Search results for: steric stabilization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 393

Search results for: steric stabilization

393 A Review of Soil Stabilization Techniques

Authors: Amin Chegenizadeh, Mahdi Keramatikerman

Abstract:

Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques.

Keywords: review, soil, stabilization, techniques

Procedia PDF Downloads 510
392 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents

Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi

Abstract:

In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.

Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles

Procedia PDF Downloads 411
391 Novel Correlations for P-Substituted Phenols in NMR Spectroscopy

Authors: Khodzhaberdi Allaberdiev

Abstract:

Substituted phenols are widely used for the synthesis of advanced polycondensation polymers. In terms of the structure regularity and practical value of obtained polymers are of special interest the p-substituted phenols. The lanthanide induced shifts (LIS) of the aromatic ring and the OH protons by addition Eu(fod)3 to various p-substituted phenols in CDCL3 solvent were measured Nuclear Magnetic Resonance spectroscopy. A linear relationship has been observed between the LIS of protons (∆=δcomplex –δsubstrate) and Eu(fod)3/substrate molar ratios. The LIS protons of the investigated phenols decreases in the following order: ОН > ortho > meta. The LIS of these protons also depends on both steric and electronic effects of p-substituents. The effect on the LIS of protons steric hindrance of substituents by way of example p-substituted alkyl phenols was studied. Alkyl phenols exhibit pronounced europium- induced shifts, their sensitivity increasing in the order: CH3 > C2H5 > sym-C5H11 > tert-C5H11 > tert-C4H9, i.e. in parallel with decreasing steric hindrance. The influence steric hindrance p-substituents of phenols on the LIS of protons in sequence following decreases: OH> meta >ortho. Contrary to the expectations, it is found that the LIS of the ortho protons an excellent linear correlation with meta-substituent constants, σm for 14 p-substituted phenols: ∆H2, 6=8.165-9.896 σm (r2=0,999). Moreover, a linear correlation between the LIS of the ortho protons and ionization constants, РКa of p-substituted phenols has been revealed. Similarly, the linear relationships for the LIS of the meta and the OH protons were obtained. Use the LIS of the phenolic hydroxyl groups for linear relationships is necessary with care, because of the signal broadening of the OH protons. New constants may be determinate with unusual case by this approach.

Keywords: novel correlations, NMR spectroscopy, phenols, shift reagent

Procedia PDF Downloads 273
390 Stabilization of Expansive Soils by Additions Binders Hydraulic Lime and Cement

Authors: Kherafa Abdennasser

Abstract:

A literature review was conducted to gather as much information. Concerns the phenomenon of swelling clays, as well as a presentation of some bibliographic findings on factors affecting the swelling potential. Citing the various techniques of stabilization of clays as well as a presentation of some literature results on the stabilization of swelling. Then a characterization of the materials was carried out at basic bibliographic study. These are standard mechanical geotechnical testing. Simple practical, economical and efficient to minimize the phenomenon swelling.

Keywords: stabilization, expansive soils, cement, lime, oedometer

Procedia PDF Downloads 278
389 Broadcasting Stabilization for Dynamical Multi-Agent Systems

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper deals with a stabilization problem for multi-agent systems, when all agents in a multi-agent system receive the same broadcasting control signal and the controller can measure not each agent output but the sum of all agent outputs. It is analytically shown that when the sum of all agent outputs is bounded with a certain broadcasting controller for a given reference, each agent output is separately bounded:stabilization of the sum of agent outputs always results in the stability of every agent output. A numerical example is presented to illustrate our theoretic findings in this paper.

Keywords: broadcasting control, multi-agent system, transfer function, stabilization

Procedia PDF Downloads 349
388 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties

Authors: Riku Hayashida, Tomoaki Hashimoto

Abstract:

This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: robust control, stabilization method, underwater robot, parameter uncertainty

Procedia PDF Downloads 128
387 Robust Stabilization against Unknown Consensus Network

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.

