Search results for: Amalka Nawarathna
3 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector
Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan
Abstract:
Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.Keywords: embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector
Procedia PDF Downloads 2062 Thyroid Malignancy Concurrent with Hyperthyroidism: Variations with Thyroid Status and Age
Authors: N. J. Nawarathna, N. R. Kmarasinghe, D. Chandrasekara, B. M. R. S. Balasooriya, R. A. A. Shaminda, R. J. K. Senevirathne
Abstract:
Introduction: Thyroid malignancy associated with hyperthyroidism is considered rare. Retrospective studies have shown the incidence of thyroid malignancy in hyperthyroid patients to be low (0.7-8.5%). To assess the clinical relevance of this association, thyroid status in a cohort of patients with thyroid malignancy were analyzed. Method: Thyroid malignancies diagnosed histologically in 56 patients, over a 18 month period beginning from April 2013, in a single surgical unit at Teaching Hospital Kandy were included. Preoperative patient details and progression of thyroid status were asessed with Thyroid Stimulating Hormone, free Thyroxin and free Triiodothyronine levels. Results: Amongst 56 patients Papillary carcinoma was diagnosed in 44(78.6%), follicular carcinomas in 7(12.5%) and 5(8.9%) with medullary and anaplastic carcinomas. 12(21.4%) were males and 44(78.6%) were females. 20(35.7%) were less than 40years, 29(51.8%) were between 40 to 59years and 7(12.5%) were above 59years. Cross tabulation of Type of carcinoma with Gender revealed likelihood ratio of 6.908, Significance p = 0.032. Biochemically 12(21.4%) were hyperthyroid. Out of them 5(41.7%) had primary hyperthyroidism and 7(58.3%) had secondary hyperthyroidism. Mean age of euthyroid patients was 43.77years (SD 10.574) and hyperthyroid patients was 53.25years(SD 16.057). Independent Samples Test t is -2.446, two tailed significance p =0.018. When cross tabulate thyroid status with Age group Likelihood Ratio was 9.640, Significance p = 0.008. Conclusion: Papillary carcinoma is seen more among females. Among the patients with thyroid carcinomas, those with biochemically proven hyperthyroidism were more among the older age group than those who were euthyroid. Hence careful evaluation of elderly hyperthyroid patients to select the most suitable therapeutic approach is justified.Keywords: age, hyperthyroidism, thyroid malignancy, thyroid status
Procedia PDF Downloads 4031 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs
Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa
Abstract:
Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.Keywords: classification models, egg weight, fertilised eggs, multiple linear regression
Procedia PDF Downloads 87