Search results for: observability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27

Search results for: observability

27 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 61
26 Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network

Authors: Harshith Gowda K. S, Tejaskumar N, Shubhanga R. B, Gowtham N, Deekshith Gowda H. S

Abstract:

Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability.

Keywords: PMU, observability, mixed integer programming (MIP), zero injection buses (ZIB)

Procedia PDF Downloads 135
25 Opacity Synthesis with Orwellian Observers

Authors: Moez Yeddes

Abstract:

The property of opacity is widely used in the formal verification of security in computer systems and protocols. Opacity is a general language-theoretic scheme of many security properties of systems. Opacity is parametrized with framework in which several security properties of a system can be expressed. A secret behaviour of a system is opaque if a passive attacker can never deduce its occurrence from the system observation. Instead of considering the case of static observability where the set of observable events is fixed off-line or dynamic observability where the set of observable events changes over time depending on the history of the trace, we introduce Orwellian partial observability where unobservable events are not revealed provided that downgrading events never occurs in the future of the trace. Orwellian partial observability is needed to model intransitive information flow. This Orwellian observability is knwon as ipurge function. We show in previous work how to verify opacity for regular secret is opaque for a regular language L w.r.t. an Orwellian projection is PSPACE-complete while it has been proved undecidable even for a regular language L w.r.t. a general Orwellian observation function. In this paper, we address two problems of opacification of a regular secret ϕ for a regular language L w.r.t. an Orwellian projection: Given L and a secret ϕ ∈ L, the first problem consist to compute some minimal regular super-language M of L, if it exists, such that ϕ is opaque for M and the second consists to compute the supremal sub-language M′ of L such that ϕ is opaque for M′. We derive both language-theoretic characterizations and algorithms to solve these two dual problems.

Keywords: security policies, opacity, formal verification, orwellian observation

Procedia PDF Downloads 195
24 Optimal Placement of Phasor Measurement Units Using Gravitational Search Method

Authors: Satyendra Pratap Singh, S. P. Singh

Abstract:

This paper presents a methodology using Gravitational Search Algorithm for optimal placement of Phasor Measurement Units (PMUs) in order to achieve complete observability of the power system. The objective of proposed algorithm is to minimize the total number of PMUs at the power system buses, which in turn minimize installation cost of the PMUs. In this algorithm, the searcher agents are collection of masses which interact with each other using Newton’s laws of gravity and motion. This new Gravitational Search Algorithm based method has been applied to the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus test systems. Case studies reveal optimal number of PMUs with better observability by proposed method.

Keywords: gravitational search algorithm (GSA), law of motion, law of gravity, observability, phasor measurement unit

Procedia PDF Downloads 471
23 Defects Estimation of Embedded Systems Components by a Bond Graph Approach

Authors: I. Gahlouz, A. Chellil

Abstract:

The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.

Keywords: estimation, bond graph, controllability, observability

Procedia PDF Downloads 384
22 Search for Flavour Changing Neutral Current Couplings of Higgs-up Sector Quarks at Future Circular Collider (FCC-eh)

Authors: I. Turk Cakir, B. Hacisahinoglu, S. Kartal, A. Yilmaz, A. Yilmaz, Z. Uysal, O. Cakir

Abstract:

In the search for new physics beyond the Standard Model, Flavour Changing Neutral Current (FCNC) is a good research field in terms of the observability at future colliders. Increased Higgs production with higher energy and luminosity in colliders is essential for verification or falsification of our knowledge of physics and predictions, and the search for new physics. Prospective electron-proton collider constituent of the Future Circular Collider project is FCC-eh. It offers great sensitivity due to its high luminosity and low interference. In this work, thq FCNC interaction vertex with off-shell top quark decay at electron-proton colliders is studied. By using MadGraph5_aMC@NLO multi-purpose event generator, observability of tuh and tch couplings are obtained with equal coupling scenario. Upper limit on branching ratio of tree level top quark FCNC decay is determined as 0.012% at FCC-eh with 1 ab ^−1 luminosity.

