Search results for: EGFR kinase inhibitor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 550

Search results for: EGFR kinase inhibitor

430 Effect of Inhibitor of the Angiotensin Converting Enzyme in the Mediterranean Flour Moth: Structural Parametrs of Cuticule and Ecdysteroid Amounts

Authors: S. Yezli-Touiker, L. Kirane-Amrani, N. Soltani-Mazouni

Abstract:

Ephestia kuehniella Zeller Lepidoptera, Pyralidae commonly called Mediterranean flour moth, is serious cosmopolitan pest of stored grain products, particularly flour Month. This species is also a source of allergen that causes asthma and rhinitis. Captopril is an inhibitor of angiotensin converting enzyme (ACE) it was tested in vivo by topical application on development of E. kuehniella. The compound is diluted in acetone and applied topically to newly emerged pupae (10mg/2ml). Report chitin protein of cuticule and ecdysteroid Amounts were determined in vivo. Results show that the captopril does not affect chitin protein of cuticule but traitment with captopril increase the hormonal production, the quantitative analysis reveals the presence of two peaks one at third and another at fifth day.

Keywords: Ephestia kuehniella, cuticule, hormone, captopril

Procedia PDF Downloads 327
429 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 166
428 Isolation and Characterization of the First Known Inhibitor Cystine Knot Peptide in Sea Anemone: Inhibitory Activity on Acid-Sensing Ion Channels

Authors: Armando A. Rodríguez, Emilio Salceda, Anoland Garateix, André J. Zaharenko, Steve Peigneur, Omar López, Tirso Pons, Michael Richardson, Maylín Díaz, Yasnay Hernández, Ludger Ständker, Jan Tytgat, Enrique Soto

Abstract:

Acid-sensing ion channels are cation (Na+) channels activated by a pH drop. These proteins belong to the ENaC/degenerin superfamily of sodium channels. ASICs are involved in sensory perception, synaptic plasticity, learning, memory formation, cell migration and proliferation, nociception, and neurodegenerative disorders, among other processes; therefore those molecules that specifically target these channels are of growing pharmacological and biomedical interest. Sea anemones produce a large variety of ion channels peptide toxins; however, those acting on ligand-gated ion channels, such as Glu-gated, Ach-gated ion channels, and acid-sensing ion channels (ASICs), remain barely explored. The peptide PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by chromatographic techniques and pharmacologically characterized on acid-sensing ion channels of mammalian neurons using patch-clamp techniques. PhcrTx1 inhibited ASIC currents with an IC50 of 100 nM. Edman degradation yielded a sequence of 32 amino acids residues, with a molecular mass of 3477 Da by MALDI-TOF. No similarity to known sea anemone peptides was found in protein databases. The computational analysis of Cys-pattern and secondary structure arrangement suggested that this is a structurally ICK (Inhibitor Cystine Knot)-type peptide, a scaffold that had not been found in sea anemones but in other venomous organisms. These results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASICs. Also, this peptide constitutes a novel template for the development of drugs against pathologies related to ASICs function.

Keywords: animal toxin, inhibitor cystine knot, ion channel, sea anemone

Procedia PDF Downloads 262
427 Relationship between Matrix Metalloproteases and Tissue Inhibitor of Matrix Metalloproteinase Levels and Elastic Moduli of Ascending Aneurysms

Authors: Khalil Khanafer

Abstract:

The objective of this study is to determine if there is a correlation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA). Methods: Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature, and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP2, 3, and 9, as well as TIMP1, were determined in these aortic wall specimens using MMP/TIMP antibodies array. Direct relations were found between MMP2 and the elastic modulus of the ascending aorta wall and between MMP9 and TIMP1.

Keywords: elastic modulus, MMPs/TIMPs levels, Ascending Thoracic Aortic Aneurysm

Procedia PDF Downloads 127
426 Expression of ULK-1 mRNA in Human Peripheral Blood Mononuclear Cells from Patients with Alzheimer's Disease

Authors: Ali Bayram, Remzi Yiğiter

Abstract:

Objective: Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disease. At present, diagnosis of AD is rather late in the disease. Therefore, we attempted to find peripheral biomarkers for the early diagnosis of AD. Herein, we conducted a study to investigate the unc-51 like autophagy activating kinase-1 (ULK1) mRNA expression levels in human peripheral blood mononuclear cells from patients with Alzheimer's disease. Method: To determine whether ULK1 gene expression are altered in AD patients, we measured their gene expression in human peripheral blood cell in 50 patients with AD and 50 age and gender matched healthy controls by quantitative real-time PCR technique. Results: We found that both ULK1 gene expression in peripheral blood cell were significantly decreased in patients with AD as compared with controls (p <0.05). Lower levels of ULK1 gene expression were significantly associated with the increased risk for AD. Conclusions: Serine/threonine-protein kinase involved in autophagy in response to starvation. Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes. Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR. Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2, and PRKAG1, leading to negatively regulate AMPK activity. May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences. Plays a role early in neuronal differentiation and is required for granule cell axon formation. Alzheimer is the most common neurodegenerative disease. Our results provide useful information that the ULK1 gene expression is decreased in the neurodegeneration and AD patients with, indicating their possible systemic involvement in AD.