Keywords: single agent control, multi-agent system, transfer function, graph angle

Procedia PDF Downloads 418
386 Boundary Feedback Stabilization of an Overhead Crane Model

Authors: Abdelhadi Elharfi

Abstract:

A problem of boundary feedback (exponential) stabilization of an overhead crane model represented by a PDE is considered. For any $r>0$, the exponential stability at the desired decay rate $r$ is solved in semi group setting by a collocated-type stabiliser of a target system combined with a term involving the solution of an appropriate PDE.

Keywords: feedback stabilization, semi group and generator, overhead crane system

Procedia PDF Downloads 377
385 Video Stabilization Using Feature Point Matching

Authors: Shamsundar Kulkarni

Abstract:

Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.

Keywords: video stabilization, point feature matching, salient points, image quality measurement

Procedia PDF Downloads 274
384 Internal Node Stabilization for Voltage Sense Amplifiers in Multi-Channel Systems

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer by the parasitic capacitances of the input transistors in a voltage sense amplifier. Due to its intrinsic rail-to-rail voltage transition, the input sides are inevitably disturbed. It can possible disturb the stabilities of the reference voltage levels. Moreover, it becomes serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the systems. In order to alleviate the internal node voltage transition, the internal node stabilization technique is proposed by utilizing an additional biasing circuit. It achieves 47% and 43% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 448
383 Stabilization Technique for Multi-Inputs Voltage Sense Amplifiers in Node Sharing Converters

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer through the parasitic capacitances of the input transistors in a multi-inputs voltage sense amplifier. Its intrinsic rail-to-rail voltage transitions at the output nodes inevitably disturb the input sides through the capacitive coupling between the outputs and inputs. Then, it can possible degrade the stabilities of the reference voltage levels. Moreover, it becomes more serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the overall systems. In order to alleviate the internal node voltage transition, the internal node stabilization techniques are proposed. It achieves 45% and 40% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, multi-inputs, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 527
382 Peat Soil Stabilization Methods: A Review

Authors: Mohammad Saberian, Mohammad Ali Rahgozar, Reza Porhoseini

Abstract:

Peat soil is formed naturally through the accumulation of organic matter under water and it consists of more than 75% organic substances. Peat is considered to be in the category of problematic soil, which is not suitable for construction, due to its high compressibility, high moisture content, low shear strength, and low bearing capacity. Since this kind of soil is generally found in many countries and different regions, finding desirable techniques for stabilization of peat is absolutely essential. The purpose of this paper is to review the various techniques applied for stabilizing peat soil and discuss outcomes of its improved mechanical parameters and strength properties. Recognizing characterization of stabilized peat is one of the most significant factors for architectural structures; as a consequence, various strategies for stabilization of this susceptible soil have been examined based on the depth of peat deposit.

Keywords: peat soil, stabilization, depth, strength, unconfined compressive strength (USC)

Procedia PDF Downloads 528
381 The Increasing of Unconfined Compression Strength of Clay Soils Stabilized with Cement

Authors: Ali̇ Si̇nan Soğanci

Abstract:

The cement stabilization is one of the ground improvement method applied worldwide to increase the strength of clayey soils. The using of cement has got lots of advantages compared to other stabilization methods. Cement stabilization can be done quickly, the cost is low and creates a more durable structure with the soil. Cement can be used in the treatment of a wide variety of soils. The best results of the cement stabilization were seen on silts as well as coarse-grained soils. In this study, blocks of clay were taken from the Apa-Hotamış conveyance channel route which is 125km long will be built in Konya that take the water with 70m3/sec from Mavi tunnel to Hotamış storage. Firstly, the index properties of clay samples were determined according to the Unified Soil Classification System. The experimental program was carried out on compacted soil specimens with 0%, 7 %, 15% and 30 % cement additives and the results of unconfined compression strength were discussed. The results of unconfined compression tests indicated an increase in strength with increasing cement content.

Keywords: cement stabilization, unconfined compression test, clayey soils, unified soil classification system.