Keywords: FCC, FCNC, Higgs Boson, Top Quark

Procedia PDF Downloads 180
21 Rationalized Haar Transforms Approach to Design of Observer for Control Systems with Unknown Inputs

Authors: Joon-Hoon Park

Abstract:

The fundamental concept of observability is important in both theoretical and practical points of modern control systems. In modern control theory, a control system has criteria for determining the design solution exists for the system parameters and design objectives. The idea of observability relates to the condition of observing or estimating the state variables from the output variables that is generally measurable. To design closed-loop control system, the practical problems of implementing the feedback of the state variables must be considered and implementing state feedback control problem has been existed in this case. All the state variables are not available, so it is requisite to design and implement an observer that will estimate the state variables form the output parameters. However sometimes unknown inputs are presented in control systems as practical cases. This paper presents a design method and algorithm for observer of control system with unknown input parameters based on Rationalized Haar transform. The proposed method is more advantageous than the other numerical method.

Keywords: orthogonal functions, rationalized Haar transforms, control system observer, algebraic method

Procedia PDF Downloads 333
20 Customer Adoption and Attitudes in Mobile Banking in Sri Lanka

Authors: Prasansha Kumari

Abstract:

This paper intends to identify and analyze customer adoption and attitudes towards mobile banking facilities. The study uses six perceived characteristics of innovation that can be used to form a favorable or unfavorable attitude toward an innovation, namely: Relative advantage, compatibility, complexity, trailability, risk, and observability. Collected data were analyzed using Pearson Chi-Square test. The results showed that mobile bank users were predominantly males. There is a growing trend among young, educated customers towards converting to mobile banking in Sri Lanka. The research outcomes suggested that all the six factors are statistically highly significant in influencing mobile banking adoption and attitude formation towards mobile banking in Sri Lanka. The major reasons for adopting mobile banking services are the accessibility and availability of services regardless of time and place. Over the 75 percent of the respondents mentioned that savings in time and effort and low financial costs of conducting mobile banking were advantageous. Issue of security was found to be the most important factor that motivated consumer adoption and attitude formation towards mobile banking. Main barriers to mobile banking were the lack of technological skills, the traditional cash‐carry banking culture, and the lack of awareness and insufficient guidance to using mobile banking.

Keywords: compatibility, complexity, mobile banking, observability, risk

Procedia PDF Downloads 163
19 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation

Authors: W. Du, X. Wang, Jun Cao, H. F. Wang

Abstract:

Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.

Keywords: frequency regulation, virtual inertia control, installation locations, observability, wind farms

Procedia PDF Downloads 367
18 Factors Affecting Mobile Internet Adoption in an Emerging Market

Authors: Maha Mourad, Fady Todros

Abstract:

The objective of this research is to find an explanatory model to define the most important variables and factors that affect the acceptance of Mobile Internet in the Egyptian market. A qualitative exploratory research was conducted to support the conceptual framework followed with a quantitative research in the form of a survey distributed among 411 respondents. It was clear that relative advantage, complexity, compatibility, perceived price level and perceived playfulness have a dominant role in influencing consumers to adopt mobile internet, while observability is correlated to the adoption but when measured with the other factors it lost its value. The perceived price level has a negative relationship with the adoption as well the compatibility.

Keywords: innovation, Egypt, communication technologies, diffusion, innovation adoption, emerging market

Procedia PDF Downloads 412
17 On the Representation of Actuator Faults Diagnosis and Systems Invertibility

Authors: F. Sallem, B. Dahhou, A. Kamoun

Abstract:

In this work, the main problem considered is the detection and the isolation of the actuator fault. A new formulation of the linear system is generated to obtain the conditions of the actuator fault diagnosis. The proposed method is based on the representation of the actuator as a subsystem connected with the process system in cascade manner. The designed formulation is generated to obtain the conditions of the actuator fault detection and isolation. Detectability conditions are expressed in terms of the invertibility notions. An example and a comparative analysis with the classic formulation illustrate the performances of such approach for simple actuator fault diagnosis by using the linear model of nuclear reactor.