Keywords: Alzheimer’s sisease, ULK1, mRNA expression, RT-PCR

Procedia PDF Downloads 361
425 Interaction between Kazal-Type Serine Proteinase Inhibitor SPIPm2 and Cyclophilin A from the Black Tiger Shrimp Penaeus monodon

Authors: Sirikwan Ponprateep, Anchalee Tassanakajon, Vichien Rimphanitchayakit

Abstract:

A Kazal-type serine proteinase inhibitor, SPIPm2, was abundantly expressed in the hemocytes and secreted into shrimp plasma has anti-viral property against white spot syndrome virus (WSSV). To discover the molecular mechanism of antiviral activity, the binding assay showed that SPIPm2 bind to the components of viral particle and shrimp hemocyte. From our previous report, viral target protein of SPIPm2 was identified, namely WSV477 using yeast two-hybrid screening. WSV477 is an early gene product of WSSV and involved in viral propagation. In this study, the co-immunoprecipitation technique and Tandem Mass Spectrometry (LC-MS/MS) was used to identify the target protein of SPIPm2 from shrimp hemocyte. The target protein of SPIPm2 was cyclophilin A. In vertebrate, cyclophilin A or peptidylprolyl isomerase A was reported to be the immune suppressor interacted with cyclosporin A involved in immune defense response. The recombinant cyclophilin A from Penaeus monodon (rPmCypA) was produced in E.coli system and purified using Ni-NTA column to confirm the protein-protein interaction. In vitro pull-down assay showed the interaction between rSPIPm2 and rPmCypA. To study the biological function of these proteins, the expression analysis of immune gene in shrimp defense pathways will be investigated after rPmCypA administration.

Keywords: cyclophilin A, protein-protein interaction, Kazal-type serine proteinase inhibitor, Penaeus monodon

Procedia PDF Downloads 203
424 RhoA Regulates E-Cadherin Intercellular Junctions in Oral Squamous Carcinoma Cells

Authors: Ga-Young Lee, Hyun-Man Kim

Abstract:

The modulation of the cell-cell junction is critical in epithelial-mesenchymal transition during tumorigenesis. As RhoA activity is known to be up-regulated to dissociate cell-cell junction by contracting acto-myosin complex in various cancer cells, the present study investigated if RhoA activity was also associated with the disruption of the cell-cell junction of oral cancer cells. We studied SCC-25 cells which are established from oral squamous cell carcinoma if their E-cadherin junction (ECJ) was under control of RhoA. Interestingly, development of ECJ of SCC-25 cells depended on the amount of fibronectin (FN) coated on the culture dishes. Seeded cells promptly aggregated to develop ECJ on the substrates coated with a low amount of FN, whereas they were retarded in the development of ECJ on the substrates coated with a high amount of FN. However, it was an unexpected finding that total RhoA activity was lower in the dissociated cells on the substrates of high FN than in the aggregated cells on the substrates of low FN. Treating the dissociated cells on the substrates of high FN with LPA, a RhoA activator, promoted the development to ECJ. In contrast, treating the aggregated cells on the substrates of low FN with Clostridium botulinum C3, a toxin decreasing RhoA activity, dissociated cells concomitant with the disruption of ECJ. Genetical knockdown of RhoA expression by transfecting RhoA siRNA also down-regulated the development of ECJ in SCC-25 cells. Furthermore, PMA, an activator of protein kinase C (PKC), down-regulated the development of ECJ junction of SCC-25 cells on the substrates coated with low FN. In contrast, GO6976, a PKC inhibitor, up-regulated the development of ECJ of SCC-25 cells with the activation of RhoA on the substrates coated with high FN. In conclusion, in the present study, we demonstrated unexpected results that the activation of RhoA promotes the development of ECJ, whereas the inhibition of RhoA retards the development of ECJ in SCC-25 cells.

Keywords: E-cadherin junction, oral squamous cell carcinoma, PKC, RhoA, SCC-25

Procedia PDF Downloads 299
423 Excess Body Fat as a Store Toxin Affecting the Glomerular Filtration and Excretory Function of the Liver in Patients after Renal Transplantation

Authors: Magdalena B. Kaziuk, Waldemar Kosiba, Marek J. Kuzniewski

Abstract:

Introduction: Adipose tissue is a typical place for storage water-insoluble toxins in the body. It's connective tissue, where the intercellular substance consist of fat, which level in people with low physical activity should be 18-25% for women and 13-18% for men. Due to the fat distribution in the body we distinquish two types of obesity: android (visceral, abdominal) and gynoidal (gluteal-femoral, peripheral). Abdominal obesity increases the risk of complications of the cardiovascular system diseases, and impaired renal and liver function. Through the influence on disorders of metabolism, lipid metabolism, diabetes and hypertension, leading to emergence of the metabolic syndrome. So thus, obesity will especially overload kidney function in patients after transplantation. Aim: An attempt was made to estimate the impact of amount fat tissue on transplanted kidney function and excretory function of the liver in patients after Ktx. Material and Methods: The study included 108 patients (50 females, 58 male, age 46.5 +/- 12.9 years) with active kidney transplant after more than 3 months from the transplantation. An analysis of body composition was done by using electrical bioimpedance (BIA) and anthropometric measurements. Estimated basal metabolic rate (BMR), muscle mass, total body water content and the amount of body fat. Information about physical activity were obtained during clinical examination. Nutritional status, and type of obesity were determined by using indicators: Waist to Height Ratio (WHR) and Waist to Hip Ratio (WHR). Excretory functions of the transplanted kidney was rated by calculating the estimated renal glomerular filtration rate (eGFR) using the MDRD formula. Liver function was rated by total bilirubin and alanine aminotransferase levels ALT concentration in serum. In our patients haemolitic uremic syndrome (HUS) was excluded. Results: In 19.44% of patients had underweight, 22.37% of the respondents were with normal weight, 11.11% had overweight, and the rest were with obese (49.08%). People with android stature have a lower eGFR compared with those with the gynoidal stature (p = 0.004). All patients with obesity had higher amount of body fat from a few to several percent. The higher amount of body fat percentage, the lower eGFR had patients (p <0.001). Elevated ALT levels significantly correlated with a high fat content (p <0.02). Conclusion: Increased amount of body fat, particularly in the case of android obesity can be a predictor of kidney and liver damage. Due to that obese patients should have more frequent control of diagnostic functions of these organs and the intensive dietary proceedings, pharmacological and regular physical activity adapted to the current physical condition of patients after transplantation.

