Search results for: surface characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8357

Search results for: surface characterization

8357 Oil Palm Leaf and Corn Stalk, Mechanical Properties and Surface Characterization

Authors: Zawawi Daud

Abstract:

Agro waste can be defined as waste from agricultural plant. Oil palm leaf and corn stalk can be categorized as ago waste material. At first, the comparison between oil palm leaf and corn stalk by mechanical properties from soda pulping process. After that, focusing on surface characterization by Scanning Electron Microscopy (SEM). Both material have a potential due to mechanical properties (tensile, tear, burst and fold) and surface characterization but corn stalk shows more in strength and compactness due to fiber characterization compared to oil palm leaf. This study promoting the green technology in develop a friendly product and suitable to be used as an alternative pulp in paper making industry.

Keywords: fiber, oil palm leaf, corn stalk, green technology

Procedia PDF Downloads 448
8356 Effects of Surface Topography on Roughness of Glazed Ceramic Substrates

Authors: R. Sarjahani, M. Sheikhattar, S. Javadpour, B. Hashemi

Abstract:

Glazes and their surface characterization is an important subject for ceramic industries. Fabrication of a super smooth surface resistant to stains is a big improvement for those industries. In this investigation, surface topography of popular glazes such as Zircon and Titania based opaque glazes, calcium based matte glaze and transparent glaze has been analyzed by Marsurf M300, SEM, EDS and XRD. Results shows that surface roughness of glazes seriously depends on surface crystallinity, crystal size and shapes.

Keywords: crystallinity, glaze, surface roughness, topography

Procedia PDF Downloads 526
8355 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics

Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih

Abstract:

Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.

Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability

Procedia PDF Downloads 126
8354 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.

Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD

Procedia PDF Downloads 70
8353 Estimation of Grinding Force and Material Characterization of Ceramic Matrix Composite

Authors: Lakshminarayanan, Vijayaraghavan, Krishnamurthy

Abstract:

The ever-increasing demand for high efficiency in automotive and aerospace applications requires new materials to suit to high temperature applications. The Ceramic Matrix Composites nowadays find its applications for high strength and high temperature environments. In this paper, Al2O3 and Sic ceramic materials are taken in particulate form as matrix and reinforcement respectively. They are blended together in Ball Milling and compacted in Cold Compaction Machine by powder metallurgy technique. Scanning Electron Microscope images are taken for the samples in order to find out proper blending of powders. Micro harness testing is also carried out for the samples in Vickers Micro Hardness Testing Equipment. Surface grinding of the samples is also carried out in Surface Grinding Machine in order to find out grinding force estimates. The surface roughness of the grounded samples is also taken in Surface Profilometer. These are yielding promising results.

Keywords: ceramic matrix composite, cold compaction, material characterization, particulate and surface grinding

Procedia PDF Downloads 214
8352 Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants

Authors: Busra Balli, Tuncay Dikici, Mustafa Toparli

Abstract:

Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments.

Keywords: dental implant, etching, surface modifications, surface morphology, surface roughness

Procedia PDF Downloads 450
8351 A New Criterion for Removal of Fouling Deposit

Authors: D. Bäcker, H. Chaves

Abstract:

The key to improve surface cleaning of the fouling is understanding of the mechanism of separation process of the deposit from the surface. The authors give basic principles of characterization of separation process and introduce a corresponding criterion. The developed criterion is a measure for the moment of separation of the deposit from the surface. For this purpose a new measurement technique is described.

Keywords: cleaning, fouling, separation, criterion

Procedia PDF Downloads 420
8350 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model

Authors: Carlos Caro, Ernest Blade, Nestor Rojas

Abstract:

This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.

Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model

Procedia PDF Downloads 481
8349 In situ High Temperature Characterization of Diamond-Like Carbon Films

Authors: M. Rouhani, F. C. N. Hong, Y. R. Jeng

Abstract:

The tribological performance of DLC films is limited by graphitization at elevated temperatures. Despite of numerous studies on the thermal stability of DLC films, a comprehensive in-situ characterization at elevated temperature is still lacking. In this study, DLC films were deposited using filtered cathodic arc vacuum method. Thermal stability of the films was characterized in-situally using a synchronized technique integrating Raman spectroscopy and depth-sensing measurements. Tests were performed in a high temperature chamber coupled with feedback control to make it possible to study the temperature effects in the range of 21 – 450 ̊C. Co-located SPM and Raman microscopy maps at different temperature over a specific area on the surface of the film were prepared. The results show that the thermal stability of the DLC films depends on their sp3 content. Films with lower sp3 content endure graphitization during the temperature-course used in this study. The graphitization is accompanied with significant changes in surface roughness and Raman spectrum of the film. Surface roughness of the films start to change even before graphitization transformation could be detected using Raman spectroscopy. Depth-sensing tests (nanoindentation, nano-scratch and wear) endorse the surface roughness change seen before graphitization occurrence. This in-situ study showed that the surface of the films is more sensitive to temperature rise compared to the bulk. We presume the changes observed in films hardness, surface roughness and scratch resistance with temperature rise, before graphitization occurrence, is due to surface relaxation.

Keywords: DLC film, nanoindentation, Raman spectroscopy, thermal stability

Procedia PDF Downloads 161
8348 Characterization Techniques for Studying Properties of Nanomaterials

Authors: Nandini Sharma

Abstract:

Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis.

Keywords: characterization, structural, optical, nanomaterial

Procedia PDF Downloads 100
8347 Need for Standardization of Manual Inspection in Small and Medium-Scale Manufacturing Industries

Authors: Adithya Nadig

Abstract:

In the field of production, characterization of surface roughness plays a vital role in assessing the quality of a manufactured product. The defined parameters for this assessment, each, have their own drawbacks in describing a profile surface. From the purview of small-scale and medium-scale industries, an increase in time spent for manual inspection of a product for various parameters adds to the cost of the product. In order to reduce this, a uniform and established standard is necessary for quantifying a profile of a manufactured product. The inspection procedure in the small and medium-scale manufacturing units at Jigani Industrial area, Bangalore, was observed. The parameters currently in use in those industries are described in the paper and a change in the inspection method is proposed.

Keywords: efficiency of quality assessment, manual areal profiling technique, manufacturing in small and medium-scale industries product-oriented inspection, standardization of manual inspection, surface roughness characterization

Procedia PDF Downloads 528
8346 Opto-Mechanical Characterization of Aspheric Lenses from the Hybrid Method

Authors: Aliouane Toufik, Hamdi Amine, Bouzid Djamel

Abstract:

Aspheric optical components are an alternative to the use of conventional lenses in the implementation of imaging systems for the visible range. Spherical lenses are capable of producing aberrations. Therefore, they are not able to focus all the light into a single point. Instead, aspherical lenses correct aberrations and provide better resolution even with compact lenses incorporating a small number of lenses. Metrology of these components is very difficult especially when the resolution requirements increase and insufficient or complexity of conventional tools requires the development of specific approaches to characterization. This work is part of the problem existed because the objectives are the study and comparison of different methods used to measure surface rays hybrid aspherical lenses.

Keywords: manufacture of lenses, aspherical surface, precision molding, radius of curvature, roughness

Procedia PDF Downloads 438
8345 Study of 'Rolled in Scale' and 'Rolled in Scum' in Automotive Grade Cold-Rolled Annealed Steel Sheet

Authors: Soumendu Monia, Vaibhav Jain, Hrishikesh Jugade, Manashi Adhikary, Goutam Mukhopadhyay

Abstract:

'Rolled in scale' (RIS) and 'Rolled in Scum' (RISc) are two superficial surface defects on cold rolled and annealed steel sheets which affect the aesthetics of surface and thereby that of the end-product. Both the defects are believed to be originating from distinctly different sources having different mechanisms of formation. However, due to their similar physical appearance, RIS and RISc are generally confused with each other and hence attaining the exact root cause for elimination of the defect becomes difficult. RIS appears irregular in shape, sometimes scattered, and always oriented in rolling direction. RISc is generally oval shaped, having identifiable pointed edges and mostly oriented in rolling direction. Visually, RIS appears to be greyish in colour whereas RISc is whitish in colour. Both the defects have quite random occurrence and do not leave any imprints on the reverse-side of the sheet. In the current study, an attempt has been made to differentiate these two similar looking surface defects using various metallographic and characterization techniques. Systematic experiments have been carried out to identify possible mechanisms of formation of these defects. Detailed characterization revealed basic differences between RIS and RISc with respect to their surface morphology. To summarize, RIS was observed as a residue of an otherwise under-pickled scale patch on surface, after it has been subjected to cold rolling and annealing in a batch/continuous furnace. Whereas RISc was found to be a localized rubbing of the surface, at the time of cold rolling itself, resulting in a rough surface texture.

