Search results for: Chaotic map
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 153

Search results for: Chaotic map

93 Role of Fracturing, Brecciation and Calcite Veining in Fluids Flow and Permeability Enhancement in Low-Porosity Rock Masses: Case Study of Boulaaba Aptian Dolostones, Kasserine, Central Tunisia

Authors: Mohamed Khali Zidi, Mohsen Henchiri, Walid Ben Ahmed

Abstract:

In the context of a hypogene hydrothermal travertine system, including low-porosity brittle bedrock and rock-mass permeability in Aptian dolostone of Boulaaba, Kasserine is enhanced through faulting and fracturing. This permeability enhancement related to the deformation modes along faults and fractures is likely to be in competition with permeability reduction when microcracks, fractures, and faults all become infilled with breccias and low-permeability hydrothermal precipitates. So that, fault continual or intermittent reactivation is probably necessary for them to keep their potential as structural high-permeability conduits. Dilational normal faults in strong mechanical stratigraphy associated with fault segments with dip changes are sites for porosity and permeability in groundwater infiltration and flow, hydrocarbon reservoirs, and also may be important sources of mineralization. The brecciation mechanism through dilational faulting and gravitational collapse originates according to hosting lithologies chaotic clast-supported breccia in strong lithologies such as sandstones, limestones, and dolostones, and matrix-supported cataclastic in weaker lithologies such as marls and shales. Breccias contribute to controlling fluid flow when the porosity is sealed either by low-permeability hydrothermal precipitates or by fine matrix materials. All these mechanisms of fault-related rock-mass permeability enhancement and reduction can be observed and analyzed in the region of Sidi Boulaaba, Kasserine, central Tunisia, where dilational normal faulting occurs in mechanical strong dolostone layering alternating with more weak marl and shale lithologies, has originated a variety of fault voids (fluid conduits) breccias (chaotic, crackle and mosaic breccias) and carbonate cement.

Keywords: travertine, Aptian dolostone, Boulaaba, fracturing

Procedia PDF Downloads 24
92 The Storm in Us All: An Etymological Study of Tempest

Authors: David N. Prihoda

Abstract:

This paper charts the history of the English word Tempest from its origins in Proto-Indo European to its modern usage as a term for storms, both literal and metaphorical. It does so by way of considering the word’s morphology, semiotics, and phonetics. It references numerous language studies and dictionaries to chronicle the word’s many steps along that path, from demarcation of measurement to assessment of time, all the way to an observation about the weather or the human psyche. The conclusive findings show that tempest has undergone numerous changes throughout its history, and these changes interestingly parallel its connotations as a symbol for both chaotic weather and the chaos of the human spirit

Keywords: Tempest, etymology, language origins, English

Procedia PDF Downloads 75
91 Feigenbaum Universality, Chaos and Fractal Dimensions in Discrete Dynamical Systems

Authors: T. K. Dutta, K. K. Das, N. Dutta

Abstract:

The salient feature of this paper is primarily concerned with Ricker’s population model: f(x)=x e^(r(1-x/k)), where r is the control parameter and k is the carrying capacity, and some fruitful results are obtained with the following objectives: 1) Determination of bifurcation values leading to a chaotic region, 2) Development of Statistical Methods and Analysis required for the measure of Fractal dimensions, 3) Calculation of various fractal dimensions. These results also help that the invariant probability distribution on the attractor, when it exists, provides detailed information about the long-term behavior of a dynamical system. At the end, some open problems are posed for further research.

Keywords: Feigenbaum universality, chaos, Lyapunov exponent, fractal dimensions

Procedia PDF Downloads 269
90 Coexistence of Two Different Types of Intermittency near the Boundary of Phase Synchronization in the Presence of Noise

Authors: Olga I. Moskalenko, Maksim O. Zhuravlev, Alexey A. Koronovskii, Alexander E. Hramov

Abstract:

Intermittent behavior near the boundary of phase synchronization in the presence of noise is studied. In certain range of the coupling parameter and noise intensity the intermittency of eyelet and ring intermittencies is shown to take place. Main results are illustrated using the example of two unidirectionally coupled Rössler systems. Similar behavior is shown to take place in two hydrodynamical models of Pierce diode coupled unidirectionally.