Keywords: obesity, body fat, kidney transplantation, glomerular filtration rate, liver function

Procedia PDF Downloads 432
422 Hard Water Softening by Chronoamperometry and Impedancemetry

Authors: Samira Ghizellaoui, Manel Boumagoura, Rayane Menzri

Abstract:

The ground water Hamma rich in calcium and bicarbonate likely to deposit the tartar and subsequently lead to the obstruction of the pipes and the seizing of the stopping devices in addition to the financial losses resulting there from. It is therefore necessary to optimise an antiscaling treatment in order to avoid the risk of formation of tartar deposits in the various installations and to protect the equipment in contact with this water. MgCl2 is the chemical inhibitor which was tested. To optimise the effective concentration of this product, we used two electrochemical methods (chronoamperometry and impedancemetry) to identify the best method for optimizing antiscaling treatment. IR, RX, Raman spectroscopy and SEM indicate that the raw waters of Hamma give precipitates in the form of calcite (the most stable form), with the presence of a small amount of magnesian calcite and aragonite. In the presence of the inhibitor (MgCl2), calcium carbonate changes morphology to other forms that do not exist in the deposit obtained from the raw water (vaterite and calcium carbonate monohydrate).

Keywords: calcium carbonate, MgCl2, chronoamperometry, Impedancemetry

Procedia PDF Downloads 42
421 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development

Authors: Nigar Kantarci Carsibasi

Abstract:

Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.

Keywords: cancer, drug design, elastic network model, MDM2

Procedia PDF Downloads 99
420 Design of Organic Inhibitors from Quantum Chemistry

Authors: Rahma Tibigui, Ikram Hadj Said, Rachid Belkada, Dalila Hammoutene

Abstract:

The vulnerability of industrial facilities is highly concerned with multiple risks from corrosion. The commonly adopted solution is based on the use of organic inhibitors, which are gradually being replaced by environmentally friendly organic inhibitors. In our work, we carried out a quantum chemical study based on the Density Functional Theory (DFT) method at the B3LYP/6-311G (d,p) level of theory. The inhibitory performance of a derivative of the tetrazole molecule has been investigated and reported as a carbon steel-friendly corrosion inhibitor in hydrochloric acid (HCl) medium. The relationship is likely to exist between the molecular structure of this compound as well as its various global reactivity descriptors, and its corrosion inhibition efficiency, which was examined and then discussed. The results show low values of ΔE, which represent strong adsorption of the inhibitor on the steel surface. Moreover, the flat adsorption orientation confirmed the great ability to donate (accept) electrons to (from) steel, fabricating an anchored barrier to prevent steel from corrosion.

Keywords: eco-friendly, corrosion inhibitors, tetrazole, DFT

Procedia PDF Downloads 202
419 An Exploration Survival Risk Factors of Stroke Patients at a General Hospital in Northern Taiwan

Authors: Hui-Chi Huang, Su-Ju Yang, Ching-Wei Lin, Jui-Yao Tsai, Liang-Yiang

Abstract:

Background: The most common serious complication following acute stroke is pneumonia. It has been associated with the increased morbidity, mortality, and medical cost after acute stroke in elderly patients. Purpose: The aim of this retrospective study was to investigate the relationship between stroke patients, risk factors of pneumonia, and one-year survival rates in a group of patients, in a tertiary referal center in Northern Taiwan. Methods: From January 2012 to December 2013, a total of 1730 consecutively administered stroke patients were recruited. The Survival analysis and multivariate regression analyses were used to examine the predictors for the one-year survival in stroke patients of a stroke registry database from northern Taiwan. Results: The risk of stroke mortality increased with age≧ 75 (OR=2.305, p < .0001), cancer (OR=3.221, p=<.0001), stayed in intensive care unit (ICU) (OR=2.28, p <.0006), dysphagia (OR=5.026, p<.0001), without speech therapy(OR=0.192, p < .0001),serum albumin < 2.5(OR=0.322, p=.0053) , eGFR > 60(OR=0.438, p <. 0001), admission NIHSS >11(OR=1.631, p=.0196), length of hospitalization (d) > 30(OR=0.608, p=.0227), and stroke subtype (OR=0.506, p=.0032). After adjustment of confounders, pneumonia was not significantly associated with the risk of mortality. However, it is most likely to develop in patients who are age ≧ 75, dyslipidemia , coronary artery disease , albumin < 2.5 , eGFR <60 , ventilator use , stay in ICU , dysphagia, without speech therapy , urinary tract infection , Atrial fibrillation , Admission NIHSS > 11, length of hospitalization > 30(d) , stroke severity (mRS=3-5) ,stroke Conclusion: In this study, different from previous research findings, we found that elderly age, severe neurological deficit and rehabilitation therapy were significantly associated with Post-stroke Pneumonia. However, specific preventive strategies are needed to target the high risk groups to improve their long-term outcomes after acute stroke. These findings could open new avenues in the management of stroke patients.

Keywords: stroke, risk, pneumonia, survival

Procedia PDF Downloads 208
418 A Density Functional Theory Computational Study on the Inhibiting Action of Some Derivatives of 1,8-Bis(Benzylideneamino)Naphthalene against Aluminum Corrosion

Authors: Taher S. Ababneh, Taghreed M. A. Jazzazi, Tareq M. A. Alshboul

Abstract:

The inhibiting action against aluminum corrosion by three derivatives of 1,8-bis (benzylideneamino) naphthalene (BN) Schiff base has been investigated by means of DFT quantum chemical calculations at the B3LYP/6-31G(d) level of theory. The derivatives (CBN, NBN and MBN) were prepared from the condensation reaction of 1,8-diaminonaphthalene with substituted benzaldehyde (4-CN, 3-NO₂ and 3,4-(OMe)₂, respectively). Calculations were conducted to study the adsorption of each Schiff base on aluminum surface to evaluate its potential as a corrosion inhibitor. The computational structural features and electronic properties of each derivative such as relative energies and energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have been reported. Thermodynamic functions and quantum chemical parameters such as the hardness of the inhibitor, the softness and the electrophilicity index were calculated to determine the derivative of the highest inhibition efficiency.