Keywords: actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion

Procedia PDF Downloads 357
16 A Mathematical Model of Power System State Estimation for Power Flow Solution

Authors: F. Benhamida, A. Graa, L. Benameur, I. Ziane

Abstract:

The state estimation of the electrical power system operation state is very important for supervising task. With the nonlinearity of the AC power flow model, the state estimation problem (SEP) is a nonlinear mathematical problem with many local optima. This paper treat the mathematical model for the SEP and the monitoring of the nonlinear systems of great dimensions with an application on power electrical system, the modelling, the analysis and state estimation synthesis in order to supervise the power system behavior. in fact, it is very difficult, to see impossible, (for reasons of accessibility, techniques and/or of cost) to measure the excessive number of the variables of state in a large-sized system. It is thus important to develop software sensors being able to produce a reliable estimate of the variables necessary for the diagnosis and also for the control.

Keywords: power system, state estimation, robustness, observability

Procedia PDF Downloads 482
15 Stochastic Control of Decentralized Singularly Perturbed Systems

Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan

Abstract:

Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.

Keywords: decentralized, optimal control, output, singular perturb

Procedia PDF Downloads 328
14 High Speed Motion Tracking with Magnetometer in Nonuniform Magnetic Field

Authors: Jeronimo Cox, Tomonari Furukawa

Abstract:

Magnetometers have become more popular in inertial measurement units (IMU) for their ability to correct estimations using the earth's magnetic field. Accelerometer and gyroscope-based packages fail with dead-reckoning errors accumulated over time. Localization in robotic applications with magnetometer-inclusive IMUs has become popular as a way to track the odometry of slower-speed robots. With high-speed motions, the accumulated error increases over smaller periods of time, making them difficult to track with IMU. Tracking a high-speed motion is especially difficult with limited observability. Visual obstruction of motion leaves motion-tracking cameras unusable. When motions are too dynamic for estimation techniques reliant on the observability of the gravity vector, the use of magnetometers is further justified. As available magnetometer calibration methods are limited with the assumption that background magnetic fields are uniform, estimation in nonuniform magnetic fields is problematic. Hard iron distortion is a distortion of the magnetic field by other objects that produce magnetic fields. This kind of distortion is often observed as the offset from the origin of the center of data points when a magnetometer is rotated. The magnitude of hard iron distortion is dependent on proximity to distortion sources. Soft iron distortion is more related to the scaling of the axes of magnetometer sensors. Hard iron distortion is more of a contributor to the error of attitude estimation with magnetometers. Indoor environments or spaces inside ferrite-based structures, such as building reinforcements or a vehicle, often cause distortions with proximity. As positions correlate to areas of distortion, methods of magnetometer localization include the production of spatial mapping of magnetic field and collection of distortion signatures to better aid location tracking. The goal of this paper is to compare magnetometer methods that don't need pre-productions of magnetic field maps. Mapping the magnetic field in some spaces can be costly and inefficient. Dynamic measurement fusion is used to track the motion of a multi-link system with us. Conventional calibration by data collection of rotation at a static point, real-time estimation of calibration parameters each time step, and using two magnetometers for determining local hard iron distortion are compared to confirm the robustness and accuracy of each technique. With opposite-facing magnetometers, hard iron distortion can be accounted for regardless of position, Rather than assuming that hard iron distortion is constant regardless of positional change. The motion measured is a repeatable planar motion of a two-link system connected by revolute joints. The links are translated on a moving base to impulse rotation of the links. Equipping the joints with absolute encoders and recording the motion with cameras to enable ground truth comparison to each of the magnetometer methods. While the two-magnetometer method accounts for local hard iron distortion, the method fails where the magnetic field direction in space is inconsistent.

Keywords: motion tracking, sensor fusion, magnetometer, state estimation

Procedia PDF Downloads 46
13 Beef Cattle Farmers Perception toward Urea Mineral Molasses Block

Authors: Veronica Sri Lestari, Djoni Prawira Rahardja, Tanrigiling Rasyid, Aslina Asnawi, Ikrar Muhammad Saleh, Ilham Rasyid

Abstract:

Urea Mineral Molasses Block is very important for beef cattle, because it can increase beef production. The purpose of this research was to know beef cattle farmers’ perception towards Urea Mineral Molasses Block (UMMB). This research was conducted in Gowa Regency, South Sulawesi, Indonesia in 2016. The population of this research were all beef cattle farmers. Sample was chosen through purposive sampling. Data were collected through observation and face to face with deep interview using questionnaire. Variables of perception consisted of relative advantage, compatibility, complexity, observability and triability. There were 10 questions. The answer for each question was scored by 1, 2, 3 which refer to disagree, agree enough, strongly agree. The data were analyzed descriptively using frequency distribution. The research revealed that beef cattle farmers’ perception towards UMMB was categorized as strongly agree.