Keywords: annealing, rolled in scale, rolled in scum, skin panel

Procedia PDF Downloads 139
8344 Characterization of the Airtightness Level in School Classrooms in Mediterranean Climate

Authors: Miguel A. Campano, Jesica Fernández-Agüera, Samuel Domínguez-Amarillo, Juan J. Sendra

Abstract:

An analysis of the air tightness level is performed on a representative sample of school classrooms in Southern Spain, which allows knowing the infiltration level of these classrooms, mainly through its envelope, which can affect both energy demand and occupant's thermal comfort. By using a pressurization/depressurization equipment (Blower-Door test), a characterization of 45 multipurpose classrooms have been performed in nine non-university educational institutions of the main climate zones of Southern Spain. In spite of having two doors and a high ratio between glass surface and outer surface, it is possible to see in these classrooms that there is an adequate level of airtightness, since all the n50 values obtained are lower than 9.0 ACH, with an average value around 7.0 ACH.

Keywords: air infiltration, energy efficiency, school buildings, thermal comfort, indoor air quality, ventilation

Procedia PDF Downloads 438
8343 Carbon Nanocomposites : Structure, Characterization and Environmental Application

Authors: Bensacia Nabila, Hadj-Ziane Amel, Sefah Karima

Abstract:

Carbon nanocomposites have received more attention in the last years in view of their special properties such as low density, high specific surface area, and thermal and mechanical stability. Taking into account the importance of these materials, many studies aimed at improving the synthesis process have been conducted. However, the presence of impurities could affect significantly the properties of these materials, and the characterization of these compounds is an important challenge to assure the quality of the new carbon nanocomposites. The present study aims to develop a new recyclable decontaminating material for dyes removal. This new material consists of an active element based on carbon nanotubes wrapped in a microcapsule of iron oxide. The adsorbent is characterized by Transmission electron microscopy, X-ray diffraction and the surface area was measured by the BET method.

Keywords: carbon nanocomposite, chitozen, elimination, dyes

Procedia PDF Downloads 283
8342 Characterization of Self-Assembly Behavior of 1-Dodecylamine Molecules on Au (111) Surface

Authors: Wan-Tzu Yen, Yu-Chen Luo, I-Ping Liu, Po-Hsuan Yeh, Sheng-Hsun Fu, Yuh-Lang Lee

Abstract:

Self-assembled characteristics and adsorption performance of 1-dodecylamine molecules on gold (Au) (111) surfaces were characterized via cyclic voltammetry (CV), surface-enhanced infrared absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM). The present study focused on the formation of 1-dodecylamine (DDA) on a gold surface with respect to the ex-situ arrangement of an adlayer on the Au(111) surface, and phase transition at potential dynamics carried out by EC-STM. This study reveals that alkyl amine molecules were formed an adsorption pattern with highly regular “lie down shape” on Au(111) surface, even in an extreme acid system (pH = 1). Acidic electrolyte (HClO₄) could protonate the surface of alkyl amine of a monolayer of the gold surface when potential shifts to negative. The quite stability of 1-dodecylamine on the gold surface maintained the monolayer across the potential window (0.1-0.8V). This transform model was confirmed by EC-STM. In addition, amine-modified Au(111) electrode adlayer used to examine how to affect an electron transfer across an interface using [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ redox pair containing 0.1 M HClO₄ solution.

Keywords: cyclic voltammetry, dodecylamine, gold (Au)(111), scanning tunneling microscopy, self-assembled monolayer, surface-enhanced infrared absorption spectroscopy

Procedia PDF Downloads 156
8341 A Study of Surface of Titanium Targets for Neutron Generators

Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev

Abstract:

The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.

Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy

Procedia PDF Downloads 397
8340 Chemical Modification of Jute Fibers with Oxidative Agents for Usability as Reinforcement in Polymeric Composites

Authors: Yasemin Seki, Aysun Akşit

Abstract:

The goal of this research is to modify the surface characterization of jute yarns with different chemical agents to improve the compatibility with a non-polar polymer, polypropylene, when used as reinforcement. A literature review provided no knowledge on surface treatment of jute fibers with sodium perborate trihydrate. This study also aims to compare the efficiency of sodium perborate trihydrate on jute fiber treatment with other commonly used chemical agents. Accordingly, jute yarns were treated with 0.02% potassium dichromate (PD), potassium permanganate (PM) and sodium perborate trihydrate (SP) aqueous solutions in order to enhance interfacial compatibility with polypropylene in this study. The effect of treatments on surface topography, surface chemistry and interfacial shear strength of jute yarns with polypropylene were investigated. XPS results revealed that surface treatments enhanced surface hydrophobicity by increasing C/O ratios of fiber surface. Surface roughness values increased with the treatments. The highest interfacial adhesion with polypropylene was achieved after SP treatment by providing the highest surface roughness values and hydrophobic character of jute fiber.

Keywords: jute, chemical modification, sodium perborate, polypropylene

Procedia PDF Downloads 476
8339 An Approach on the Design of a Solar Cell Characterization Device

Authors: Christoph Mayer, Dominik Holzmann

Abstract:

This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments.

Keywords: solar cell, photovoltaics, PV, characterization

Procedia PDF Downloads 382
8338 Peeling Behavior of Thin Elastic Films Bonded to Rigid Substrate of Random Surface Topology

Authors: Ravinu Garg, Naresh V. Datla

Abstract:

We study the fracture mechanics of peeling of thin films perfectly bonded to a rigid substrate of any random surface topology using an analytical formulation. A generalized theoretical model has been developed to determine the peel strength of thin elastic films. It is demonstrated that an improvement in the peel strength can be achieved by modifying the surface characteristics of the rigid substrate. Characterization study has been performed to analyze the effect of different parameters on effective peel force from the rigid surface. Different surface profiles such as circular and sinusoidal has been considered to demonstrate the bonding characteristics of film-substrate interface. Condition for the instability in the debonding of the film is analyzed, where the localized self-debonding arises depending upon the film and surface characteristics. This study is towards improved adhesion strength of thin films to rigid substrate using different textured surfaces.

Keywords: debonding, fracture mechanics, peel test, thin film adhesion

Procedia PDF Downloads 404
8337 UV-Reactive Electrospinning: Preparation, Characterization and Cell Culture Applications of Nanofiber Scaffolds Containing Keratin

Authors: Duygu Yüksel Deniz, Memet Vezir Kahraman, Serap Erdem Kuruca, Mediha Süleymanoğlu

Abstract:

Our first aim was to synthesize Hydroxy Apatite (HAP) and then modify its surface by adding 4-Vinylbenzene boronic acid (4-VBBA). The characterization was done by FT-IR. By adding Polyvinyl alcohol (PVA) to 4- VBBA-HAP, we obtained a suitable electrospinning solution. PVA solution which was also modified by using alkoxy silanes, in order to prevent the scaffolds from being damaged by aqueous cell medium, was added. Keratin was dissolved and then added into the electrospinning solution. Keratin containing 4-VBBA- HAP/PVA composite was used to fabricate nanofiber scaffolds with the simultaneous UV-reactive electrospinning technique. The structural characterization was done by FT-IR. Thermal gravimetric analysis was also performed by using TGA. The morphological characterization was determined by SEM analyses. Our second aim was to create a scaffold where cells could grow. With this purpose, suitable nanofibers were choosen according to their SEM analysis. Keratin containing nanofibers were seeded with 3T3, ECV and SAOS cells and their cytotoxicity and cell proliferation were investigated by using MTT assay. After cell culturing process morphological characterization was determined by SEM analyses. These scaffolds were designed to be nontoxic biomaterials. Here, a comparision was made between keratin containing 3T3, ECV and SAOS seeded nanofiber scaffolds and the results were presented and discussed.

Keywords: cell culture, keratin, nanofibers, UV-reactive electrospinning

Procedia PDF Downloads 415
8336 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 314
8335 Surface Modification of Titanium Alloy with Laser Treatment

Authors: Nassier A. Nassir, Robert Birch, D. Rico Sierra, S. P. Edwardson, G. Dearden, Zhongwei Guan

Abstract:

The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.