Keywords: corrosion, aluminum, DFT calculation, 1, 8-diaminonaphthalene, benzaldehyde

Procedia PDF Downloads 303
417 Application of Response Surface Methodology to Optimize the Factor Influencing the Wax Deposition of Malaysian Crude Oil

Authors: Basem Elarbe, Ibrahim Elganidi, Norida Ridzuan, Norhyati Abdullah

Abstract:

Wax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the oil and gas industry due to low-temperature conditions. It may lead to a reduction in production, shut-in, plugging of pipelines and increased fluid viscosity. The most significant popular approach to solve this issue is by injection of a wax inhibitor into the channel. This research aims to determine the amount of wax deposition of Malaysian crude oil by estimating the effective parameters using (Design-Expert version 7.1.6) by response surface methodology (RSM) method. Important parameters affecting wax deposition such as cold finger temperature, inhibitor concentration and experimental duration were investigated. It can be concluded that SA-co-BA copolymer had a higher capability of reducing wax in different conditions where the minimum point of wax reduction was found at 300 rpm, 14℃, 1h, 1200 ppmThe amount of waxes collected for each parameter were 0.12g. RSM approach was applied using rotatable central composite design (CCD) to minimize the wax deposit amount. The regression model’s variance (ANOVA) results revealed that the R2 value of 0.9906, indicating that the model can be clarified 99.06% of the data variation, and just 0.94% of the total variation were not clarified by the model. Therefore, it indicated that the model is extremely significant, confirming a close agreement between the experimental and the predicted values. In addition, the result has shown that the amount of wax deposit decreased significantly with the increase of temperature and the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA), which were set at 14°C and 1200 ppm, respectively. The amount of wax deposit was successfully reduced to the minimum value of 0.01 g after the optimization.

Keywords: wax deposition, SABA inhibitor, RSM, operation factors

Procedia PDF Downloads 252
416 Analysis of Brain Specific Creatine Kinase of Postmortem Cerebrospinal Fluid and Serum in Blunt Head Trauma Cases

Authors: Rika Susanti, Eryati Darwin, Dedi Afandi, Yanwirasti, Syahruddin Said, Noverika Windasari, Zelly Dia Rofinda

Abstract:

Introduction: Blunt head trauma is one of the leading causes of death associated with murders and other deaths involved in criminal acts. Creatine kinase (CKBB) levels have been used as a biomarker for blunt head trauma. Therefore, it is now used as an alternative to an autopsy. The aim of this study is to investigate CKBB levels in cerebrospinal fluid (CSF) and post-mortem serum in order to deduce the cause and time of death. Method: This investigation was conducted through post-test–only group design involving deaths caused by blunt head trauma, which was compared to deaths caused by ketamine poisoning. Results: There were eight treatment groups, each consisting of six adult rats (Rattus norvegicus) Sprague-Dawley strain. Examinations were done at 0 hours, 1 hour, 2 hours, and 3 hours post-mortem, which followed by brain tissue observation. Data were then analyzed statistically with a repeated-measures general linear model. Conclusion: There were increases in the level of CKBB in CSF and postmortem serum in both blunt head trauma and ketamine poisoning treatment groups. However, there were no significant differences between these two groups.

Keywords: blunt head trauma, CKBB, the cause of death, estimated time of death

Procedia PDF Downloads 166
415 Purification and Pre-Crystallization of Recombinant PhoR Cytoplasmic Domain Protein from Mycobacterium Tuberculosis H37Rv

Authors: Oktira Roka Aji, Maelita R. Moeis, Ihsanawati, Ernawati A. Giri-Rachman

Abstract:

Globally, tuberculosis (TB) remains a leading cause of death. The emergence of multidrug-resistant strains and extensively drug-resistant strains have become a major public concern. One of the potential candidates for drug target is the cytoplasmic domain of PhoR Histidine Kinase, a part of the Two Component System (TCS) PhoR-PhoP in Mycobacterium tuberculosis (Mtb). TCS PhoR-PhoP relay extracellular signal to control the expression of 114 virulent associated genes in Mtb. The 3D structure of PhoR cytoplasmic domain is needed to screen novel drugs using structure based drug discovery. The PhoR cytoplasmic domain from Mtb H37Rv was overexpressed in E. coli BL21(DE3), then purified using IMAC Ni-NTA Agarose his-tag affinity column and DEAE-ion exchange column chromatography. The molecular weight of the purified protein was estimated to be 37 kDa after SDS-PAGE analysis. This sample was used for pre-crystallization screening by applying sitting drop vapor diffusion method using Natrix (HR2-116) 48 solutions crystal screen kit at 25ºC. Needle-like crystals were observed after the seventh day of incubation in test solution No.47 (0.1 M KCl, 0.01 M MgCl2.6H2O, 0.05 M Tris-Cl pH 8.5, 30% v/v PEG 4000). Further testing is required for confirming the crystal.

Keywords: tuberculosis, two component system, histidine kinase, needle-like crystals

Procedia PDF Downloads 403
414 CP-96345 Rregulates Hydrogen Sulphide Induced TLR4 Signaling Pathway Adhesion Molecules in Caerulein Treated Pancreatic Acinar Cells

Authors: Ramasamy Tamizhselvi, Leema George, Madhav Bhatia

Abstract:

We have earlier shown that mouse pancreatic acinar cells produce hydrogen sulfide (H2S) and play a role in the pathogenesis of acute pancreatitis. This study is to determine the effect of H2S on TLR4 mediated innate immune signaling in acute pancreatitis via substance P (SP). Male Swiss mice were treated with hourly intraperitoneal injection of caerulein (50μg/kg) for 10 hour. DL-propargylglycine (PAG) (100 mg/kg i.p.), an inhibitor of H2S formation was administered 1h after the induction of acute pancreatitis. Pancreatic acinar cells from male Swiss mice were incubated with or without caerulein (10–7 M for 60 min) and CP-96345 (NK1R inhibitor). To better understand the effect of H2S in inflammation, acinar cells were stimulated with caerulein after addition of H2S donor, NaHS. In addition, caerulein treated pancreatic acinar cells were pretreated with PAG (30 µM), for 1h. H2S inhibitor, PAG, eliminated TLR4, IRAK4, TRAF6 and NF-kB levels in an in vitro and in vivo model of caerulein-induced acute pancreatitis. PPTA gene deletion reduced TLR4, MyD88, IRAK4, TRAF6, adhesion molecules and NF-kB in caerulein treated pancreatic acinar cells whereas administration of NaHS resulted in further rise in TLR4 and NF-kB levels in caerulein treated pancreatic acinar cells. In addition, acini isolated from mice and treated with PPTA gene receptor NK1R antagonist CP96345 did not exhibit further increase in TLR4, IRAK4, TRAF6, adhesion molecules and NF-kB levels after NaHS pretreatment. The present findings show for the first time that in acute pancreatitis, H2S up-regulates TLR4 pathway and NF-kB via substance P.

Keywords: preprotachykinin-A gene, H2S, TLR4, acute pancreatitis

Procedia PDF Downloads 248
413 Unravelling of the TOR Signaling Pathway in Human Fungal Pathogen Cryptococcus neoformans

Authors: Yee-Seul So, Guiseppe Ianiri, Alex Idnurm, Yong-Sun Bahn

Abstract:

Tor1 is a serine/threonine protein kinase that is widely conserved across eukaryotic species. Tor1 was first identified in Saccharomyces cerevisiae as a target of rapamycin (TOR). The TOR pathway has been implicated in regulating cellular responses to nutrients, proliferation, translation, transcription, autophagy, and ribosome biogenesis. Here we identified two homologues of S. cerevisiae Tor proteins, CNAG_06642 (Tor1) and CNAG_05220 (Tlk1, TOR-like kinase 1), in Cryptococcus neoformans causing a life-threatening fungal meningoencephalitis. Both Tor1 and Tlk1 have rapamycin-binding (RB) domains but Tlk1 has truncated RB form. To study the TOR-signaling pathway in the fungal pathogen, we attempt to construct the tor1Δ and tlk1Δ mutants and phenotypically analyze them. Although we failed to construct the tor1Δ mutant, we successfully construct the tlk1Δ mutant. The tlk1Δ mutant does not exhibit any discernable phenotypes, suggesting that Tlk1 is dispensable in C. neoformans. The essentiality of TOR1 is independently confirmed by constructing the TOR1 promoter replacement strain by using a copper transporter 4 (CTR4) promoter and the TOR1/tor1 heterozygous mutant in diploid C. neoformans strain background followed by sporulation analysis. To further analyze the function of Tor1, we construct TOR1 overexpression mutant using a constitutively active histone H3 in C. neoformans. We find that the Tor1 overexpression mutant is resistant to rapamycin but the tlk1Δ mutant does not exhibit any altered resistance to rapamycin, further confirming that Tor1, but not Tlk1, is critical for TOR signaling. Furthermore, we found that Tor1 is involved in response to diverse stresses, including genotoxic stress, oxidative stress, thermo-stress, antifungal drug treatment, and production of melanin. To identify any TOR-related transcription factors, we screened C. neoformans transcription factor library that we constructed in our previous study and identified several potential downstream factors of Tor1, including Atf1, Crg1 and Bzp3. In conclusion, the current study provides insight into the role of the TOR signaling pathway in human fungal pathogens as well as C. neoformans.

Keywords: fungal pathogen, serine/threonine kinase, target of rapamycin, transcription factor

Procedia PDF Downloads 192
412 Oxidosqualene Cyclase: A Novel Inhibitor

Authors: Devadrita Dey Sarkar

Abstract:

Oxidosqualene cyclase is a membrane bound enzyme in which helps in the formation of steroid scaffold in higher organisms. In a highly selective cyclization reaction oxidosqualene cyclase forms LANOSTEROL with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. In humans OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. The enzyme oxidosqualene: lanosterol cyclase (OSC) represents a novel target for the treatment of hypercholesterolemia. OSC catalyzes the cyclization of the linear 2,3-monoepoxysqualene to lanosterol, the initial four-ringed sterol intermediate in the cholesterol biosynthetic pathway. OSC also catalyzes the formation of 24(S), 25-epoxycholesterol, a ligand activator of the liver X receptor. Inhibition of OSC reduces cholesterol biosynthesis and selectively enhances 24(S),25-epoxycholesterol synthesis. Through this dual mechanism, OSC inhibition decreases plasma levels of low-density lipoprotein (LDL)-cholesterol and prevents cholesterol deposition within macrophages. The recent crystallization of OSC identifies the mechanism of action for this complex enzyme, setting the stage for the design of OSC inhibitors with improved pharmacological properties for cholesterol lowering and treatment of atherosclerosis. While studying and designing the inhibitor of oxidosqulene cyclase, I worked on the pdb id of 1w6k which was the most worked on pdb id and I used several methods, techniques and softwares to identify and validate the top most molecules which could be acting as an inhibitor for oxidosqualene cyclase. Thus, by partial blockage of this enzyme, both an inhibition of lanosterol and subsequently cholesterol formation as well as a concomitant effect on HMG-CoA reductase can be achieved. Both effects complement each other and lead to an effective control of cholesterol biosynthesis. It is therefore concluded that 2,3-oxidosqualene cyclase plays a crucial role in the regulation of intracellular cholesterol homeostasis. 2,3-Oxidosqualene cyclase inhibitors offer an attractive approach for novel lipid-lowering agents.

