Search results for: Benyounes Bouazza
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 40

Search results for: Benyounes Bouazza

10 Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW

Authors: Mustapha Mahmoud Dif, Fouzia Benali-Toumi, Mohamed Benyahia, Sofiane Bouazza, Abbes Dellal, Slimane Baha

Abstract:

L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C.

Keywords: L multifidi, phenolic content, optimization, time, temperature

Procedia PDF Downloads 385
9 Etude 3D Quantum Numerical Simulation of Performance in the HEMT

Authors: A. Boursali, A. Guen-Bouazza

Abstract:

We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/m, a peak extrinsic transconductance of 0.59S/m at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, leakage current density IFuite=1 x 10-26 A, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.

Keywords: HEMT, silvaco, field plate, genetic algorithm, quantum

Procedia PDF Downloads 317
8 Half Mode Substrate Integrated Wave Guide of Band Pass Filter Based to Defected Ground Structure Cells

Authors: Damou Mehdi, Nouri Keltoum, Feham Mohammed, Khazini Mohammed, Bouazza Tayb Habibi Chawki

Abstract:

The Half mode SIW filter is treated by two softwares (HFSS (High Frequency Structure Simulator) and CST (Computer Simulation Technology)). The filter HMSIW has a very simple structure and a very compact size. The simulated results by CST are presented and compared with the results simulated by a high-frequency structure simulator. Good agreement between the simulated CST and simulated results by HFSS is observed. By cascading two of them according to design requirement, a X-band bandpass filter is designed and simulated to meet compact size, low insertion loss, good return loss as well as second harmonic suppression. As an example, we designed the proposed HMSIW filter at X band by HFSS. The filter has a pass-band from 7.3 GHz to 9.8 GHz, and its relative operating fraction bandwidth is 29.5 %. There are one transmission zeros are located at 14.4 GHz.

Keywords: substrate integrated waveguide, filter, HMSIW, defected ground structures (DGS), simulation BPF

Procedia PDF Downloads 541
7 Phytodiversity and Phytogeographic Characterization Stands of Pistacia lentiscus L. in the Coastal Region of Honaine, Tlemcen, Western Algeria

Authors: I. Benmehdi, O. Hasnaoui, N. Hachemi, M. Bouazza

Abstract:

The Understanding of the mechanisms structuring of plant diversity in the region of Tlemcen (western Algeria) is a related problem. The current floristic composition of different groups in Pistacia lentiscus L. resulting from the combination of human and climate action. This study is devoted to biodiversity inventory and phytogeographic characterization of Pistacia lentiscus groups in the Honaine coastal (western Algeria). The floristic inventory (150 levels) made in three stations of the study area allowed to count a 109 species belonging to 44 families of vascular plants. The biogeographical analysis of the Pistacia lentiscus groups reveals the most representative elements. The Mediterranean elements are numerically the most dominant with 39.45% represented by: Pistacia lentiscus, Cistus monspeliensis, Plantago lagopus, Linum strictum, Echium vulgare; followed by the western Mediterranean elements with 10.09% and are represented by: Chamaerops humilis, Lavandula dentata, Ampelodesma mauritanicum and Iris xyphium. However, this phytotaxonomic wealth is exposed to anthropogenic impact causing its disruption see its decline.

Keywords: Pistacia lentiscus L., phytodiversity, phytogeography, honaine, western Algeria

Procedia PDF Downloads 363
6 The Pressure Effect and First-Principles Study of Strontium Chalcogenides SrS

Authors: Benallou Yassine, Amara Kadda, Bouazza Boubakar, Soudini Belabbes, Arbouche Omar, M. Zemouli

Abstract:

The study of the pressure effect on the materials, their functionality and their properties is very important, insofar as it provides the opportunity to identify others applications such the optical properties in the alkaline earth chalcogenides, as like the SrS. Here we present the first-principles calculations which have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. The treatments of exchange and correlation effects were done by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential for the electronic. The pressure effect on the electronic properties was visualized by calculating the variations of the gap as a function of pressure. The obtained results are compared to available experimental data and to other theoretical calculations

Keywords: SrS, GGA-PBEsol+TB-MBJ, density functional, Perdew–Burke–Ernzerhor, FP-LAPW, pressure effect

Procedia PDF Downloads 536
5 Control of Grid Connected PMSG-Based Wind Turbine System with Back-To-Back Converter Topology Using Resonant Controller

Authors: Fekkak Bouazza, Menaa Mohamed, Loukriz Abdelhamid, Krim Mohamed L.