Keywords: chaotic oscillators, phase synchronization, noise, intermittency of intermittencies

Procedia PDF Downloads 591
89 Chaotic Dynamics of Cost Overruns in Oil and Gas Megaprojects: A Review

Authors: O. J. Olaniran, P. E. D. Love, D. J. Edwards, O. Olatunji, J. Matthews

Abstract:

Cost overruns are a persistent problem in oil and gas megaprojects. Whilst the extant literature is filled with studies on incidents and causes of cost overruns, underlying theories to explain their emergence in oil and gas megaprojects are few. Yet, a way to contain the syndrome of cost overruns is to understand the bases of ‘how and why’ they occur. Such knowledge will also help to develop pragmatic techniques for better overall management of oil and gas megaprojects. The aim of this paper is to explain the development of cost overruns in hydrocarbon megaprojects through the perspective of chaos theory. The underlying principles of chaos theory and its implications for cost overruns are examined and practical recommendations proposed. In addition, directions for future research in this fertile area provided.

Keywords: chaos theory, oil and gas, cost overruns, megaprojects

Procedia PDF Downloads 520
88 Dripping Modes of Newtonian Liquids: The Effect of Nozzle Inclination

Authors: Amaraja Taur, Pankaj Doshi, Hak Koon Yeoh

Abstract:

The dripping modes for a Newtonian liquid of viscosity µ emanating from an inclined nozzle at flow rate Q is investigated experimentally. As the liquid flow rate Q increases, starting with period-1 with satellite drops, the system transitions to period-1 dripping without satellite, then to limit cycle before showing chaotic responses. Phase diagrams shows the changes in the transitions between the different dripping modes for different nozzle inclination angle θ is constructed in the dimensionless (Q, µ) space.

Keywords: dripping, inclined nozzle, phase diagram, satellite

Procedia PDF Downloads 253
87 Radio Frequency Identification Encryption via Modified Two Dimensional Logistic Map

Authors: Hongmin Deng, Qionghua Wang

Abstract:

A modified two dimensional (2D) logistic map based on cross feedback control is proposed. This 2D map exhibits more random chaotic dynamical properties than the classic one dimensional (1D) logistic map in the statistical characteristics analysis. So it is utilized as the pseudo-random (PN) sequence generator, where the obtained real-valued PN sequence is quantized at first, then applied to radio frequency identification (RFID) communication system in this paper. This system is experimentally validated on a cortex-M0 development board, which shows the effectiveness in key generation, the size of key space and security. At last, further cryptanalysis is studied through the test suite in the National Institute of Standards and Technology (NIST).

Keywords: chaos encryption, logistic map, pseudo-random sequence, RFID

Procedia PDF Downloads 372
86 Generalized Synchronization in Systems with a Complex Topology of Attractor

Authors: Olga I. Moskalenko, Vladislav A. Khanadeev, Anastasya D. Koloskova, Alexey A. Koronovskii, Anatoly A. Pivovarov

Abstract:

Generalized synchronization is one of the most intricate phenomena in nonlinear science. It can be observed both in systems with a unidirectional and mutual type of coupling including the complex networks. Such a phenomenon has a number of practical applications, for example, for the secure information transmission through the communication channel with a high level of noise. Known methods for the secure information transmission needs in the increase of the privacy of data transmission that arises a question about the observation of such phenomenon in systems with a complex topology of chaotic attractor possessing two or more positive Lyapunov exponents. The present report is devoted to the study of such phenomenon in two unidirectionally and mutually coupled dynamical systems being in chaotic (with one positive Lyapunov exponent) and hyperchaotic (with two or more positive Lyapunov exponents) regimes, respectively. As the systems under study, we have used two mutually coupled modified Lorenz oscillators and two unidirectionally coupled time-delayed generators. We have shown that in both cases the generalized synchronization regime can be detected by means of the calculation of Lyapunov exponents and phase tube approach whereas due to the complex topology of attractor the nearest neighbor method is misleading. Moreover, the auxiliary system approaches being the standard method for the synchronous regime observation, for the mutual type of coupling results in incorrect results. To calculate the Lyapunov exponents in time-delayed systems we have proposed an approach based on the modification of Gram-Schmidt orthogonalization procedure in the context of the time-delayed system. We have studied in detail the mechanisms resulting in the generalized synchronization regime onset paying a great attention to the field where one positive Lyapunov exponent has already been become negative whereas the second one is a positive yet. We have found the intermittency here and studied its characteristics. To detect the laminar phase lengths the method based on a calculation of local Lyapunov exponents has been proposed. The efficiency of the method has been verified using the example of two unidirectionally coupled Rössler systems being in the band chaos regime. We have revealed the main characteristics of intermittency, i.e. the distribution of the laminar phase lengths and dependence of the mean length of the laminar phases on the criticality parameter, for all systems studied in the report. This work has been supported by the Russian President's Council grant for the state support of young Russian scientists (project MK-531.2018.2).