Keywords: anticholesteraemic, crystallization, statins, homeostasis

Procedia PDF Downloads 314
411 Polyphosphate Kinase 1 Active Site Characterization for the Identification of Novel Antimicrobial Targets

Authors: Sanaa Bardaweel

Abstract:

Inorganic polyphosphate (poly P) is present in all living forms tested to date, from each of the three kingdoms of life. Studied mainly in prokaryotes, poly P and its associated enzymes are vital in diverse basic metabolism, in at least some structural functions and, notably, in stress responses. These plentiful and unrelated roles for poly P are probably the consequence of its presence in life-forms early in evolution. The genomes of many bacterial species, including pathogens, encode a homologue of a major poly P synthetic enzyme, poly P kinase 1 (PPK1). Genetic deletion of ppk1 results in reduced poly P levels and loss of pathogens virulence towards protozoa and animals. Thus far, no PPK1 homologue has been identified in higher-order eukaryotes and, therefore, PPK1 represents a novel target for chemotherapy. The idea of the current study is to purify the PPK1 from Escherichia coli to homogeneity in order to study the effect of active site point mutations on PPK1 catalysis via the application of site-directed mutagenesis strategy. The knowledge obtained about the active site of PPK1 will be utilized to characterize the catalytic and kinetic mechanism of PPK1 with model substrates. Comprehensive understanding of the enzyme kinetic mechanism and catalysis will be used to design and screen a library of synthetic compounds for potential discovery of selective PPK1-inhibitors.

Keywords: antimicobial, Escherichia coli, inorganic polyphosphate, PPK1-inhibitors

Procedia PDF Downloads 243
410 Synthesis and Anticancer Evaluation of Substituted 2-(3,4-Dimethoxyphenyl) Benzazoles

Authors: Cigdem Karaaslan, Yalcin Duydu, Aylin Ustundag, Can Ozgur Yalcın, Hakan Goker

Abstract:

Benzazole nucleus is found in the structure of many compounds as anticancer agents. Bendamustine (Alkylating agent), Nocodazole (Mitotic inhibitor), Veliparib (PARP inhibitor), Glasdegib (SMO inhibitor) are clinically used as anticancer therapeutics which bearing benzimidazole moiety. Based on the principle of bioisosterism in the present work, 23 compounds belonging to 2-(3,4-dimethoxy-phenyl) benzazoles and imidazopyridine series were synthesized and evaluated for their anticancer activities. N-(5-Chloro-2-hydroxyphenyl)-3,4-dimethoxybenzamide, was obtained by the amidation of 2-hydroxy-5-chloroaniline with 3,4-dimethoxybenzoic acid by using 1,1'-carbonyldiimidazole. Cyclization of benzamide derivative to benzoxazole, was achieved by p-toluenesulfonic acid. Other 1H-benz (or pyrido) azoles were prepared by the reaction between 2-aminothiophenol, o-phenylenediamine, o-pyridinediamine with sodium metabisulfite adduct of 3,4-dimethoxybenzaldehyde. The NMR assignments of the dimethoxy groups were established by the Nuclear Overhauser Effect Spectroscopy. A compound named, 5(4),7(6)-Dichloro-2-(3,4-dimethoxy) phenyl-1H-benzimidazole, bearing two chlorine atoms at the 5(4) and 7(6) positions of the benzene moiety of benzimidazole was found the most potent analogue, against A549 cells with the GI50 value of 1.5 µg/mL. In addition, 2-(3,4-Dimethoxyphenyl)-5,6-dimethyl-1H-benzimi-dazole showed remarkable cell growth inhibition against MCF-7 and HeLa cells with the GI₅₀ values of 7 and 5.5 µg/mL, respectively. It could be concluded that introduction of di-chloro atoms at the phenyl ring of 2-(3,4-dimethoxyphenyl)-1H-benzimidazoles increase significant cytotoxicity to selected human tumor cell lines in comparison to other all benzazoles synthesized in this study. Unsubstituted 2-(3,4-dimethoxyphenyl) imidazopyridines also gave the good inhibitory profile against A549 and HeLa cells.

Keywords: 3, 4-Dimethoxyphenyl, 1H-benzimidazole, benzazole, imidazopyridine

Procedia PDF Downloads 90
409 Aza-Flavanones as Small Molecule Inhibitors of MicroRNA-10b in MDA-MB-231 Breast Cancer Cells

Authors: Debasmita Mukhopadhyay, Manika Pal Bhadra

Abstract:

MiRNAs contribute to oncogenesis either as tumor suppressors or oncogenes. Hence, discovery of miRNA-based therapeutics are imperative to ameliorate cancer. Modulation of miRNA maturation is accomplished via several therapeutic agents, including small molecules and oligonucleotides. Due to the attractive pharmacokinetic properties of small molecules over oligonucleotides, we set to identify small molecule inhibitors of a metastasis-inducing microRNA. Cytotoxicity profile of aza-flavanone C1 was analyzed in a panel of breast cancer cells employing the NCI-60 screen protocols. Flow cytometry, immunofluorescence and western blotting of apoptotic or EMT markers were performed to analyze the effect of C1. A dual luciferase assay unequivocally suggested that C1 repressed endogenous miR-10b in MDA-MB-231 cells. A derivative of aza-flavanone C1 is shown as a strong inhibitor miR-10b. Blockade of miR-10b by C1 resulted in decreased expression of miR-10b targets in an aggressive breast cancer cell line model, MDA-MB-231. Abrogation of TWIST1, an EMT-inducing transcription factor also contributed to C1 mediated apoptosis. Moreover C1 exhibited a specific and selective down-regulation of miR-10b and did not function as a general inhibitor of miRNA biogenesis or other oncomiRs of breast carcinoma. Aza-flavanone congener C1 functions as a potent inhibitor of the metastasis-inducing microRNA, miR-10b. Our present study provides evidence for targeting metastasis-inducing microRNA, miR-10b with a derivative of Aza-flavanone. Better pharmacokinetic properties of small molecules place them as attractive agents compared to nucleic acids based therapies to target miRNA. Further work, in generating analogues based on aza-flavanone moieties will significantly improve the affinity of the small molecules to bind miR-10b. Finally, it is imperative to develop small molecules as novel miRNA-therapeutics in the fight against cancer.

