Search results for: Danai Tipmanee
4 Trends And Source Identification Of Polycyclic Aromatic Hydrocarbons (Pahs) In Five-size Particulate Matter In The Nakhon Ratchasima Province, Thailand
Authors: Woranuch Deelaman, Chomsri Choochuay, Siwatt Pongpiachan, Danai Tipmanee
Abstract:
In this work, perform an analysis to identify the source of PAHs in particulate matter (PM). The five sizes are 0.1, 0.5, 1, 2.5, and 10 microns from Nakhon Ratchasima province, Thailand. Nakhon Ratchasima is a province in the northeastern part of Thailand. It has an area of 20,493 square kilometers and a forest area of 2,297,735 rai, making it the second largest area in the country. The major economies of Nakhon Ratchasima Province have an important structure, including the industrial sector. The agricultural sector and wholesale and retail trade accounted for 22.46 percent, 19.82 percent, and 14.91 percent, respectively. This study, we collected particulates using the Nano-sampler II sampling tool for a month. PM samples (n = 20) were collected in Tambon Suranari (14°52'05.6"N, 102°00'31.8"E) is a sub-district located in the Mueang district of Nakhon Ratchasima province. It is an important area consisting of community sites, educational institutions, universities, hospitals, religious places, and industrial areas. The samples collected from November 1, 2024 to November 30, 2024. Then, the PM samples were wrapped with aluminium foil and stored at −4 °C until the analysis.The PAHs were chemically extracted for eight hours using a Soxhlet extractor and internal standards (deuterated-fluorene (d10-Fl): phenanthrene, anthracene, fluoranthene, pyrene, 11 H-benzo[a]fluorene, 11 H-benzo[b]fluorene, chrysene; deuterated-perylene (d12-Per): benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a] pyrene, benzo[e]pyrene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, and benzo[g,h,i]perylene using DCM as a solvent, and then analyzed 15 PAHs from the PM using a gas chromatograph-mass spectrometer (Shimadzu GCMS-QP, 2010 Ultra) in the selective ion monitoring mode. The sources of PAHs in Nakhon Ratchasima particulate matter were determined using a combination of multivariate descriptive statistics and diagnostic binary ratios of PAHs. The source of PAHs in particulate matter was identified using five diagnostic binary ratios of PAH isomer pairs: An/(An + Phe), Fluo/(Fluo + Pyr), B[a]A/(B[a]A + Chry), Ind/(Ind + B[g,h,i]P), and B[a]P/B[g,h,i]P. According to the diagnostic ratio, the majority of the PAHs found in the particulate matter samples came from pyrogenic sources, which include incomplete burning of biomass and petroleum. Additionally, multivariate descriptive statistics (principal components analysis (PCA)) were used to identify the source of 15 PAHs in the Nakhon Ratchasima sample of particulate matter. The results of the PCA identification of aromatic polycyclic hydrocarbons in PM show that incomplete combustion from the use of fuel is also a major source of aromatic polycyclic hydrocarbons in Nakhon Ratchasima province. In the future, we anticipate that the study will help the environmental planning management of Thailand's Nakhon Ratchasima province and many other nations.Keywords: polycyclic aromatic hydrocarbons (PAHs), particulate matter (PM), diagnostic binary ratio, source apportionment
Procedia PDF Downloads 13 Particulate Matter Characterization and Source Apportionment in Phuket, Thailand
Authors: Chomsri Choochuay, Woranuch Deelaman, Siwatt Pongpiachan, Danai Tipmanee
Abstract:
Particulate matter (PM) is essential for comprehending climate change, alleviating negative health impacts, and formulating air pollution management strategies. There isn't enough knowledge about the chemical processes and factors that affect the occurrence and development of particle formation events. This study looked at the number of PM in the air and how they were distributed in size in Phuket province, Thailand, during the dry season (November). it used a cascade impactor (Nanosampler II Model 3182 Specifications) with 47-mm quartz filters and a 40 L min–1 flow rate. Each sample was collected over a period of 120 hours, and then it was properly stored in individual petri slide plates before being placed in the refrigerator. This was done to ensure that the samples' chemical makeup was preserved until further analysis was required. The focus of our research is to find the source of PM in the sampling area, and polycyclic aromatic hydrocarbons (PAHs) have been used for identification and quantification. The Soxhlet extraction method performed the PAHs analysis. the first mixed the sample with an internal standard. it used dichloromethane (DCM) as the solvent and continued the extraction for 8 hours. Finally, it separated the PAHs from the solution using column chromatography, which got it ready for the next step of the analysis process. PAHs are non-polar organic molecules. the accomplished this by integrating in-port thermal desorption with gas chromatography/mass spectrometry (GC/MS). This method allows for the effective separation and identification of PAHs in complex environmental samples. By comparing the results from both techniques, we can gain deeper insights into the presence and concentration of these harmful compounds. For the source appointment of PM in ambient air in Phuket, it used the different forms of PAHs as indicators depending on their sources; there is a method for determining their origins known as the “diagnostic ratio.” The result shows the diagnostic ratios employed with their normally reported values for source points in this investigation. The comparisons of (Fluo/Fluo + Pry vs. An/An + Phe) and (B[a]A/B[a]A + Chry vs. Ind/Ind + B[g,h,i]P) showed that most PAHs come from things that people do. Therefore, human activities are the primary source of PAHs in PM samples. PMs that have been conducted in Phuket's ambient air pointed out that the major source of PAHs is thought to be the incomplete combustion of petroleum products, which is caused by the combustion of vehicular exhausts, as well as open burning of agricultural areas to prepare for the next crop season. According to this study, vehicle exhaust and biomass burning are the main sources of PAHs in Phuket's air. This implies that reducing emissions from these sources is crucial for enhancing air quality. Implementing stricter regulations on vehicle emissions and promoting cleaner combustion practices could be effective strategies for mitigating this issue.Keywords: particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), air pollutions, source appointment
