory, liquid mixtures, solubilities, supercritical carbon dioxide

Procedia PDF Downloads 98
164 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity

Procedia PDF Downloads 244
163 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects

Authors: Lukas Vierus, Thomas Schuster

Abstract:

A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.

Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions

Procedia PDF Downloads 5
162 Impact of Meteorological Factors on Influenza Activity in Pakistan; A Tale of Two Cities

Authors: Nadia Nisar

Abstract:

Background: In the temperate regions Influenza activities occur sporadically all year round with peaks coinciding during cold months. Meteorological and environmental conditions play significant role in the transmission of influenza globally. In this study, we assessed the relationship between meteorological parameters and influenza activity in two geographical areas of Pakistan. Methods: Influenza data were collected from Islamabad (north) and Multan (south) regions of national influenza surveillance system during 2010-2015. Meteorological database was obtained from National Climatic Data Center (Pakistan). Logistic regression model with a stepwise approach was used to explore the relationship between meteorological parameters with influenza peaks. In statistical model, we used the weekly proportion of laboratory-confirmed influenza positive samples to represent Influenza activity with metrological parameters as the covariates (temperature, humidity and precipitation). We also evaluate the link between environmental conditions associated with seasonal influenza epidemics: 'cold-dry' and 'humid-rainy'. Results: We found that temperature and humidity was positively associated with influenza in north and south both locations (OR = 0.927 (0.88-0.97)) & (OR = 0.1.078 (1.027-1.132)) and (OR = 1.023 (1.008-1.037)) & (OR = 0.978 (0.964-0.992)) respectively, whilst precipitation was negatively associated with influenza (OR = 1.054 (1.039-1.070)) & (OR = 0.949 (0.935-0.963)). In both regions, temperature and humidity had the highest contribution to the model as compared to the precipitation. We revealed that the p-value for all of climate parameters is <0.05 by Independent-sample t-test. These results demonstrate that there were significant relationships between climate factors and influenza infection with correlation coefficients: 0.52-0.90. The total contribution of these three climatic variables accounted for 89.04%. The reported number of influenza cases increased sharply during the cold-dry season (i.e., winter) when humidity and temperature are at minimal levels. Conclusion: Our findings showed that measures of temperature, humidity and cold-dry season (winter) can be used as indicators to forecast influenza infections. Therefore integrating meteorological parameters for influenza forecasting in the surveillance system may benefit the public health efforts in reducing the burden of seasonal influenza. More studies are necessary to understand the role of these parameters in the viral transmission and host susceptibility process.

Keywords: influenza, climate, metrological, environmental

Procedia PDF Downloads 170
161 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 357
160 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades

Authors: Farhana Arzu, Roslan Hashim

Abstract:

Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.

Keywords: variable length blade, performance, tidal turbine, power generation

Procedia PDF Downloads 242
159 Carbonaceous Monolithic Multi-Channel Denuders as a Gas-Particle Partitioning Tool for the Occupational Sampling of Aerosols from Semi-Volatile Organic Compounds

Authors: Vesta Kohlmeier, George C. Dragan, Juergen Orasche, Juergen Schnelle-Kreis, Dietmar Breuer, Ralf Zimmermann

Abstract:

Aerosols from hazardous semi-volatile organic compounds (SVOC) may occur in workplace air and can simultaneously be found as particle and gas phase. For health risk assessment, it is necessary to collect particles and gases separately. This can be achieved by using a denuder for the gas phase collection, combined with a filter and an adsorber for particle collection. The study focused on the suitability of carbonaceous monolithic multi-channel denuders, so-called Novacarb™-Denuders (MastCarbon International Ltd., Guilford, UK), to achieve gas-particle separation. Particle transmission efficiency experiments were performed with polystyrene latex (PSL) particles (size range 0.51-3 µm), while the time dependent gas phase collection efficiency was analysed for polar and nonpolar SVOC (mass concentrations 7-10 mg/m3) over 2 h at 5 or 10 l/min. The experimental gas phase collection efficiency was also compared with theoretical predictions. For n-hexadecane (C16), the gas phase collection efficiency was max. 91 % for one denuder and max. 98 % for two denuders, while for diethylene glycol (DEG), a maximal gas phase collection efficiency of 93 % for one denuder and 97 % for two denuders was observed. At 5 l/min higher gas phase collection efficiencies were achieved than at 10 l/min. The deviations between the theoretical and experimental gas phase collection efficiencies were up to 5 % for C16 and 23 % for DEG. Since the theoretical efficiency depends on the geometric shape and length of the denuder, flow rate and diffusion coefficients of the tested substances, the obtained values define an upper limit which could be reached. Regarding the particle transmission through the denuders, the use of one denuder showed transmission efficiencies around 98 % for 1-3 µm particle diameters. The use of three denuders resulted in transmission efficiencies from 93-97 % for the same particle sizes. In summary, NovaCarb™-Denuders are well applicable for sampling aerosols of polar/nonpolar substances with particle diameters ≤3 µm and flow rates of 5 l/min or lower. These properties and their compact size make them suitable for use in personal aerosol samplers. This work is supported by the German Social Accident Insurance (DGUV), research contract FP371.

Keywords: gas phase collection efficiency, particle transmission, personal aerosol sampler, SVOC

Procedia PDF Downloads 140
158 The Turkish Version of the Carer’s Assessment of Satisfaction Index (CASI-TR): Its Cultural Adaptation, Validation, and Reliability

Authors: Cemile Kütmeç Yilmaz, Güler Duru Asiret, Gulcan Bagcivan

Abstract:

The aim of this study was to evaluate the reliability and validity of the Turkish version of the Carer’s Assessment of Satisfaction Index (CASI-TR). The study was conducted between the dates of June 2016 and September 2017 at the Training and Research Hospital of Aksaray University with the caregiving family members of the inpatients with chronic diseases. For this study, the sample size was calculated as at least 10 individuals for each item (item number (30)X10=300). The study sample included 300 caregiving family members, who provided primer care for at least three months for a patient (who had at least one chronic disease and received inpatient treatment in general internal medicine and palliative care units). Data were collected by using a demographic questionnaire and CASI-TR. Descriptive statistics, and psychometric tests were used for the data analysis. Of those caregivers, 76.7% were female, 86.3% were 65 years old and below, 43.7% were primary school graduates, 87% were married, 86% were not working, 66.3% were housewives, and 60.3% defined their income status as having an income covering one’s expenses. Care recipients often had problems in terms of walking, sleep, balance, feeding and urinary incontinence. The Cronbach Alpha value calculated for the CASI-TR (30 items) was 0,949. Internal consistency coefficients calculated for subscales were: 0.922 for the subscale of ‘caregiver satisfaction related to care recipient’, 0.875 for the subscale of ‘caregiver satisfaction related to themselves’, and 0.723 for the subscale of ‘dynamics of interpersonal relations’. Factor analysis revealed that three factors accounted for 57.67% of the total variance, with an eigenvalue of >1. assessed in terms of significance, we saw that the items came together in a significant manner. The factor load of the items were between 0.311 and 0.874. These results show that the CASI-TR is a valid and reliable scale. The adoption of the translated CASI in Turkey is found reliable and valid to assessing the satisfaction of caregivers. CASI-TR can be used easily in clinics or house visits by nurses and other health professionals for assessing caregiver satisfaction from caregiving.

Keywords: carer’s assessment of satisfaction index, caregiver, validity, reliability

Procedia PDF Downloads 165
157 Monte Carlo and Biophysics Analysis in a Criminal Trial

Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano

Abstract:

In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.