Keywords: complex topology of attractor, generalized synchronization, hyperchaos, Lyapunov exponents

Procedia PDF Downloads 239
85 Innate Immunity of Insects in Brief

Authors: Ehsan Soleymaninejadian

Abstract:

As the field of immunology is growing day by day, and its chaotic system amazes more people, greed of research in this area is growing; however dealing with human or mammalian cells such as mice make the research expensive. Although there are some differences between higher animals with insects, importance of innate immunity during evolution made it untouched. So, for understanding the innate immunity insects can be good models. They are cheap; reproduction is fast and in the case genetics, less complicated. In this review, we tried to briefly tackle with important factors in insects’ innate immunity such as melanization, encapsulation, JAK-STAT, IMD, and Toll pathways. At the end, we explained how hormones and nerve system also can impact on immune system and make it more beautiful. In concluding remarks, the possibility of taking help from insect immune system to fight against diseases such as cancer has been considered.

Keywords: insects, innate immunity, melanization, intracellular pathways, hormones

Procedia PDF Downloads 195
84 From Linear to Nonlinear Deterrence: Deterrence for Rising Power

Authors: Farhad Ghasemi

Abstract:

Along with transforming the international system into a complex and chaotic system, the fundamental question arises: how can deterrence be reconstructed conceptually and theoretically in this system model? The deterrence system is much more complex today than it was seven decades ago. This article suggests that the perception of deterrence as a linear system is a fundamental mistake because it does not consider the new dynamics of the international system, including network power dynamics. The author aims to improve this point by focusing on complexity and chaos theories, especially their nonlinearity and cascading failure principles. This article proposes that the perception of deterrence as a linear system is a fundamental mistake, as the new dynamics of the surrounding international system do not take into account. The author recognizes deterrence as a nonlinear system and introduces it as a concept in strategic studies.

Keywords: complexity, international system, deterrence, linear deterrence, nonlinear deterrence

Procedia PDF Downloads 113
83 Poincare Plot for Heart Rate Variability

Authors: Mazhar B. Tayel, Eslam I. AlSaba

Abstract:

The heart is the most important part in any body organisms. It effects and affected by any factor in the body. Therefore, it is a good detector of any matter in the body. When the heart signal is non-stationary signal, therefore, it should be study its variability. So, the Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and have become important dependent measure in psychophysiology and behavioral medicine. Quantification and interpretation of heart rate variability. However, remain complex issues are fraught with pitfalls. This paper presents one of the non-linear techniques to analyze HRV. It discusses 'What Poincare plot is?', 'How it is work?', 'its usage benefits especially in HRV', 'the limitation of Poincare cause of standard deviation SD1, SD2', and 'How overcome this limitation by using complex correlation measure (CCM)'. The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2.

Keywords: heart rate variability, chaotic system, poincare, variance, standard deviation, complex correlation measure

Procedia PDF Downloads 368
82 Analysis of the Blastocysts Chromosomal Set Obtained after the Use of Donor Oocyte Cytoplasmic Transfer Technology

Authors: Julia Gontar, Natalia Buderatskaya, Igor Ilyin, Olga Parnitskaya, Sergey Lavrynenko, Eduard Kapustin, Ekaterina Ilyina, Yana Lakhno

Abstract:

Introduction: It is well known that oocytes obtained from older reproductive women have accumulated mitochondrial DNA mutations, which negatively affects the morphology of a developing embryo and may lead to the birth of a child with mitochondrial disease. Special techniques have been developed to allow a donor oocyte cytoplasmic transfer with the parents’ biological nuclear DNA retention. At the same time, it is important to understand whether the procedure affects the future embryonic chromosome sets as the nuclear DNA is the transfer subject in this new complex procedure. Material and Methods: From July 2015 to July 2016, the investigation was carried out in the Medical Centre IGR. 34 donor oocytes (group A) were used for the manipulation with the aim of donating cytoplasm: 21 oocytes were used for zygotes pronuclear transfer and oocytes 13 – for the spindle transfer. The mean age of the oocyte donors was 28.4±2.9 years. The procedure was performed using Nikon Ti Eclipse inverted microscope equipped with the micromanipulators Narishige system (Japan), Saturn 3 laser console (UK), Oosight imaging systems (USA). For the preimplantation genetic screening (PGS) blastocyst biopsy was performed, trophectoderm samples were diagnosed using fluorescent in situ hybridization on chromosomes 9, 13, 15, 16, 17, 18, 21, 22, X, Y. For comparison of morphological characteristics and euploidy, was chosen a group of embryos (group B) with the amount of 121 blastocysts obtained from 213 oocytes, which were gotten from the donor programs of assisted reproductive technologies (ART). Group B was not subjected to donor oocyte cytoplasmic transfer procedure and studied on the above mentioned chromosomes. Statistical analysis was carried out using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: After the donor cytoplasm transfer process the amount of the third day developing embryos was 27 (79.4%). In this stage, the group B consisted of 189 (88.7%) developing embryos, and there was no statistically significant difference (SSD) between the two groups (p>0.05). After a comparative analysis of the morphological characteristics of the embryos on the fifth day, we also found no SSD among the studied groups (p>0.05): from 34 oocytes exposed to manipulation, 14 (41.2%) blastocysts was obtained, while the group B blastocyst yield was 56.8% (n=121) from 213 oocytes. The following results were obtained after PGS performing: in group A euploidy in studied chromosomes were 28.6%(n=4) blastocysts, whereas in group B this rate was 40.5%(n=49), 28.6%(n=4) and 21.5%(n=26) of mosaic embryos and 42.8%(n=6) and 38.0%(n=46) aneuploid blastocysts respectively were identified. None of these specified parameters had an SSD (p>0.05). But attention was drawn by the blastocysts in group A with identified mosaicism, which was chaotic without any cell having euploid chromosomal set, in contrast to the mosaic embryos in group B where identified chaotic mosaicism was only 2.5%(n=3). Conclusions: According to the obtained results, there is no direct procedural effect on the chromosome in embryos obtained following donor oocyte cytoplasmic transfer. Thus, the technology introduction will enhance the infertility treating effectiveness as well as avoiding having a child with mitochondrial disease.

Keywords: donor oocyte cytoplasmic transfer, embryos’ chromosome set, oocyte spindle transfer, pronuclear transfer

Procedia PDF Downloads 293
81 Complex Dynamics of a Four Species Food-Web Model: An Analysis through Beddington-Deangelis Functional Response in the Presence of Additional Food

Authors: Surbhi Rani, Sunita Gakkhar

Abstract:

The four-dimensional food web system consisting of two prey species for a generalist middle predator and a top predator is proposed and investigated. The middle predator is predating both the prey species with a modified Holling type-II functional response. The food web model is found to be well-posed, bounded, and dissipative. The proposed model's essential dynamical features are studied in terms of local stability. The four species' survival is explored, and persistence conditions are established. The numerical simulations reveal the persistence in the form of a chaotic attractor or stable focus. The conclusion is that providing additional food to the middle predator may help to control the food chain's chaos.

Keywords: predator-prey model, existence of equilibrium points, local stability, chaos, numerical simulations

Procedia PDF Downloads 78
80 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio

Authors: Danilo López, Edwin Rivas, Fernando Pedraza

Abstract:

Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.

Keywords: ANFIS, cognitive radio, prediction primary user, RNA

Procedia PDF Downloads 386
79 Lyapunov Exponents in the Restricted Three Body Problem under the Influence of Perturbations

Authors: Ram Kishor

Abstract:

The Lyapunov characteristic exponent (LCE) is an important tool to describe behavior of a dynamical system, which measures the average rate of divergence (or convergence) of a trajectory emanating in the vicinity of initial point. To analyze the behavior of nearby trajectory emanating in the neighborhood of an equilibrium point in the restricted three-body problem under the influence of perturbations in the form of radiation pressure and oblateness, we compute LCEs of first order with the help of slandered method which is based on variational equation of the system. It is observed that trajectories are chaotic in nature due positive LCEs. Also, we analyze the effect of radiation pressure and oblateness on the LCEs. Results are applicable to study the behavior of more generalized RTBP in the presence of perturbations such as PR drag, solar wind drag etc.

Keywords: Lyapunov characteristic exponent, RTBP, radiation pressure, oblateness

Procedia PDF Downloads 410
78 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS

Procedia PDF Downloads 359
77 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure

Authors: Volodymyr Rombakh

Abstract:

This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.

Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress

Procedia PDF Downloads 56
76 Analysis of Nonlinear Bertrand Duopoly Game with Heterogeneous Players

Authors: Jixiang Zhang

Abstract:

A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.

