Search results for: Dua Hişam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Dua Hişam

2 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 69
1 Effectiveness of Mobile Health Augmented Cardiac Rehabilitation (MCard) on Health-Related Quality of Life among Post-Acute Coronary Syndrome Patients: A Randomized Controlled Trial

Authors: Aliya Hisam, Zia Ul Haq, Sohail Aziz, Patrick Doherty, Jill Pell

Abstract:

Objective: To determine the effectiveness of Mobile health augmented Cardiac rehabilitation (MCard) on health-related quality of life (HRQoL) among post-acute coronary syndrome(post-ACS) patients. Methodology: In a randomized controlled trial, post-ACS patients were randomly allocated (1:1) to an intervention group (received MCard; counseling, empowering with self-monitoring devices, short text messages, in addition to standard post-ACS care) or control group (standard post-ACS care). HRQoL was assessed by generic Short Form-12 and MacNew quality of life myocardial infarction (QLMI) tools. Participants were followed for 24 weeks with data collection and analysis at three-time points (baseline, 12 weeks and 24 weeks). Result: At baseline, 160 patients (80 in each group; mean age 52.66+8.46 years; 126 males, 78.75%) were recruited, of which 121(75.62%) continued and were analyzed at 12-weeks and 119(74.37%) at 24-weeks. The mean SF-12 physical component score significantly improved in the MCard group at 12 weeks follow-up (48.93 vs. control 43.87, p<.001) and 24 weeks (53.52 vs. 46.82 p<.001). The mean SF-12 mental component scores also improved significantly in the MCard group at 12 weeks follow-up (44.84 vs. control 41.40, p<.001) and 24 weeks follow-up (48.95 vs 40.12, p<.001). At 12-and 24-week follow-up, all domains of MacNew QLMI (social, emotional, physical and global) were also statistically significant (p<.001) improved in the MCard group, unlike the control group. Conclusion: MCard is feasible and effective at improving all domains of HRQoL. There was an improvement in physical, mental, social, emotional and global domains among the MCard group in comparison to the control group. The addition of MCard programs to post-ACS standard care may improve patient outcomes and reduce the burden on the health care setting.

Keywords: acute coronary syndrome, mobile health augmented cardiac rehabilitation (MCard), cardiovascular diseases, cardiac rehabilitation, health-related quality of life, short form 12, MacNew QLMI

Procedia PDF Downloads 167