Procedia PDF Downloads 389
380 The Effect of Scapular Stabilization Exercises on Chronic Neck Pain

Authors: Amany Mohamed, Alaa Balbaa, Magdoline Mishel

Abstract:

Background: Pain in the neck or scapular region is one of the most frequent symptoms in cervical radiculopathy, which is commonly caused by degenerative process in the spine. Purpose: To determine the effect of scapular stabilization exercises in the treatment of chronic neck pain regarding pain and disability and limitation in the range of motion. Patients and Methods: Thirty male and female patients with chronic neck pain were involved. Aged between 30-50 years old. They were randomly assigned into two groups. In group (A), patients received physical therapy program in the form of infrared, transcutaneous electrical nerve stimulation (TENS), Stretching and cervical stabilization exercises. In group (B), patients received scapular stabilization exercises in addition to the same physical therapy program. Treatment was given 3 times a week for 4 weeks. Range of motion of the cervical spine, range of motion of the scapula, neck pain and disability were assessed before and after treatment. Results: There was significant improvement in both groups (A and B) in cervical range of motion, pain and disability. Group (B) showed more significant improvement than group (A) in cervical range of motion and pain and disability. There was no significant improvement in both groups in scapular range of motion. Conclusion: Scapular stabilization exercises should be used as an integral part in the rehabilitation program

Keywords: Neck pain, neck stabilization exercise, scapular stabilization exercise, chronic neck pain

Procedia PDF Downloads 265
379 Relation between Electrical Properties and Application of Chitosan Nanocomposites

Authors: Evgen Prokhorov, Gabriel Luna-Barcenas

Abstract:

The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.

Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites

Procedia PDF Downloads 179
378 Physicochemistry of Pozzolanic Stabilization of a Class A-2-7 Lateritic Soil

Authors: Ahmed O. Apampa, Yinusa A. Jimoh

Abstract:

The paper examines the mechanism of pozzolan-soil reactions, using a recent study on the chemical stabilization of a Class A-2-7 (3) lateritic soil, with corn cob ash (CCA) as case study. The objectives are to establish a nexus between cation exchange capacity of the soil, the alkaline forming compounds in CCA and percentage CCA addition to soil beyond which no more improvement in strength properties can be achieved; and to propose feasible chemical reactions to explain the chemical stabilization of the lateritic soil with CCA alone. The lateritic soil, as well as CCA of pozzolanic quality Class C were separately analysed for their metallic oxide composition using the X-Ray Fluorescence technique. The cation exchange capacity (CEC) of the soil and the CCA were computed theoretically using the percentage composition of the base cations Ca2+, Mg2+ K+ and Na2+ as 1.48 meq/100 g and 61.67 meq/100 g respectively, thus indicating a ratio of 0.024 or 2.4%. This figure, taken as the theoretical amount required to just fill up the exchangeable sites of the clay molecules, compares well with the laboratory observation of 1.5% for the optimum level of CCA addition to lateritic soil. The paper went on to present chemical reaction equations between the alkaline earth metals in the CCA and the silica in the lateritic soil to form silicates, thereby proposing an extension of the theory of mechanism of soil stabilization to cover chemical stabilization with pozzolanic ash only. The paper concluded by recommending further research on the molecular structure of soils stabilized with pozzolanic waste ash alone, with a view to confirming the chemical equations advanced in the study.

Keywords: cation exchange capacity, corn cob ash, lateritic soil, soil stabilization

Procedia PDF Downloads 204
377 Success Rate of Endotracheal Intubation Using Inline Stabilization with and without Cervical Hard Collar; A Comparative Study

Authors: Welawat Tienpratarn, Chaiyaporn Yuksen, Kasamon Aramvanitch, Karn Suttapanit, Yahya Mankong, Nussareen Yaemluksanalert, Sansanee Meesawad

Abstract:

Introduction : Application of a rigid cervical collar may interfere with the laryngeal view, and potentially lead to failed endotracheal intubation (ETI). This study aimed to compare intubation success rates while performing inline stabilization with and without cervical hard collar. Methods : This randomized prospective comparative study included paramedics working in the Department of Emergency Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand to compare the success rates of endotracheal intubation on manikin using inline stabilization with and without cervical hard collar. Results : 125 participants were evaluated; 63 in the rigid cervical collar and 62 in the non-cervical hard collar group. The rate of successful intubation was significantly higher using manual stabilization without cervical hard collar (61 (96.8%) vs. 55 (88.7%); p=0.048). The time required to successfully perform intubation was also shorter, with manual stabilization only (14.1 ±20.9 vs. 18.9±29.0; p = 0.081). Conclusion : It seems that, removal of the rigid cervical collar during ETI in patients with suspected traumatic spine injury could increase the intubation success rate.

Keywords: ntubation, Intratracheal, Spinal Injuries, Multiple trauma

Procedia PDF Downloads 93
376 Comparison of Physico-Mechanical Properties of Superplasticizer Stabilized Graphene Oxide and Carbon Nanotubes Reinforced Cement Nanocomposites

Authors: Ramanjit Kaur, N. C. Kothiyal

Abstract:

The present study compares the improved mechanical strength of cement mortar nanocomposites (CNCs) using polycarboxylate superplasticizer (PCE-SP) stabilized graphene oxide or functionalized carbon nanotubes (SP-GO and SP-FCNT) as reinforcing agents. So, in the present study, GO, and FCNT have been sterically stabilized via superplasticizer. The obtained results have shown that a dosage of 0.02 wt% of SP-GO and 0.08 wt% of SP-FCNTs showed an improvement in compressive strength by 23.2% and 16.5%, respectively. On the other hand, incorporation of 0.04% SP-GO and SP-FCNT resulted in an enhanced split tensile strength of 38.5% and 35.8%, respectively, as compared to the control sample at 90 days of curing. Mercury Intrusion Porosimetry (MIP) observations presented a decline in the porosity of 0.02% SP-GO-CNCs and 0.08% SP-FCNT-CNCs by 25% and 31% in comparison to the control sample. The improved hydration of CNCs contributing to the enhancement of physicomechanical strength has also been shown by SEM and XRD studies.

Keywords: graphene oxide, functionalized CNTs, steric stabilization, microstructure, crystalline behavior, pore structure refinement

Procedia PDF Downloads 71
375 Delay-Independent Closed-Loop Stabilization of Neutral System with Infinite Delays

Authors: Iyai Davies, Olivier L. C. Haas

Abstract:

In this paper, the problem of stability and stabilization for neutral delay-differential systems with infinite delay is investigated. Using Lyapunov method, new delay-independent sufficient condition for the stability of neutral systems with infinite delay is obtained in terms of linear matrix inequality (LMI). Memory-less state feedback controllers are then designed for the stabilization of the system using the feasible solution of the resulting LMI, which are easily solved using any optimization algorithms. Numerical examples are given to illustrate the results of the proposed methods.

Keywords: infinite delays, Lyapunov method, linear matrix inequality, neutral systems, stability

Procedia PDF Downloads 402
374 Effect of Cement Amount on California Bearing Ratio Values of Different Soil

Authors: Ayse Pekrioglu Balkis, Sawash Mecid

Abstract:

Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.

Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties

Procedia PDF Downloads 366
373 Effect of Nano-SiO2 Solution on the Strength Characteristics of Kaolinite

Authors: Reza Ziaie Moayed, Hamidreza Rahmani

Abstract:

Today, with developments in science and technology, there is an excessive potential for the use of nanomaterials in various fields of geotechnical project such as soil stabilization. This study investigates the effect of Nano-SiO2 solution on the unconfined compression strength and Young's elastic modulus of Kaolinite. For this purpose, nano-SiO2 was mixed with kaolinite in five different contents: 1, 2, 3, 4 and 5% by weight of the dry soil and a series of the unconfined compression test with curing time of one-day was selected as laboratory test. Analyses of the tests results show that stabilization of kaolinite with Nano-SiO2 solution can improve effectively the unconfined compression strength of modified soil up to 1.43 times compared to  the pure soil.