Keywords: Bertrand duopoly model, discrete dynamical system, heterogeneous expectations, nash equilibrium

Procedia PDF Downloads 360
75 Calm, Confusing and Chaotic: Investigating Humanness through Sentiment Analysis of Abstract Artworks

Authors: Enya Autumn Trenholm-Jensen, Hjalte Hviid Mikkelsen

Abstract:

This study was done in the pursuit of nuancing the discussion surrounding what it means to be human in a time of unparalleled technological development. Subjectivity was deemed to be an accessible example of humanity to study, and art was a fitting medium through which to probe subjectivity. Upon careful theoretical consideration, abstract art was found to fit the parameters of the study with the added bonus of being, as of yet, uninterpretable from an AI perspective. It was hypothesised that dissimilar appraisals of the art stimuli would be found through sentiment and terminology. Opinion data was collected through survey responses and analysed using Valence Aware Dictionary for sEntiment Reasoning (VADER) sentiment analysis. The results reflected the enigmatic nature of subjectivity through erratic ratings of the art stimuli. However, significant themes were found in the terminology used in the responses. The implications of the findings are discussed in relation to the uniqueness, or lack thereof, of human subjectivity, and directions for future research are provided.

Keywords: abstract art, artificial intelligence, cognition, sentiment, subjectivity

Procedia PDF Downloads 89
74 Dynamic of Nonlinear Duopoly Game with Heterogeneous Players

Authors: Jixiang Zhang, Yanhua Wang

Abstract:

A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.

Keywords: Bertrand duopoly model, discrete dynamical system, heterogeneous expectations, nash equilibrium

Procedia PDF Downloads 379
73 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.

Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method

Procedia PDF Downloads 308
72 Application of Soft Systems Methodology in Solving Disaster Emergency Logistics Problems

Authors: Alhasan Hakami, Arun Kumar, Sung J. Shim, Yousef Abu Nahleh

Abstract:

In recent years, many high intensity earthquakes have occurred around the world, such as the 2011 earthquake in Tohoku, Japan. These large-scale disasters caused huge casualties and losses. In addition, inefficient disaster response operations also caused the second wave of casualties and losses, and expanded the damage. Effective disaster management can be used to respond to the chaotic situation, and reduce the damage. However, some inefficient disaster response operations are still used. Therefore, this case study chose the 921 earthquakes for analysing disaster emergency logistics problems and proposed the Soft Systems Methodology (SSM) to solve disaster emergency logistics problems. Moreover, it analyses the effect of human factors on system operation, and suggests a solution to improve the system.

Keywords: soft systems methodology, emergency logistics, earthquakes, Japan, system operation

Procedia PDF Downloads 414
71 Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes

Authors: Shreemoyee Sarkar, Vikhyat Chadha

Abstract:

In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided.

Keywords: local hurst exponent, lyapunov exponent, market crash prediction, time series chaos, time series local fractal properties

Procedia PDF Downloads 117
70 Visual Overloaded on User-Generated Content by the Net Generation: Participatory Cultural Viewpoint

Authors: Hasanah Md. Amin

Abstract:

The existence of cyberspace and its growing contents is real and overwhelming. Visual as one of the properties of cyber contents is increasingly becoming more significant and popular among creator and user. The visual and aesthetic of the content is consistent with many similarities. Aesthetic, although universal, has slight differences across the world. Aesthetic power could impress, influence, and cause bias among the users. The content creator who knows how to manipulate this visuals and aesthetic expression can dominate the scenario and the user who is ‘expressive literate’ will gain much from the scenes. User who understands aesthetic will be rewarded with competence, confidence, and certainly, a personality enhanced experience in carrying out a task when participating in this chaotic but promising cyberworld. The aim of this article is to gain knowledge from related literature and research regarding User-Generated Content (UGC), which focuses on aesthetic expression by the Net generation. The objective of this preliminary study is to analyze the aesthetic expression linked to visual from the participatory cultural viewpoint looking for meaning, value, patterns, and characteristics.