Keywords: bonding strength, laser surface treatment, PEKK, poly-ether-ketone-ketone, titanium alloy

Procedia PDF Downloads 301
8334 Characterization of Nanostructured and Conventional TiAlN and AlCrN Coated ASTM-SA213-T-11 Boiler Steel

Authors: Vikas Chawla, Buta Singh Sidhu, Amita Rani, Amit Handa

Abstract:

The main objective of the present work is microstructural and mechanical characterization of the conventional and nanostructured TiAlN and AlCrN coatings deposited on T-11 boiler steel. In case of conventional coatings, Al-Cr and Ti-Al metallic powders were deposited using plasma spray process followed by gas nitriding of the surface which was done in the lab with optimized parameters after conducting several trials on plasma-sprayed coated specimens. The physical vapor deposition process (PAPVD) was employed for depositing nanostructured TiAlN and AlCrN coatings. The field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray analysis (EDAX) attachment, X-ray diffraction (XRD) analysis, atomic force microscopy (AFM) analysis and the X-Ray mapping analysis techniques have been used to study surface and cross-sectional morphology of the coatings. The surface roughness and micro-hardness were also measured. A good adhesion of the conventional thick TiAlN and AlCrN coatings was found. The coatings under study are recommended for the applications to super-heater and re-heater tubes of the boilers based upon the outcomes of the research work.

Keywords: nanostructure, physical vapour deposition, oxides, thin films, electron microscopy

Procedia PDF Downloads 108
8333 Characterization of Complex Electromagnetic Environment Created by Multiple Sources of Electromagnetic Radiation

Authors: Clement Temaneh-Nyah, Josiah Makiche, Josephine Nujoma

Abstract:

This paper considers the characterisation of a complex electromagnetic environment due to multiple sources of electromagnetic radiation as a five-dimensional surface which can be described by a set of several surface sections including: instant EM field intensity distribution maps at a given frequency and altitude, instantaneous spectrum at a given location in space and the time evolution of the electromagnetic field spectrum at a given point in space. This characterization if done over time can enable the exposure levels of Radio Frequency Radiation at every point in the analysis area to be determined and results interpreted based on comparison of the determined RFR exposure level with the safe guidelines for general public exposure given by recognised body such as the International commission on non-ionising radiation protection (ICNIRP), Institute of Electrical and Electronic Engineers (IEEE), the National Radiation Protection Authority (NRPA).

Keywords: complex electromagnetic environment, electric field strength, mathematical models, multiple sources

Procedia PDF Downloads 334
8332 Single Atom Manipulation with 4 Scanning Tunneling Microscope Technique

Authors: Jianshu Yang, Delphine Sordes, Marek Kolmer, Christian Joachim

Abstract:

Nanoelectronics, for example the calculating circuits integrating at molecule scale logic gates, atomic scale circuits, has been constructed and investigated recently. A major challenge is their functional properties characterization because of the connecting problem from atomic scale to micrometer scale. New experimental instruments and new processes have been proposed therefore. To satisfy a precisely measurement at atomic scale and then connecting micrometer scale electrical integration controller, the technique improvement is kept on going. Our new machine, a low temperature high vacuum four scanning tunneling microscope, as a customer required instrument constructed by Omicron GmbH, is expected to be scaling down to atomic scale characterization. Here, we will present our first testified results about the performance of this new instrument. The sample we selected is Au(111) surface. The measurements have been taken at 4.2 K. The atomic resolution surface structure was observed with each of four scanners with noise level better than 3 pm. With a tip-sample distance calibration by I-z spectra, the sample conductance has been derived from its atomic locally I-V spectra. Furthermore, the surface conductance measurement has been performed using two methods, (1) by landing two STM tips on the surface with sample floating; and (2) by sample floating and one of the landed tips turned to be grounding. In addition, single atom manipulation has been achieved with a modified tip design, which is comparable to a conventional LT-STM.

Keywords: low temperature ultra-high vacuum four scanning tunneling microscope, nanoelectronics, point contact, single atom manipulation, tunneling resistance

Procedia PDF Downloads 250
8331 Effect of Addition of Surfactant to the Surface Hydrophilicity and Photocatalytic Activity of Immobilized Nano TiO2 Thin Films

Authors: Eden G. Mariquit, Winarto Kurniawan, Masahiro Miyauchi, Hirofumi Hinode

Abstract:

This research studied the effect of adding surfactant to the titanium dioxide (TiO2) sol-gel solution that was used to immobilize TiO2 on glass substrates by dip coating technique using TiO2 sol-gel solution mixed with different types of surfactants. After dipping into the TiO2 sol, the films were calcined and produced pure anatase crystal phase. The thickness of the thin film was varied by repeating the dip and calcine cycle. The prepared films were characterized using FE-SEM, TG-DTA, and XRD, and its photocatalytic performances were tested on degradation of an organic dye, methylene blue. Aside from its phocatalytic performance, the photo-induced hydrophilicity of thin TiO2 films surface was also studied. Characterization results showed that the addition of surfactant gave rise to characteristic patterns on the surface of the TiO2 thin film which also affects the photocatalytic activity. The addition of CTAB to the TiO2 dipping solution had a negative effect because the calcination temperature was not high enough to burn all the surfactants off. As for the surface wettability, the addition of surfactant also affected the induced surface hydrophilicity of the TiO2 films when irradiated under UV light.

Keywords: photocatalysis, surface hydrophilicity, TiO2 thin films, surfactant

Procedia PDF Downloads 380
8330 Modification and Surface Characterization of the Co20Cr15W10Ni Alloy for Application as Biomaterial

Authors: Fernanda A. Vechietti, Natália O. B. Muniz, Laura C. Treccani, Kurosch. Rezwan, Luis Alberto dos Santos

Abstract:

CoCr alloys are widely used in prosthetic implants due to their excellent mechanical properties, such as good tensile strength, elastic modulus and wear resistance. Their biocompatibility and lack of corrosion are also prominent features of this alloy. One of the most effective and simple ways to protect metal’s surfaces are treatments, such as electrochemical oxidation by passivation, which is used as a protect release of metallic ions. Another useful treatment is the electropolishing, which is used to reduce the carbide concentration and protrusion at the implanted surface. Electropolishing is a cheap and effective method for treatment of implants, which generally has complex geometries. The purpose of this study is surface modification of the alloy CoCr(ASTM F90-09) by different methods: polishing, electro polishing, passivation and heat treatment for application as biomaterials. The modification of the surface was studied and characterized by SEM, profilometry, wettability and compared to the surface of the samples untreated. The heat treatment and of passivation increased roughness (0.477 µm and 0.825 µm) the samples in relation the sample electropolished and polished(0.131 µm and 0.274 µm) and were observed the improve wettability’s with the increase the roughness.

Keywords: biomaterial, CoCr, surface treatment, heat treatment, roughness

Procedia PDF Downloads 509
8329 Mechanical Properties and Characterization of Ti–6Al–4V Alloy Diffused by Molybdenum

Authors: Alaeddine Kaouka

Abstract:

The properties and characterization of Ti-6Al-4V alloys with different contents of Mo were investigated. Microstructure characterization and hardness are considered. The alloy structure was characterized by X-ray diffraction, SEM and optical microscopy. The results showed that the addition of Mo stabilized the β-phase in the treated solution condition. The Mo element added to titanium alloys changes the lattice parameters of phases. Microstructural observations indicate an obvious reduction in the prior grain size. The hardness has increased with the increase in β-phase stability, while Young’s modulus and ductility have decreased.

Keywords: characterization, mechanical properties, molybdenum, titanium alloy

Procedia PDF Downloads 221
8328 Effects of Alkaline Pretreatment Parameters on the Corrosion Resistance and ‎Wettability of Magnesium Implant

Authors: Mahtab Assadian, Mohd Hasbullah Idris, Mostafa Rezazadeh Shirdar, Mohammad Mahdi Taheri, ‎S. Izman

Abstract:

Corrosion behaviour and surface roughness of magnesium substrate were investigated after NaOH pretreatment in different concentrations (1, 5, and 10 molar) and duration of (10 min, 30 min, 1 h, 3 h, 6 h and 24 h). Creation of Mg(OH)2 barrier layer after pretreatment enhanced corrostion resistance as well as wettability of substrate surface. Characterization including Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) was conducted to detect the existence of this barrier layer. Surface roughness and wettability of substrate was evaluated using atomic force microscopy (AFM) and contact angle measurement respectively. It is found that magnesium treated by 1M NaOH for 30 min reveals higher corrosion resistance and lower water contact angle of substrate surface. In addition, this investigation indicates that pH value of SBF solution is strongly influenced by different time and concentration of alkaline pretreatment.

Keywords: magnesium, NaOH pretreatment, corrosion resistance, wettability

Procedia PDF Downloads 928