Abstract:

This paper presents modeling and control strategy for the grid connected wind turbine system based on Permanent Magnet Synchronous Generator (PMSG). The considered system is based on back-to-back converter topology. The Grid Side Converter (GSC) achieves the DC bus voltage control and unity power factor. The Machine Side Converter (MSC) assures the PMSG speed control. The PMSG is used as a variable speed generator and connected directly to the turbine without gearbox. The pitch angle control is not either considered in this study. Further, Optimal Tip Speed Ratio (OTSR) based MPPT control strategy is used to ensure the most energy efficiency whatever the wind speed variations. A filter (L) is put between the GSC and the grid to reduce current ripple and to improve the injected power quality. The proposed grid connected wind system is built under MATLAB/Simulink environment. The simulation results show the feasibility of the proposed topology and performance of its control strategies.

Keywords: wind, grid, PMSG, MPPT, OTSR

Procedia PDF Downloads 315
4 Valorization of Waste Reverse Osmosis Desalination Brine and Crystallization Sequence Approach for Kainite Recovery

Authors: Ayoub Bouazza, Ali Faddouli, Said Amal, Rachid Benhida, Khaoula Khaless

Abstract:

Brine waste generated from reverse osmosis (RO) desalination plants contains various valuable compounds, mainly salts, trace elements, and organic matter. These wastes are up to two times saltier than standard seawater. Therefore, there is a strong economic interest in recovering these salts. The current practice in desalination plants is to reject the brine back to the sea, which affects the marine ecosystem and the environment. Our study aims to bring forth a reliable management solution for the valorisation of waste brines. Natural evaporation, isothermal evaporation at 25°C and 50°C, and evaporation using continuous heating were used to crystallize valuable salts from a reverse osmosis desalination plant brine located on the Moroccan Atlantic coast. The crystallization sequence of the brine was studied in comparison with standard seawater. The X-Ray Diffraction (XRD) of the precipitated solid phases showed similar results, where halite was the main solid phase precipitated from both the brine and seawater. However, Jänecke diagram prediction, along with FREZCHEM simulations, showed that Kainite should crystallize before Epsomite and Carnallite. As the absence of kainite formation in many experiments in the literature has been related to the metastability of kainite and the critical relative humidity conditions, and the precipitation of K–Mg salts is very sensitive to climatic conditions. An evaporation process is proposed as a solution to achieve the predicted crystallization path and to affirm the recovery of Kainite.

Keywords: salts crystallization, reverse osmosis, solar evaporation, frezchem, ZLD

Procedia PDF Downloads 64
3 Some Codes for Variants in Graphs

Authors: Sofia Ait Bouazza

Abstract:

We consider the problem of finding a minimum identifying code in a graph. This problem was initially introduced in 1998 and has been since fundamentally connected to a wide range of applications (fault diagnosis, location detection …). Suppose we have a building into which we need to place fire alarms. Suppose each alarm is designed so that it can detect any fire that starts either in the room in which it is located or in any room that shares a doorway with the room. We want to detect any fire that may occur or use the alarms which are sounding to not only to not only detect any fire but be able to tell exactly where the fire is located in the building. For reasons of cost, we want to use as few alarms as necessary. The first problem involves finding a minimum domination set of a graph. If the alarms are three state alarms capable of distinguishing between a fire in the same room as the alarm and a fire in an adjacent room, we are trying to find a minimum locating domination set. If the alarms are two state alarms that can only sound if there is a fire somewhere nearby, we are looking for a differentiating domination set of a graph. These three areas are the subject of much active research; we primarily focus on the third problem. An identifying code of a graph G is a dominating set C such that every vertex x of G is distinguished from other vertices by the set of vertices in C that are at distance at most r≥1 from x. When only vertices out of the code are asked to be identified, we get the related concept of a locating dominating set. The problem of finding an identifying code (resp a locating dominating code) of minimum size is a NP-hard problem, even when the input graph belongs to a number of specific graph classes. Therefore, we study this problem in some restricted classes of undirected graphs like split graph, line graph and path in a directed graph. Then we present some results on the identifying code by giving an exact value of upper total locating domination and a total 2-identifying code in directed and undirected graph. Moreover we determine exact values of locating dominating code and edge identifying code of thin headless spider and locating dominating code of complete suns.