Keywords: beef cattle, farmers, perception, urea mineral molasses block

Procedia PDF Downloads 297
12 Output-Feedback Control Design for a General Class of Systems Subject to Sampling and Uncertainties

Authors: Tomas Menard

Abstract:

The synthesis of output-feedback control law has been investigated by many researchers since the last century. While many results exist for the case of Linear Time Invariant systems whose measurements are continuously available, nowadays, control laws are usually implemented on micro-controller, then the measurements are discrete-time by nature. This fact has to be taken into account explicitly in order to obtain a satisfactory behavior of the closed-loop system. One considers here a general class of systems corresponding to an observability normal form and which is subject to uncertainties in the dynamics and sampling of the output. Indeed, in practice, the modeling of the system is never perfect, this results in unknown uncertainties in the dynamics of the model. We propose here an output feedback algorithm which is based on a linear state feedback and a continuous-discrete time observer. The main feature of the proposed control law is that only discrete-time measurements of the output are needed. Furthermore, it is formally proven that the state of the closed loop system exponentially converges toward the origin despite the unknown uncertainties. Finally, the performances of this control scheme are illustrated with simulations.

Keywords: dynamical systems, output feedback control law, sampling, uncertain systems

Procedia PDF Downloads 248
11 The Diffusion of Telehealth: System-Level Conditions for Successful Adoption

Authors: Danika Tynes

Abstract:

Telehealth is a promising advancement in health care, though there are certain conditions under which telehealth has a greater chance of success. This research sought to further the understanding of what conditions compel the success of telehealth adoption at the systems level applying Diffusion of Innovations (DoI) theory (Rogers, 1962). System-level indicators were selected to represent four components of DoI theory (relative advantage, compatibility, complexity, and observability) and regressed on 5 types of telehealth (teleradiology, teledermatology, telepathology, telepsychology, and remote monitoring) using multiple logistic regression. The analyses supported relative advantage and compatibility as the strongest influencers of telehealth adoption, remote monitoring in particular. These findings help to quantitatively clarify the factors influencing the adoption of innovation and advance the ability to make recommendations on the viability of state telehealth adoption. In addition, results indicate when DoI theory is most applicable to the understanding of telehealth diffusion. Ultimately, this research may contribute to more focused allocation of scarce health care resources through consideration of existing state conditions available foster innovation.

Keywords: adoption, diffusion of innovation theory, remote monitoring, system-level indicators

Procedia PDF Downloads 98
10 Global Indicators of Successful Remote Monitoring Adoption Applying Diffusion of Innovation Theory

Authors: Danika Tynes

Abstract:

Innovations in technology have implications for sustainable development in health and wellness. Remote monitoring is one innovation for which the evidence-base has grown to support its viability as a quality healthcare delivery adjunct. This research reviews global data on telehealth adoption, in particular, remote monitoring, and the conditions under which its success becomes more likely. System-level indicators were selected to represent four constructs of DoI theory (relative advantage, compatibility, complexity, and observability) and assessed against 5 types of Telehealth (Teleradiology, Teledermatology, Telepathology, Telepsychology, and Remote Monitoring) using ordinal logistic regression. Analyses include data from 84 countries, as extracted from the World Health Organization, World Bank, ICT (Information Communications Technology) Index, and HDI (Human Development Index) datasets. Analyses supported relative advantage and compatibility as the strongest influencers of remote monitoring adoption. Findings from this research may help focus on the allocation of resources, as a sustainability concern, through consideration of systems-level factors that may influence the success of remote monitoring adoption.

Keywords: remote monitoring, diffusion of innovation, telehealth, digital health

Procedia PDF Downloads 94
9 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: digital twin, distributed energy resources, remote terminal units, supervisory control and data acquisition system, smart recursive load flow

Procedia PDF Downloads 65
8 Humans Trust Building in Robots with the Help of Explanations

Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel

Abstract:

The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.