Keywords: biophysics analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion

Procedia PDF Downloads 94
156 Infographics to Identify, Diagnose, and Review Medically Important Microbes and Microbial Diseases: A Tool to Ignite Minds of Undergraduate Medical Students

Authors: Mohan Bilikallahalli Sannathimmappa, Vinod Nambiar, Rajeev Aravindakshan

Abstract:

Background: Image-based teaching-learning module is innovative student-centered andragogy. The objective of our study was to explore medical students’ perception of effectiveness of image-based learning strategy in promoting their lifelong learning skills and evaluate its impact on improving students’ exam grades. Methods: A prospective single-cohort study was conducted on undergraduate medical students of the academic year 2021-22. The image-based teaching-learning module was assessed through pretest, posttest, and exam grades. Students’ feedback was collected through a predesigned questionnaire on a 3-point Likert Scale. The reliability of the questionnaire was assessed using Cronbach’s alpha coefficient test. In-Course Exam-4 results were compared with In-Course Exams 1, 2, and 3. Correlation coefficients were worked out wherever relevant to find the impact of the exercise on grades. Data were collected, entered into Microsoft Excel, and statistically analyzed using SPSS version 22. Results: In total, 127 students were included in the study. The posttest scores of the students were significantly high (24.75±) as compared to pretest scores (8.25±). Students’ opinion towards the effectiveness of image-based learning in promoting their lifelong learning skills was overwhelmingly positive (Cronbach’s alpha for all items was 0.756). More than 80% of the students indicated image-based learning was interesting, encouraged peer discussion, and helped them to identify, explore, and revise key information and knowledge improvement. Nearly 70% expressed image-based learning enhanced their critical thinking and problem-solving skills. Nine out of ten students recommended image-based learning module for future topics. Conclusion: Overall, Image-based learning was found to be effective in achieving undergraduate medical students learning outcomes. The results of the study are in favor of the implementation of Image-based learning in Microbiology courses. However, multicentric studies are required to authenticate our study findings.

Keywords: active learning, knowledge, medical education, microbes, problem solving

Procedia PDF Downloads 42
155 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 9
154 The Mediation Impact of Demographic and Clinical Characteristics on the Relationship between Trunk Control and Quality of Life among the Sub-Acute Stroke Population: A Cross-Sectional Study

Authors: Kumar Gular, Viswanathan S., Mastour Saeed Alshahrani, Ravi Shankar Reddy, Jaya Shanker Tedla, Snehil Dixit, Ajay Prasad Gautam, Venkata Nagaraj Kakaraparthi, Devika Rani Sangadala

Abstract:

Background: Despite trunk control’s significant contribution to improving various functional activity components, the independent effect of trunk performance on quality of life is yet to be estimated in stroke survivors. Ascertaining the correlation between trunk control and self-reported quality of life while evaluating the effect of demographic and clinical characteristics on their relationship will guide concerned healthcare professionals in designing ideal rehabilitation protocols during the late sub-acute stroke stage of recovery. The aims of the present research were to (1) investigate the associations of trunk performance with self-rated quality of life and (2) evaluate if age, body mass index (BMI), and clinical characteristics mediate the relationship between trunk motor performance and perceived quality of life in the sub-acute stroke population. Methods: Trunk motor functions and quality of life among the late sub-acute stroke population aged 57.53 ± 6.42 years were evaluated through the trunk Impairment Scale (TIS) and Stroke specific quality of life (SSQOL) questionnaire, respectively. Pearson correlation coefficients and mediation analysis were performed to elucidate the relationship of trunk motor function with quality of life and determine the mediation impact of demographic and clinical characteristics on their association, respectively. Results: The current study observed significant correlations between trunk motor functions (TIS) and quality of life (SSQOL) with r=0.68 (p<0.001). Age, BMI, and type of stroke were detected as potential mediating factors in the association between trunk performance and quality of life. Conclusion: Validated associations between trunk motor functions and perceived quality of life among the late sub-acute stroke population emphasize the importance of comprehensive evaluation of trunk control. Rehabilitation specialists should focus on appropriate strategies to enhance trunk performance anticipating the potential effects of age, BMI, and type of stroke to improve health-related quality of life in stroke survivors.