Keywords: breast cancer, microRNA, metastasis, EMT

Procedia PDF Downloads 510
408 Mechanism of Modeling the Level of Bcr-Abl Oncoprotein by Ubiquitin-Proteasome System in Chronic Myeloid Leukemia

Authors: Svitlana Antonenko, Gennady Telegeev

Abstract:

Introductive statement: The development of chronic myeloid leukemia (CML) is caused by Bcr-Abl oncoprotein. Modern treatments with tyrosine kinase inhibitors are greatly complicated by the mutational variability of the Bcr-Abl oncoprotein, which causes drug resistance. Therefore, there is an urgent need to develop new approaches to the treatment of the disease, which will allow modeling the level of Bcr-Abl oncoprotein in the cell. Promising in this direction is the identification of proteases that can selectively promote cellular proteolysis of oncoproteins. The aim of the study was to study the effect of the interaction of Bcr-Abl with deubiquitinase USP1 on the level of oncoprotein in CML cells. Methodology: K562 cells were selected for the experiment. Сells were incubated with ML323 inhibitor for 24 hours. Precipitation of endogenous proteins from K562 cell lysate was performed using anti-Bcr-Abl antibodies. Cell lysates and precipitation results were studied by Western blot. Subcellular localization of proteins was studied by immunofluorescence analysis followed by confocal microscopy. The results were analyzed quantitatively and statistically. Major findings: The Bcr-Abl/USP1 protein complex was detected in CML cells, and it was found that inhibition of USP1 deubiquitinating activity by the compound ML323 leads to disruption of this protein complex and a decrease in the level of Bcr-Abl oncoprotein in cells. The interaction of Bcr-Abl with USP1 may result in deubiquitination of the oncoprotein, which disrupts its proteasomal degradation and leads to the accumulation of CML in cells. Conclusion: We believe that the interaction of oncoprotein with USP1 may be one of the prerequisites that contribute to malignant cell transformation due to the deubiquitination of oncoprotein, which leads to its accumulation and disease progression. A correlation was found between the deubiquitinating activity of USP1 and the level of oncoprotein in CML cells. Thus, we identify deubiquitinase USP1 as a promising therapeutic target for the development of a new strategy for the treatment of CML by modulating the level of Bcr-Abl in the cell.

Keywords: chronic myeloid leukemia, Bcr-Abl, USP1, deubiquitination Bcr-Abl, K562 cell

Procedia PDF Downloads 34
407 Suppression of Immunostimulatory Function of Dendritic Cells and Prolongation of Skin Allograft Survival by Dryocrassin

Authors: Hsin-Lien Lin, Ju-Hui Fu

Abstract:

Dendritic cells (DCs) are the major professional antigen-presenting cells for the development of optimal T-cell immunity. DCs can be used as pharmacological targets to screen novel biological modifiers for the treatment of harmful immune responses, such as transplantation rejection. Dryopteris crassirhizoma Nakai (Aspiadaceae) is used for traditional herbal medicine in the region of East Asia. The root of this fern plant has been listed for treating inflammatory diseases. Dryocrassin is the tetrameric phlorophenone component derived from Dryopteris. Here, we tested the immunomodulatory potential of dryocrassin on lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs in vitro and in skin allograft transplantation in vivo. Results demonstrated that dryocrassin reduced the secretion of tumor necrosis factor-α, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also blocked by dryocrassin. Moreover, LPS-stimulated DC-elicited allogeneic T-cell proliferation was lessened by dryocrassin. In addition, dryocrassin inhibited LPS-induced activation of IϰB kinase, JNK/p38 mitogen-activated protein kinase, as well as the translocation of NF-ϰB. Treatment with dryocrassin obviously diminished 2,4-dinitro-1-fluorobenzene- induced delayed-type hypersensitivity and prolonged skin allograft survival. Dryocrassin may be one of the potent immunosuppressive agents for transplant rejection through the destruction of DC maturation and function.

Keywords: dryocrassin, dendritic cells, immunosuppression, skin allograft

Procedia PDF Downloads 351
406 Perfluoroheptanoic Acid Affects Xenopus Embryo Embryogenesis by Inducing the Phosphorylation of ERK and JNK

Authors: Chowon Kim, Yoo-Kyung Kim, Kyeong Yeon Park, Hyun-Shik Lee

Abstract:

Perfluoroalkyl compounds (PFCs) are globally distributed synthetic compounds that are known to adversely affect human health. Developmental toxicity assessment of PFCs is important to facilitate the evaluation of their environmental impact. In the present study, we assessed the developmental toxicity and teratogenicity of PFCs with different numbers of carbon atoms on Xenopus embryogenesis. An initial frog embryo teratogenicity assay-Xenopus (FETAX) assay was performed that identified perfluorohexanoic (PFHxA) and perfluoroheptanoic (PFHpA) acids as potential teratogens and developmental toxicants. The mechanism underlying this teratogenicity was also investigated by measuring the expression of tissue-specific biomarkers such as phosphotyrosine‑binding protein, xPTB (liver); NKX2.5 (heart); and Cyl18 (intestine). Whole‑mount in situ hybridization, reverse transcriptase‑polymerase chain reaction (RT-PCR), and histologic analyses detected severe defects in the liver and heart following exposure to PFHxA or PFHpA. In addition, immunoblotting revealed that PFHpA significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), while PFHxA slightly increased these, as compared with the control. These results suggest that PFHxA and PFHpA are developmental toxicants and teratogens, with PFHpA producing more severe effects on liver and heart development through the induction of ERK and JNK phosphorylation.