Keywords: visual overloaded, user-generated content, net generation, visual arts

Procedia PDF Downloads 406
69 Leadership's Controlling via Complexity Investigation in Crisis Scenarios

Authors: Jiří Barta, Oldřich Svoboda, Jiří F. Urbánek

Abstract:

In this paper will be discussed two coin´s sides of crisis scenarios dynamics. On the one's side is negative role of subsidiary scenario branches in its compactness weakening by means unduly chaotic atomizing, having many interactive feedbacks cases, increasing a value of a complexity here. This negative role reflects the complexity of use cases, weakening leader compliancy, which brings something as a ´readiness for controlling capabilities provision´. Leader´s dissatisfaction has zero compliancy, but factual it is a ´crossbar´ (interface in fact) between planning and executing use cases. On the other side of this coin, an advantage of rich scenarios embranchment is possible to see in a support of response awareness, readiness, preparedness, adaptability, creativity and flexibility. Here rich scenarios embranchment contributes to the steadiness and resistance of scenario mission actors. These all will be presented in live power-points ´Blazons´, modelled via DYVELOP (Dynamic Vector Logistics of Processes) on the Conference.

Keywords: leadership, controlling, complexity, DYVELOP, scenarios

Procedia PDF Downloads 374
68 New Insight into Fluid Mechanics of Lorenz Equations

Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao

Abstract:

New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.

Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations, convectional motion

Procedia PDF Downloads 352
67 Whether Chaos Theory Could Reconstruct the Ancient Societies

Authors: Zahra Kouzehgari

Abstract:

Since the early emergence of chaos theory in the 1970s in mathematics and physical science, it has increasingly been developed and adapted in social sciences as well. The non-linear and dynamic characteristics of the theory make it a useful conceptual framework to interpret the complex social systems behavior. Regarding chaotic approach principals, sensitivity to initial conditions, dynamic adoption, strange attractors and unpredictability this paper aims to examine whether chaos approach could interpret the ancient social changes. To do this, at first, a brief history of the chaos theory, its development and application in social science as well as the principals making the theory, then its application in archaeological since has been reviewed. The study demonstrates that although based on existing archaeological records reconstruct the whole social system of the human past, the non-linear approaches in studying social complex systems would be of a great help in finding general order of the ancient societies and would enable us to shed light on some of the social phenomena in the human history or to make sense of them.

Keywords: archaeology, non-linear approach, chaos theory, ancient social systems

Procedia PDF Downloads 241
66 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm

Authors: Galu Papy Yuma

Abstract:

This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.

Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation

Procedia PDF Downloads 417
65 Induced-Gravity Inflation in View of the Bicep2 Results

Authors: C. Pallis

Abstract:

Induced-Gravity inflation is a model of chaotic inflation where the inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling between the inflaton and the Ricci scalar curvature, inflation is attained even for subplanckian values of the inflaton with the corresponding effective theory being valid up to the Planck scale. In its simplest realization, induced-gravity inflation is based on a quatric potential and a quadratic non-minimal coupling and the inflationary observables turn out to be in agreement with the Planck data. Its supersymmetrization can be formulated within no-scale Supergravity employing two gauge singlet chiral superfields and applying a continuous $R$ and a discrete Zn symmetry to the proposed superpotential and Kahler potential. Modifying slightly the non-minimal coupling to Gravity, the model can account for the recent results of BICEP2. These modifications can be also accommodated beyond the no-scale SUGRA considering the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field and small deviations from the prefactor $-3$ encountered in the adopted Kahler potential.

Keywords: cosmology, supersymmetric models, supergravity, modified gravity

Procedia PDF Downloads 682
64 Chaotic Semiflows with General Acting Topological Monoids

Authors: Alica Miller

Abstract:

A semiflow is a triple consisting of a Hausdorff topological space $X$, a commutative topological monoid $T$ and a continuous monoid action of $T$ on $X$. The acting monoid $T$ is usually either the discrete monoid $\N_0$ of nonnegative integers (in which case the semiflow can be defined as a pair $(X,f)$ consisting of a phase space $X$ and a continuous function $f:X\to X$), or the monoid $\R_+$ of nonnegative real numbers (the so-called one-parameter monoid). However, it turns out that there are real-life situations where it is useful to consider the acting monoids that are a combination of discrete and continuous monoids. That, for example, happens, when we are observing certain dynamical system at discrete moments, but after some time realize that it would be beneficial to continue our observations in real time. The acting monoid in that case would be $T=\{0, t_0, 2t_0, \dots, (n-1)t_0\} \cup [nt_0,\infty)$ with the operation and topology induced from real numbers. This partly explains the motivation for the level of generality which is pursued in our research. We introduce the PSP monoids, which include all but ``pathological'' monoids, and most of our statements hold for them. The topic of our presentation are some recent results about chaos-related properties in semiflows, indecomposability and sensitivity of semiflows in the described general context.

Keywords: chaos, indecomposability, PSP monoids, semiflow, sensitivity

Procedia PDF Downloads 258