Keywords: sub-acute stroke, quality of life, functional independence, trunk control

Procedia PDF Downloads 35
153 An Alternative Rectangular Tunnels to Conventional Twin Circular Bored Tunnels in Weak Ground Conditions

Authors: Alex Atanaw Alebachew

Abstract:

The outcomes of a numerical research study conducted using the PLAXIS software to analyze surface settlements and moments generated in tunnel linings. The investigation focuses on both circular and rectangular twin tunnels. The study suggests that rectangular tunnels, although considered unconventional in modern tunneling practices, may be a viable option for shallow-depth tunneling in weak ground. The recommendation for engineers in the tunneling industry is to consider the use of rectangular tunnel boring machines (TBMs) based on the findings of this analysis. The research emphasizes the importance of evaluating various tunneling methods to optimize performance and address specific challenges in different ground conditions. These findings provide valuable insights into the behavior of rectangular tunnels compared to circular tunnels, emphasizing factors such as burial depth, relative positioning, tunnel size, and critical distance that influence surface settlements and bending moments. This research explores the feasibility of utilizing rectangular Tunnel Boring Machines (TBMs) as an alternative to conventional circular TBMs. The research findings indicate that rectangular tunnels exhibit slightly lower settlement than circular tunnels at shallow depths, especially in a narrower range directly above the twin tunnels. This difference could be attributed to maintaining a consistent tunnel-lining thickness across all depths. In deeper tunnel scenarios, circular tunnels experience less settlement compared to rectangular tunnels. Additionally, parallel rectangular tunnels settle more gradually than piggyback configurations, while piggyback tunnels show increased moments in the tunnel built second at the same level. Both settlement and moment coefficients increase with the diameter of twin tunnels, irrespective of their shape. The critical distance for both circular and rectangular tunnels is around 2.5 times the tunnel diameter, and distances closer than this result in a notable increase in moments. Rectangular tunnels spaced closer than 5 times the diameter led to higher settlement, and circular tunnels spaced closer than 2.5 to 3 times the diameter experience increased settlement as well.

Keywords: alternative, rectangular, tunnel, twin bored circular, weak ground

Procedia PDF Downloads 16
152 Psychological Factors of Readiness of Defectologists to Professional Development: On the Example of Choosing an Educational Environment

Authors: Inna V. Krotova

Abstract:

The study pays special attention to the definition of the psychological potential of a specialist-defectologist, which determines his desire to increase the level of his or her professional competence. The group included participants of the educational environment – an additional professional program 'Technologies of psychological and pedagogical assistance for children with complex developmental disabilities' implemented by the department of defectology and clinical psychology of the KFU jointly with the Support Fund for the Deafblind people 'Co-Unity'. The purpose of our study was to identify the psychological aspects of the readiness of the specialist-defectologist to his or her professional development. The study assessed the indicators of psychological preparedness, and its four components were taken into account: motivational, cognitive, emotional and volitional. We used valid and standardized tests during the study. As a result of the factor analysis of data received (from Extraction Method: Principal Component Analysis, Rotation Method: Varimax with Kaiser Normalization, Rotation converged in 12 iterations), there were identified three factors with maximum factor load from 24 indices, and their correlation coefficients with other indicators were taken into account at the level of reliability p ≤ 0.001 and p ≤ 0.01. Thus the system making factor was determined – it’s a 'motivation to achieve success'; it formed a correlation galaxy with two other factors: 'general internality' and 'internality in the field of achievements', as well as with such psychological indicators as 'internality in the field of family relations', 'internality in the field of interpersonal relations 'and 'low self-control-high self-control' (the names of the scales used is the same as names in the analysis methods. In conclusion of the article, we present some proposals to take into account the psychological model of readiness of specialists-defectologists for their professional development, to stimulate the growth of their professional competence. The study has practical value for all providers of special education and organizations that have their own specialists-defectologists, teachers-defectologists, teachers for correctional and ergotherapeutic activities, specialists working in the field of correctional-pedagogical activity (speech therapists) to people with special needs who need true professional support.