Keywords: PFCs, ERK, JNK, xenopus

Procedia PDF Downloads 271
405 The Impact of Co-Administration of Phosphodiesterase-5 Inhibitor and Sodium Selenite on Ischemia/Reperfusion Injury in a Rat Ovary Model: Biochemical and Histopathologic Evaluation

Authors: Waleed Aly Sayed Ahmed, Eman Kishk, Tahani Shams

Abstract:

Aim: To study the effects of co-administration of phosphodiesterase-5 inhibitor (PDE-5) and sodium selenite against the damage induced by ovarian ischemia-reperfusion in rats. Materials and Methods: A total of forty-two sexually mature, virgin, female rats were divided randomly into six groups of seven each: sham group (C), ischemia group (I), ischemia/reperfusion group (I/R), ischemia/reperfusion plus 1.4mg/kg sildenafil (I/R+S) group, ischemia/reperfusion plus 0.2mg/kg selenium (I/R+Se) group and ischemia/reperfusion plus combination of sildenafil and selenium (I/R+S+Se) group. In ischemia group (I), rats were exposed to ischemia for 3 hours (h). In ischemia/reperfusion group (I/R), rats were exposed to ischemia for 3 h followed by 6 h of reperfusion. Treated groups received 1.4mg/kg sildenafil or 0.2 mg/kg selenium or both 30 min before reperfusion. Both ovaries were surgically removed carefully. One ovary was examined for histopathological changes and the other was subject to biochemical analysis including malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx). Results: Assessment of ovarian tissue damage using a scoring system showed marked vascular congestion, interstitial edema, leukocyte infiltration, hemorrhage, and follicular degeneration in ischemia and ischemia/reperfusion groups. Tissue damage score for I, IR and all treated groups were significantly higher than those of the sham group (p<0.001), while tissue damage score decreased significantly in I/R+S and I/R+Se groups compared to I/R group (p<0.05), and notably, the difference was highly significant in I/R+S+Se group (p<0.001). There was significant increase in MDA levels and reduction in activities of CAT and GPx in I/R group compared to the sham group (p < 0.05). In I/R+S and I/R+Se groups, MDA was significantly decreased compared to the I/R group (p<0.05) and the difference was highly significant with co-administration of sildenafil and selenium (p<0.001). CAT and GPx were higher in all treated groups compared to I/R group (p<0.05). Conclusion: The co-administration of sildenafil citrate and selenium are highly protective against damage induced by ovarian ischemia/reperfusion in rats.

Keywords: phosphodiesterase-5 inhibitor, sildenafil, antioxidant, selenium, ovarian ischemia

Procedia PDF Downloads 278
404 Pancreatic Lipase and Cholesterol Esterase Inhibitors from Thai Medicinal Plants

Authors: Kwanchai Ratanamanee, Pattra Ahmadi Pirshahid, Yaowaluk Khamphan, Sirinan Thubthimthad

Abstract:

Obesity is a main global health problem. The obesity rated has continued to be higher and higher. It causes to serious systems, diabetes, coronary artery disease, stroke, and some types of cancer. Oristat is one of the best drugs worldwide used as a pancreatic lipase inhibitor. To develop the new therapeutic drugs from medicinal plant always explored. In this study, 24 medicinal plants were investigated for their pancreatic lipase and cholesterol esterase inhibitory effects with Fluorometer assay and oristat as a positive control. It showed that the ethanolic extract of pods of Acacia concinna (Willd.) D.C., possess pancreatic lipase and cholesterol esterase inhibitory activities of IC50 at 2.73 and 3.77 mg/ml respectively as well as oral acute toxicity of the extract (LD50) was 6,300 mg/kg body weight. The extract of A.concinna should be further investigated in animal testing. The results of pancreatic lipase and cholesterol esterase inhibitor of the extracts will lead us to utilize A.concinna for developing as obesity dietary supplement from a medicinal plant.

Keywords: Acacia concinna (Willd.) D. C., cholesterol esterase, obesity, pancreatic lipase

Procedia PDF Downloads 442
403 Oleuropein Ameliorates Palmitate-Induced Insulin Resistance by Increasing GLUT4 Translocation through Activation of AMP-Activated Protein Kinase in Rat Soleus Muscles

Authors: Hakam Alkhateeb

Abstract:

Oleuropein, the main constituent of leaves and fruits of the olive tree, has been demonstrated to exert beneficial effects on parameters relevant to the normal homeostatic mechanisms of glucose regulation in rat skeletal muscle. However, the antidiabetic effect of oleuropein, to our knowledge, has not been examined. Therefore, in this study, we examined whether oleuropein ameliorated palmitate-induced insulin resistance in skeletal muscle. To examine this question, insulin resistance was rapidly induced by incubating (12h) soleus muscle with a high concentration of palmitate(2mM). Subsequently, we attempted to restore insulin sensitivity by incubating (12h) muscles with oleuropien (1.5mM), while maintaining high concentrations of palmitate. Palmitate treatment for 12 h reduced insulin-stimulated glucose transport, GLUT4 translocationandAS160 phosphorylation. Oleuropein treatment (12 h) fully restoredinsulin-stimulated glucose transport, GLUT4translocationandAS160 phosphorylation. Inhibition of PI3K phosphorylation with wortmannin (1µM)did not affect the oleuropein-induced improvements in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. These results suggested that the improvements in these parameters cannot account for activating PI3K pathway. Taken altogether, it appears that oleuropein, through activation of another pathway like activated protein kinase (AMPK), may provide a possible strategy by which they ameliorate palmitate-induced insulin resistance in skeletal muscles.

Keywords: AS160, diabetes, GLUT4, oleuropein

Procedia PDF Downloads 184
402 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives

Authors: Mohammadjavad Sotoudeheian

Abstract:

COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.

Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration

Procedia PDF Downloads 52
401 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment

Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis

Abstract:

Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.

Keywords: corrosion, surfactants, steel surface, quantum

Procedia PDF Downloads 322