Keywords: identiying codes, locating dominating set, split graphs, thin headless spider

Procedia PDF Downloads 427
2 Antibiotic Resistance and Susceptibility of Bacteria Strains Isolated from Sheep Milk

Authors: Fatima Bouazza, Rachida Hassikou, Lamiae Amallah, Jihane Ennadir, Khadija Khedid

Abstract:

This study evaluated the in vitro resistance and susceptibility of Enterobacteriaceae (Escherichia coli and Klebsiella oxytoca strains) and Staphylococci strains, isolated from sheep’s milk, against antibiotics and essential oils from Thymus satureioides and Mentha pulegium. Antibiotic resistance tests were done using disc diffusion while essential oils were extracted by steam distillation, and yields were calculated relative to plant dry matter. Gas chromatography-mass Spectrometry (GC-MS) was used to analyze each oil's chemical composition. The AMC, CTX, FOX, NA, CN, CIP, and OFX were very effective against the E. coli strains tested. Half of the strains were resistant to AMC, 60% to TIC, and 80% to TE. The K. oxytoca was resistant against AMC, FOX, and TIC (100%). Antibiotic-resistant testing on Staphylococci strains indicated Staphylococcus capitis and Staphylococcus chromogenes as the most sensitive. Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus cohnii ureal exhibited less resistance to OX, TE, PT, E, and P. The M. pulegium resulted in a higher yield of essential oil of 3.2% oil compared to T. satureioides with only 1.85% yield. Staphylococcus aureus, Staphylococcus xylosus, and Staphylococcus cohnii ureal had lower OX, TE, PT, E, and P resistance. M. pulegium yielded 3.2% essential oil compared to 1.85% for T. satureioides. The monoterpene oxygenated derivatives, monoterpene hydrocarbons, and phenols are found in essential oil extracts. T. satureioides essential oil had high antibacterial activity even at low concentrations (0.2; 0.55 g/mL). The Minimal Bactericidal Concentration (MBC) values indicate that the essential oils from the plants analyzed had bactericidal effects on all strains tested and are similar to the Minimal Inhibitory Concentration (MIC) values. The high antibacterial properties of these medicinal plants, against bacteria isolated from sheep’s milk, provide an opportunity to use these medicinal plants in the breeding sector as additives and preservatives in the dairy industry.

Keywords: antibiotic resistance, medicinal plants, essential oils, enterobacteriaceae, staphylococci, sheep milk

Procedia PDF Downloads 124
1 Physico-Chemical and Biotechnological Characterization of Sheep’s Milk (Ovis aries) by Three Medicinal Plants Extracts

Authors: Fatima Bouazza, Khadija Khedid, Lamiae Amallah, Aziz Mouhaddach, Basma Boukour, Jihane Ennadir, Rachida Hassikou

Abstract:

In order to combine milk and its derived products conservation and flavoring, Moroccans often used aromatic and medicinal plants. These plant extracts are endowed with several nutritive and therapeutic properties. This study constitutes a first national assessment of physico-chemical quality of sheep’s milk from moroccan Sardi breed and the evaluation of the antibacterial effect of three medicinal plants extracts: Aloe barbadensis Miller, Thymus satureioides and Mentha pulegium on flora isolated from this sheep's milk. 100 milk samples were collected in four regions of Morocco. The bacteria isolated were identified by classical and molecular methods (16S rRNA sequencing) and tested, according to the disk method, for their sensitivity to several antibiotics. The physico-chemical analyzes of sheep’s milk concerned the pH, titratable acidity, density, dry extract, freezing point and contents of: fat, proteins, lactose and calcium. The essential oils (EOs) of T. satureioides and M .pulegium were extracted by hydrodistillation and analyzed by GC / MS, while the Aloe vera leaf pulp was analyzed by the methods of Harborne and HPLC. A total number of 125 bacteria have been identified. Significant resistance to chemical antibiotics has been noted in LABs. The average temperature value of milk is around 57.15 °C, the pH is 6.56, the titratable acidity is around 3.4 ° D, the density is 1.035g / cm³ , the total dry extract is around 169.5g / l, the ash (9.8g / l), the freezing point (- 0.556 °C) while the average fat content is 67.85g / l . The samples richest in fat belong to the region of Settat, cradle of the Sardi breed, with a maximum average value of 74.4g / l. The average protein is 56g / l, lactose (39.92g / l), and calcium (1.855g / l). Analysis of the major components of EOs revealed the dominance of borneol in the case of T. satureioides and of pulegone in M. pulegium. Aloe vera gel contains alkaloids, flavonoids, catechic tannins, saponins and 1.60 µg / ml of aloin. The plant extracts have a bactericidal effect on E. coli, Klebsiellaoxytoca and Staphylococci and bacteriostatic effect on LABs of technological interest (Lactobacillus). As a result of this study, it is believed that the consumption of sardi sheep’s milk would be of nutritional benefit. Its richness in fat and proteins predisposes it for biotechnological development in the manufacture of cheese and yogurt. Also, the use of aromatic and medicinal plants, as natural additives would be of great benefit to flavor and maintain its quality.

Keywords: sheep’s milk, lactic flora, antimicrobial power, aloe barbadensis miller, thymus satureioides, mentha pulegium

Procedia PDF Downloads 79