Keywords: psychological readiness, defectologist, professional development, psychological factors, special education, professional competence, innovative educational environment

Procedia PDF Downloads 141
151 Advancing Healthcare Excellence in China: Crafting a Strategic Operational Evaluation Index System for Chinese Hospital Departments amid Payment Reform Initiatives

Authors: Jing Jiang, Yuguang Gao, Yang Yu

Abstract:

Facing increasingly challenging insurance payment pressures, the Chinese healthcare system is undergoing significant transformations, akin to the implementation of DRG payment models by the United States' Medicare. Consequently, there is a pressing need for Chinese hospitals to establish optimizations in departmental operations tailored to the ongoing healthcare payment reforms. This abstract delineates the meticulous construction of a scientifically rigorous and comprehensive index system at the departmental level in China strategically aligned with the evolving landscape of healthcare payment reforms. Methodologically, it integrates key process areas and maturity assessment theories, synthesizing relevant literature and industry standards to construct a robust framework and indicator pool. Employing the Delphi method, consultations with 21 experts were conducted, revealing a collective demonstration of high enthusiasm, authority, and coordination in designing the index system. The resulting model comprises four primary indicators -technical capabilities, cost-effectiveness, operational efficiency, and disciplinary potential- supported by 14 secondary indicators and 23 tertiary indicators with varied coefficient adjustment for department types (platform or surgical). The application of this evaluation system in a Chinese hospital within the northeastern region yielded results aligning seamlessly with the actual operational scenario. In conclusion, the index system comprehensively considers the integrity and effectiveness of structural, process, and outcome indicators and stands as a comprehensive reflection of the collective expertise of the engaged experts, manifesting in a model designed to elevate the operational management of hospital departments. Its strategic alignment with healthcare payment reforms holds practical significance in guiding departmental development positioning, brand cultivation, and talent development.

Keywords: Chinese healthcare system, Delphi method, departmental management, evaluation indicators, hospital operations, weight coefficients

Procedia PDF Downloads 16
150 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 421
149 Contribution to the Hydrogeochemical Investigations on the Wajid Aquifer System, Southwestern Part of Saudi Arabia

Authors: Mohamed Ahmed, Ezat Korany, Abdelaziz Al Basam, Osama Kasem

Abstract:

The arid climate, low rate of precipitations and population reflect the increasing of groundwater uses as the main source of water in Saudi Arabia. The Wajid Aquifer System represents a regional groundwater aquifer system along the edge of the crystalline Arabian Shield near the southwestern tip of the Arabian Peninsula. The aquifer extends across the border of Saudi Arabia and Yemen from the Asir –Yemen Highlands to the Rub al Khali Depression and possibly to the Gulf coast (at the southwestern tip). The present work is representing a hydrogeochemical investigation on the Wajid Aquifer System. The studied area is being classified into three zones. The 1st zone is West of Wadi Ad Dawasir (Northern part of the studied area), the 2nd is Najran-Asir Zone (southern part of the studied area), and the 3rd zone is the intermediate -central zone (occupying the central area between the last two zones). The groundwater samples were collected and chemically analyzed for physicochemical properties such as pH, electrical conductivity, total hardness (TH), alkalinity (pH), total dissolved solids (TDS), major ions (Ca2+, Mg2+, Na+, K+, HCO3-, SO42- and Cl-), and trace elements. Some parameters such as sodium adsorption ratio (SAR), soluble sodium percentage (Na%), potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio, hydrochemical coefficients, hydrochemical formula, ion dominance, salt combinations and water types were also calculated in order to evaluate the quality of the groundwater resources in the selected areas for different purposes. The distribution of the chemical constituents and their interrelationships are illustrated by different hydrochemical graphs. Groundwater depths and the depth to water were measured to study the effect of discharge on both the water level and the salinity of the studied groundwater wells. A detailed comparison between the three studied zones according to the variations shown by the chemical and field investigations are discussed in detailed within the work.

Keywords: Najran-Asir, Wadi Ad Dawasir, Wajid Aquifer System, effect of discharge

Procedia PDF Downloads 92
148 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 374
147 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis

Authors: Asif Arshid, Ying Huang, Denver Tolliver

Abstract:

Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.

Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade

Procedia PDF Downloads 93
146 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids

Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho

Abstract:

In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.

Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model

Procedia PDF Downloads 83
145 The Role of Strategic Metals in Cr-Al-Pt-V Composition of Protective Bond Coats

Authors: A. M. Pashayev, A. S. Samedov, T. B. Usubaliyev, N. Sh. Yusifov

Abstract:

Different types of coating technologies are widely used for gas turbine blades. Thermal barrier coatings, consisting of ceramic top coat, thermally grown oxide and a metallic bond coat are used in applications for thermal protection of hot section components in gas turbine engines. Operational characteristics and longevity of high-temperature turbine blades substantially depend on a right choice of composition of the protective thermal barrier coatings. At a choice of composition of a coating and content of the basic elements it is necessary to consider following factors, as minimum distinctions of coefficients of thermal expansions of elements, level of working temperatures and composition of the oxidizing environment, defining the conditions for the formation of protective layers, intensity of diffusive processes and degradation speed of protective properties of elements, extent of influence on the fatigue durability of details during operation, using of elements with high characteristics of thermal stability and satisfactory resilience of gas corrosion, density, hardness, thermal conduction and other physical characteristics. Forecasting and a choice of a thermal barrier coating composition, all above factors at the same time cannot be considered, as some of these characteristics are defined by experimental studies. The implemented studies and investigations show that one of the main failures of coatings used on gas turbine blades is related to not fully taking the physical-chemical features of elements into consideration during the determination of the composition of alloys. It leads to the formation of more difficult spatial structure, composition which also changes chaotically in some interval of concentration that doesn't promote thermal and structural firmness of a coating. For the purpose of increasing the thermal and structural resistant of gas turbine blade coatings is offered a new approach to forecasting of composition on the basis of analysis of physical-chemical characteristics of alloys taking into account the size factor, electron configuration, type of crystal lattices and Darken-Gurry method. As a result, of calculations and experimental investigations is offered the new four-component metallic bond coat on the basis of chrome for the gas turbine blades.

Keywords: gas turbine blades, thermal barrier coating, metallic bond coat, strategic metals, physical-chemical features

Procedia PDF Downloads 266
144 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals

Authors: Gulshan Mammadova

Abstract:

This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂ crystal. Analysis of the results obtained showed that with a change in the composition of the TlInSe₂ crystal, sharp changes occur in the microrelief of its surface. An X-ray optical diffraction analysis of the TlInSe₂ crystal was experimentally carried out. Based on ellipsometric data, optical functions were determined - the real and imaginary parts of the dielectric permittivity of crystals, the coefficients of optical absorption and reflection, the dependence of energy losses and electric field power on the effective density, the spectral dependences of the real (σᵣ) and imaginary (σᵢ) parts, optical electrical conductivity were experimentally studied. The fluorescence spectra of the ternary compound TlInSe₂ were isolated and analyzed when excited by light with a wavelength of 532 nm. X-ray studies of TlInSe₂ showed that this phase crystallizes into tetragonal systems. Ellipsometric measurements showed that the real (ε₁) and imaginary (ε₂) parts of the dielectric constant are components of the dielectric constant tensor of the uniaxial joints under consideration and do not depend on the angle. Analysis of the dependence of the real and imaginary parts of the refractive index of the TlInSe₂ crystal on photon energy showed that the nature of the change in the real and imaginary parts of the dielectric constant does not differ significantly. When analyzing the spectral dependences of the real (σr) and imaginary (σi) parts of the optical electrical conductivity, it was noticed that the real part of the optical electrical conductivity increases exponentially in the energy range 0.894-3.505 eV. In the energy range of 0.654-2.91 eV, the imaginary part of the optical electrical conductivity increases linearly, reaches a maximum value, and decreases at an energy of 2.91 eV. At 3.6 eV, an inversion of the imaginary part of the optical electrical conductivity of the TlInSe₂ compound is observed. From the graphs of the effective power density versus electric field energy losses, it is known that the effective power density increases significantly in the energy range of 0.805–3.52 eV. The fluorescence spectrum of the ternary compound TlInSe₂ upon excitation with light with a wavelength of 532 nm has been studied and it has been established that this phase has luminescent properties.

Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity

Procedia PDF Downloads 19