Keywords: explanation interface, adversaries, partial observability, trust building

Procedia PDF Downloads 168
7 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: adaptive algorithm, fuzzy systems, membership functions, observer

Procedia PDF Downloads 166
6 Determinants of the Users Intention of Social-Local-Mobile Applications

Authors: Chia-Chen Chen, Mu-Yen Chen

Abstract:

In recent years, with the vigorous growth of hardware and software technologies of smart mobile devices coupling with the rapid increase of social network influence, mobile commerce also presents the commercial operation mode of the future mainstream. For the time being, SoLoMo has become one of the very popular commercial models, its full name and meaning mainly refer to that users can obtain three key service types through smart mobile devices (Mobile) and omnipresent network services, and then link to the social (Social) web site platform to obtain the information exchange, again collocating with position and situational awareness technology to get the service suitable for the location (Local), through anytime, anywhere and any personal use of different mobile devices to provide the service concept of seamless integration style, and more deriving infinite opportunities of the future. The study tries to explore the use intention of users with SoLoMo mobile application formula, proposing research model to integrate TAM, ISSM, IDT and network externality, and with questionnaires to collect data and analyze results to verify the hypothesis, results show that perceived ease-of-use (PEOU), perceived usefulness (PU), and network externality have significant impact on the use intention with SoLoMo mobile application formula, and the information quality, relative advantages and observability have impacts on the perceived usefulness, and further affecting the use intention.

Keywords: SoLoMo (social, local, and mobile), technology acceptance model, innovation diffusion theory, network externality

Procedia PDF Downloads 494
5 A Sensor Placement Methodology for Chemical Plants

Authors: Omid Ataei Nia, Karim Salahshoor

Abstract:

In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.

Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter

Procedia PDF Downloads 132
4 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System

Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli

Abstract:

Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.

Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 92
3 Radar Cross Section Modelling of Lossy Dielectrics

Authors: Ciara Pienaar, J. W. Odendaal, J. Joubert, J. C. Smit

Abstract:

Radar cross section (RCS) of dielectric objects play an important role in many applications, such as low observability technology development, drone detection, and monitoring as well as coastal surveillance. Various materials are used to construct the targets of interest such as metal, wood, composite materials, radar absorbent materials, and other dielectrics. Since simulated datasets are increasingly being used to supplement infield measurements, as it is more cost effective and a larger variety of targets can be simulated, it is important to have a high level of confidence in the predicted results. Confidence can be attained through validation. Various computational electromagnetic (CEM) methods are capable of predicting the RCS of dielectric targets. This study will extend previous studies by validating full-wave and asymptotic RCS simulations of dielectric targets with measured data. The paper will provide measured RCS data of a number of canonical dielectric targets exhibiting different material properties. As stated previously, these measurements are used to validate numerous CEM methods. The dielectric properties are accurately characterized to reduce the uncertainties in the simulations. Finally, an analysis of the sensitivity of oblique and normal incidence scattering predictions to material characteristics is also presented. In this paper, the ability of several CEM methods, including method of moments (MoM), and physical optics (PO), to calculate the RCS of dielectrics were validated with measured data. A few dielectrics, exhibiting different material properties, were selected and several canonical targets, such as flat plates and cylinders, were manufactured. The RCS of these dielectric targets were measured in a compact range at the University of Pretoria, South Africa, over a frequency range of 2 to 18 GHz and a 360° azimuth angle sweep. This study also investigated the effect of slight variations in the material properties on the calculated RCS results, by varying the material properties within a realistic tolerance range and comparing the calculated RCS results. Interesting measured and simulated results have been obtained. Large discrepancies were observed between the different methods as well as the measured data. It was also observed that the accuracy of the RCS data of the dielectrics can be frequency and angle dependent. The simulated RCS for some of these materials also exhibit high sensitivity to variations in the material properties. Comparison graphs between the measured and simulation RCS datasets will be presented and the validation thereof will be discussed. Finally, the effect that small tolerances in the material properties have on the calculated RCS results will be shown. Thus the importance of accurate dielectric material properties for validation purposes will be discussed.

Keywords: asymptotic, CEM, dielectric scattering, full-wave, measurements, radar cross section, validation

Procedia PDF Downloads 210
2 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems

Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber

Abstract:

Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.

Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement

Procedia PDF Downloads 116
1 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations

Authors: Teng Li, Kamran Mohseni

Abstract:

This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulations

Keywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow

Procedia PDF Downloads 464