Search results for: Amar Deep
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2047

Search results for: Amar Deep

1897 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction

Authors: Joy Cao, Min Zhou

Abstract:

Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.

Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.

Procedia PDF Downloads 52
1896 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 110
1895 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: basketball, deep learning, feature extraction, single-camera, tracking

Procedia PDF Downloads 108
1894 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: mobile computing, deep learning apps, sensitive information, static analysis

Procedia PDF Downloads 119
1893 How to Guide Students from Surface to Deep Learning: Applied Philosophy in Management Education

Authors: Lihong Wu, Raymond Young

Abstract:

The ability to learn is one of the most critical skills in the information age. However, many students do not have a clear understanding of what learning is, what they are learning, and why they are learning. Many students study simply to pass rather than to learn something useful for their career and their life. They have a misconception about learning and a wrong attitude towards learning. This research explores student attitudes to study in management education and explores how to intercede to lead students from shallow to deeper modes of learning.

Keywords: knowledge, surface learning, deep learning, education

Procedia PDF Downloads 462
1892 Upconversion Nanomaterials for Applications in Life Sciences and Medicine

Authors: Yong Zhang

Abstract:

Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.

Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy

Procedia PDF Downloads 126
1891 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 351
1890 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 185
1889 Application of Deep Eutectic Solvent in the Extraction of Ferulic Acid from Palm Pressed Fibre

Authors: Ng Mei Han, Nu'man Abdul Hadi

Abstract:

Extraction of ferulic acid from palm pressed fiber using deep eutectic solvent (DES) of choline chloride-acetic acid (ChCl-AA) and choline chloride-citric acid (ChCl-CA) are reported. Influence of water content in DES on the extraction efficiency was investigated. ChCl-AA and ChCl-CA experienced a drop in viscosity from 9.678 to 1.429 and 22.658 ± 1.655 mm2/s, respectively as the water content in the DES increased from 0 to 50 wt% which contributed to higher extraction efficiency for the ferulic acid. Between 41,155 ± 940 mg/kg ferulic acid was obtained after 6 h reflux when ChCl-AA with 30 wt% water was used for the extraction compared to 30,940 ± 621 mg/kg when neat ChCl-AA was used. Although viscosity of the DES could be improved with the addition of water, there is a threshold where the DES could tolerate the presence of water without changing its solvent behavior. The optimum condition for extraction of ferulic acid from palm pressed fiber was heating for 6 h with DES containing 30 wt% water.

Keywords: deep eutectic solvent, extraction, ferulic acid, palm fibre

Procedia PDF Downloads 48
1888 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 81
1887 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 116
1886 Hydrogeological Study of Shallow and Deep Aquifers in Balaju-Boratar Area, Kathmandu, Central Nepal

Authors: Hitendra Raj Joshi, Bipin Lamichhane

Abstract:

Groundwater is the main source of water for the industries of Balaju Industrial District (BID) and the denizens of Balaju-Boratar area. The quantity of groundwater is in a fatal condition in the area than earlier days. Water levels in shallow wells have highly lowered and deep wells are not providing an adequate amount of water as before because of higher extraction rate than the recharge rate. The main recharge zone of the shallow aquifer lies at the foot of Nagarjuna mountain, where recent colluvial debris are accumulated. Urbanization in the area is the main reason for decreasing water table. Recharge source for the deep aquifer in the region is aquiclude leakage. Sand layer above the Kalimati clay is the shallow aquifer zone, which is limited only in Balaju and eastern part of the Boratar, while the layer below the Kalimati clay spreading around Gongabu, Machhapohari, and Balaju area is considered as a potential area of deep aquifer. Over extraction of groundwater without considering water balance in the aquifers may dry out the source and can initiate the land subsidence problem. Hence, all the responsible of the industries in BID area and the denizens of Balaju-Boratar area should be encouraged to practice artificial groundwater recharge.

Keywords: aquiclude leakage, Kalimati clay, groundwater recharge

Procedia PDF Downloads 458
1885 Study of Syntactic Errors for Deep Parsing at Machine Translation

Authors: Yukiko Sasaki Alam, Shahid Alam

Abstract:

Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.

Keywords: syntactic parsing, error analysis, machine translation, deep parsing

Procedia PDF Downloads 520
1884 Modelling of Moisture Loss and Oil Uptake during Deep-Fat Frying of Plantain

Authors: James A. Adeyanju, John O. Olajide, Akinbode A. Adedeji

Abstract:

A predictive mathematical model based on the fundamental principles of mass transfer was developed to simulate the moisture content and oil content during Deep-Fat Frying (DFF) process of dodo. The resulting governing equation, that is, partial differential equation that describes rate of moisture loss and oil uptake was solved numerically using explicit Finite Difference Technique (FDT). Computer codes were written in MATLAB environment for the implementation of FDT at different frying conditions and moisture loss as well as oil uptake simulation during DFF of dodo. Plantain samples were sliced into 5 mm thickness and fried at different frying oil temperatures (150, 160 and 170 ⁰C) for periods varying from 2 to 4 min. The comparison between the predicted results and experimental data for the validation of the model showed reasonable agreement. The correlation coefficients between the predicted and experimental values of moisture and oil transfer models ranging from 0.912 to 0.947 and 0.895 to 0.957, respectively. The predicted results could be further used for the design, control and optimization of deep-fat frying process.

Keywords: frying, moisture loss, modelling, oil uptake

Procedia PDF Downloads 402
1883 Native Point Defects in ZnO

Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani

Abstract:

Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.

Keywords: DFT, native, n-type, ZnO

Procedia PDF Downloads 555
1882 Applications of AI, Machine Learning, and Deep Learning in Cyber Security

Authors: Hailyie Tekleselase

Abstract:

Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.

Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data

Procedia PDF Downloads 94
1881 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks

Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan

Abstract:

A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.

Keywords: prostate, deep neural network, seed implant, ultrasound

Procedia PDF Downloads 163
1880 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques

Authors: Chinlun Lai, Lunjyh Jiang

Abstract:

Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.

Keywords: baby care system, Internet of Things, deep learning, machine vision

Procedia PDF Downloads 196
1879 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 64
1878 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.

Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames

Procedia PDF Downloads 58
1877 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 110
1876 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 121
1875 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 380
1874 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 151
1873 Deep Learning Strategies for Mapping Complex Vegetation Patterns in Mediterranean Environments Undergoing Climate Change

Authors: Matan Cohen, Maxim Shoshany

Abstract:

Climatic, topographic and geological diversity, together with frequent disturbance and recovery cycles, produce highly complex spatial patterns of trees, shrubs, dwarf shrubs and bare ground patches. Assessment of spatial and temporal variations of these life-forms patterns under climate change is of high ecological priority. Here we report on one of the first attempts to discriminate between images of three Mediterranean life-forms patterns at three densities. The development of an extensive database of orthophoto images representing these 9 pattern categories was instrumental for training and testing pre-trained and newly-trained DL models utilizing DenseNet architecture. Both models demonstrated the advantages of using Deep Learning approaches over existing spectral and spatial (pattern or texture) algorithmic methods in differentiation 9 life-form spatial mixtures categories.

Keywords: texture classification, deep learning, desert fringe ecosystems, climate change

Procedia PDF Downloads 56
1872 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 169
1871 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 78
1870 Detecting Covid-19 Fake News Using Deep Learning Technique

Authors: AnjalI A. Prasad

Abstract:

Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.

Keywords: BERT, CNN, LSTM, RNN

Procedia PDF Downloads 168
1869 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 266
1868 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications

Authors: H. Hruschka

Abstract:

This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.

Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models

Procedia PDF Downloads 162