Procedia PDF Downloads 12 Effect of CYP2B6 c.516G>T and c.983T>C Single Nucleotide Polymorphisms on Plasma Nevirapine Levels in Zimbabwean HIV/AIDS Patients
Authors: Doreen Duri, Danai Zhou, Babil Stray-Pedersen, Collet Dandara
Abstract:
Given the high prevalence of HIV/AIDS in sub-Saharan Africa, and the elusive search for a cure, understanding the pharmacogenetics of currently used drugs is critical in populations from the most affected regions. Compared to Asian and Caucasian populations, African population groups are more genetically diverse, making it difficult to extrapolate findings from one ethnic group to another. This study aimed to investigate the role of genetic variation in CYP2B6 (c.516G>T and c.983T>C) single nucleotide polymorphisms on plasma nevirapine levels among HIV-infected adult Zimbabwean patients. Using a cross-sectional study, patients on nevirapine-containing HAART, having reached steady state (more than six weeks on treatment) were recruited to participate. Blood samples were collected after patients provided consent and samples were used to extract DNA for genetic analysis or to measure plasma nevirapine levels. Genetic analysis was carried out using PCR and RFLP or Snapshot for the two single nucleotide polymorphisms; CYP2B6 c.516G>T and c.983T>C, while LC-MS/MS was used in analyzing nevirapine concentration. CYP2B6 c.516G>T and c.983T>C significantly predicted plasma nevirapine concentration with the c.516T and c.983T being associated with elevated plasma nevirapine concentrations. Comparisons of the variant allele frequencies observed in this group to those reported in some African, Caucasian and Asian populations showed significant differences. We conclude that pharmacogenetics of nevirapine can be creatively used to determine patients who are likely to develop nevirapine-associated side effects as well as too low plasma concentrations for viral suppression.Keywords: allele frequencies, genetically diverse, nevirapine, single nucleotide polymorphism
Procedia PDF Downloads 4591 Postharvest Losses and Handling Improvement of Organic Pak-Choi and Choy Sum
Authors: Pichaya Poonlarp, Danai Boonyakiat, C. Chuamuangphan, M. Chanta
Abstract:
Current consumers’ behavior trends have changed towards more health awareness, the well-being of society and interest of nature and environment. The Royal Project Foundation is, therefore, well aware of organic agriculture. The project only focused on using natural products and utilizing its highland biological merits to increase resistance to diseases and insects for the produce grown. The project also brought in basic knowledge from a variety of available research information, including, but not limited to, improvement of soil fertility and a control of plant insects with biological methods in order to lay a foundation in developing and promoting farmers to grow quality produce with a high health safety. This will finally lead to sustainability for future highland agriculture and a decrease of chemical use on the highland area which is a source of natural watershed. However, there are still shortcomings of the postharvest management in term of quality and losses, such as bruising, rottenness, wilting and yellowish leaves. These losses negatively affect the maintenance and a shelf life of organic vegetables. Therefore, it is important that a research study of the appropriate and effective postharvest management is conducted for an individual organic vegetable to minimize product loss and find root causes of postharvest losses which would contribute to future postharvest management best practices. This can be achieved through surveys and data collection from postharvest processes in order to conduct analysis for causes of postharvest losses of organic pak-choi, baby pak-choi, and choy sum. Consequently, postharvest losses reduction strategies of organic vegetables can be achieved. In this study, postharvest losses of organic pak choi, baby pak-choi, and choy sum were determined at each stage of the supply chain starting from the field after harvesting, at the Development Center packinghouse, at Chiang Mai packinghouse, at Bangkok packing house and at the Royal Project retail shop in Chiang Mai. The results showed that postharvest losses of organic pak-choi, baby pak-choi, and choy sum were 86.05, 89.05 and 59.03 percent, respectively. The main factors contributing to losses of organic vegetables were due to mechanical damage and underutilized parts and/or short of minimum quality standard. Good practices had been developed after causes of losses were identified. Appropriate postharvest handling and management, for example, temperature control, hygienic cleaning, and reducing the duration of the supply chain, postharvest losses of all organic vegetables should be able to remarkably reduced postharvest losses in the supply chain.Keywords: postharvest losses, organic vegetables, handling improvement, shelf life, supply chain
Procedia PDF Downloads 484