Keywords: kaolinite, Nano-SiO2, stabilization, unconfined compression test, Young's modulus

Procedia PDF Downloads 358
372 The Effects of Inulin on the Stabilization and Stevioside as Sugar-Replacer of Sourcherry Juice-Milk Mixture

Authors: S. Teimouri, S. Abbasi

Abstract:

Milk-fruit juice mixture is a type of soft drinks, which can be produced by mixing milk with pieces of fruits, fruit juices, or fruit juices concentrates. The major problem of these products, mainly the acidic ones, is phase separation which occurs during formulation and storage due to the aggregation of caseins at low pH Short-chain inulin (CLR), long-chain inulin (TEX), native inulin (IQ) and Long-chain inulin (TEX) and short-chain inulin (CLR) combined in different proportions (2o:80, 50:50, and 80:20) were added (2-10 %) to sourcherry juice-milk mixture and their stabilization mechanisms were studied with using rheological and microstructural observations. Stevioside as a bio-sweetener and sugar-replacer was added at last step. Finally, sensory analyses were taken place on stabilized samples. According to the findings, TEX stabilized the mixture at concentration of 8%. MIX and IQ reduced phase separation at high concentration but had not complete effect on stabilization. CLR did not effect on stabilization. Rheological changes and inulin aggregates formation were not observed in CLR samples during the one month storage period. However TEX, MIX and IQ samples formed inulin aggregates and became more thixotropic, elastic and increased the viscosity of mixture. The rate of the inulin aggregates formation and viscosity increasing was in the following order TEX > MIX > IQ. Consequently the mixture which stabilized with inulin and sweetened with stevioside had the prebiotic properties which may suggest to diabetic patients and children.

Keywords: prebiotic, inulin, casein, stabilization, stevioside

Procedia PDF Downloads 251
371 Efficacy of Cool's and Rhythmic Stabilization Exercises on Scapular up Ward Rotation and Ut/Sa Ratio in Patients with Shoulder Impingement Syndrome

Authors: Mohammed Moustafa, Khaled Ayad, Waleed Reda

Abstract:

Shoulder impingement syndrome is the most common disorder of the shoulder, resulting in functional loss and disability. Objective: This study was designed to compare between the effects of scapular muscle training versus rhythmic stabilization exercises in treatment of shoulder impingement syndrome. Methods: Thirty patients participated in this study; they were assigned randomly into two experimental groups. The first experimental group (A) consisted of 15 patients with a mean age (21.87±2.72) years; they received graduated rhythmic stabilization exercises and stretching of the posterior capsule. The second experimental group (B) consisted of 15 patients with a mean age (22.27±2.94) years; they received scapular muscle training exercises in addition to stretching of the posterior capsule. Treatment was given three times per week, every other day, for four consecutive weeks. Patients have been evaluated pretreatment and post treatment for shoulder pain severity and functional disability. Results: Both groups showed highly statistical significant reduction in pain severity and functional disability measured post-treatment when compared with their corresponding values in pretreatment assessment. Conclusion: Both of rhythmic stabilization exercises and scapular muscle training are effective interventions to reduce shoulder pain severity and functional disability.

Keywords: impingement syndrome, scapular exercises, rhythmic stabilization exercises, posterior capsule stretch

Procedia PDF Downloads 208
370 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement

Authors: M. Mlhem

Abstract:

Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.

Keywords: additives, clay, compression strength, epoxy, stabilization

Procedia PDF Downloads 95
369 FACTS Based Stabilization for Smart Grid Applications

Authors: Adel. M. Sharaf, Foad H. Gandoman

Abstract:

Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.

Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)

Procedia PDF Downloads 384
368 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization

Authors: Y. Alrubyli

Abstract:

Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.

Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter

Procedia PDF Downloads 136
367 The Effect of Soil Fractal Dimension on the Performance of Cement Stabilized Soil

Authors: Nkiru I. Ibeakuzie, Paul D. J. Watson, John F. Pescatore

Abstract:

In roadway construction, the cost of soil-cement stabilization per unit area is significantly influenced by the binder content, hence the need to optimise cement usage. This research work will characterize the influence of soil fractal geometry on properties of cement-stabilized soil, and strive to determine a correlation between mechanical proprieties of cement-stabilized soil and the mass fractal dimension Dₘ indicated by particle size distribution (PSD) of aggregate mixtures. Since strength development in cemented soil relies not only on cement content but also on soil PSD, this study will investigate the possibility of reducing cement content by changing the PSD of soil, without compromising on strength, reduced permeability, and compressibility. A series of soil aggregate mixes will be prepared in the laboratory. The mass fractal dimension Dₘ of each mix will be determined from sieve analysis data prior to stabilization with cement. Stabilized soil samples will be tested for strength, permeability, and compressibility.

Keywords: fractal dimension, particle size distribution, cement stabilization, cement content

Procedia PDF Downloads 182
366 Effect of Treated Peat Soil on the Plasticity Index and Hardening Time

Authors: Siti Nur Aida Mario, Farah Hafifee Ahmad, Rudy Tawie

Abstract:

Soil Stabilization has been widely implemented in the construction industry nowadays. Peat soil is well known as one of the most problematic soil among the engineers. The procedures need to take into account both physical and engineering properties of the stabilized peat soil. This paper presents a result of plasticity index and hardening of treated peat soil with various dosage of additives. In order to determine plasticity of the treated peat soil, atterberg limit test which comprises plastic limit and liquid limit test has been conducted. Determination of liquid limit in this experimental study is by using cone penetrometer. Vicat testing apparatus has been used in the hardening test which the penetration of the plunger is recorded every one hour for 24 hours. The results show that the plasticity index of peat soil stabilized with 80% FAAC and 20% OPC has the lowest plasticity index and recorded the fastest initial setting time. The significant of this study is to promote greener solution for future soil stabilization industry.

Keywords: additives, hardening, peat soil, plasticity index, soil stabilization

Procedia PDF Downloads 292
365 Stabilization of y-Sterilized Food, Packaging Materials by Synergistic Mixtures of Food-Contact Approval Stabilizers

Authors: Sameh A. S. Thabit Alariqi

Abstract:

Food is widely packaged with plastic materials to prevent microbial contamination and spoilage. Ionizing radiation is widely used to sterilize the food-packaging materials. Sterilization by γ-radiation causes degradation for the plastic packaging materials such as embrittlement, stiffening, softening, discoloration, odour generation, and decrease in molecular weight. Many antioxidants can prevent γ-degradation but most of them are toxic. The migration of antioxidants to its environment gives rise to major concerns in case of food packaging plastics. In this attempt, we have aimed to utilize synergistic mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene-diene terpolymer (EPDM) have been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organo-phosphites (hydroperoxide decomposer). Results were discussed by comparing the stabilizing efficiency of mixtures with and without phenol system. Among phenol containing systems where we mostly observed discoloration due to the oxidation of hindered phenol, the combination of secondary HAS, tertiary HAS, organo-phosphite and hindered phenol exhibited improved stabilization efficiency than single or binary additive systems. The mixture of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization. However, the combination of organo-phosphite with secondary HAS, tertiary HAS and phenol antioxidants have been found to give synergistic even at higher doses of -sterilization. The effects have been explained through the interaction between the stabilizers. After γ-irradiation, the consumption of oligomeric stabilizer significantly depends on the components of stabilization mixture. The effect of the organo-phosphite antioxidant on the overall stability has been discussed.

Keywords: ethylene-propylene-diene terpolymer, synergistic mixtures, gamma sterilization, gamma stabilization

Procedia PDF Downloads 407
364 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks

Authors: Ather Saeed, Arif Khan, Jeffrey Gosper

Abstract:

Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.

Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering

Procedia PDF Downloads 37