Search results for: dye sensitized solar cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4325

Search results for: dye sensitized solar cells

4325 The Stability and Performances of Terminalia Catappa L. Dye-Sensitized Solar Cell

Authors: A. O. Boyo, A. T. Akinwunmi

Abstract:

The effect of extracting solvent and adjustment of pHs on the stability of Terminalia catappa L. dye-sensitized solar cell was investigated. We introduced ZnO as an alternative to TiO2 in the dye sensitized solar cells (DSSCs) due to its band gap similar to TiO2, higher electron mobility, and flexible procedures of preparations. Dye-sensitized solar cells (DSSCs) based on Terminalia catappa L. was extracted in water (A), ethanol (B) and the mixture of ethanol and water in the ratio 1:1by volume (C). The best performance Solar cells sensitized was from extracts A and achieved up to Jsc 1.51 mAcm−2, Voc 0.75V, FF 0.88 and η 0.63%. We notice that as pHs decreases there is the increase in DSSC efficiency. There is Long period stability in efficiency of the cells prepared using A than in C and a fair stability in efficiency of B cell. The results obtained with extracts B and C confirmed that Ethanol with water could not be considered as a suitable solvent for the extraction of natural dye.

Keywords: zinc oxide, dye-sensitized solar cell, terminalia catappa L., TiO2

Procedia PDF Downloads 358
4324 Synthesis of Novel Organic Dyes Based on Indigo for Dye-Sensitized Solar Cells

Authors: M. Hosseinnejad, K. Gharanjig, S. Moradian

Abstract:

A novel metal free organic dyes based on indigo was prepared and used as sensitizers in dye-sensitized solar cells. The synthesized dye together with its corresponding intermediates were purified and characterized by analytical techniques. Such techniques confirmed the corresponding structures of dye and its intermediate and the yield of all the stages of dye preparation were calculated to be above 85%. Fluorometric analyses show fluorescence in the green region of the visible spectrum for dye. Oxidation potential measurements for dye ensured an energetically permissible and thermodynamically favourable charge transfer throughout the continuous cycle of photo-electric conversion. Finally, dye sensitized solar cells were fabricated in order to determine the photovoltaic behaviour and conversion efficiencies of dye. Such evaluations demonstrate rather medium conversion efficiencies of 2.33% for such simple structured synthesized dye. Such conversion efficiencies demonstrate the potentiality of future use of such dye structures in dye-sensitized solar cells with respect to low material costs, ease of molecular tailoring, high yields of reactions, high performance and ease of recyclability.

Keywords: conversion efficiency, Dye-sensitized solar cells, indigo, photonic material

Procedia PDF Downloads 338
4323 Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes

Authors: M. Hosseinnezhad, K. Gharanjig

Abstract:

Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm-2, Voc= 0.55 V, FF= 0.52, η=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm-2, Voc= 0.54 V, FF= 0.57, η=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs.

Keywords: anthocyanin, dye-sensitized solar cells, green energy, optical materials

Procedia PDF Downloads 206
4322 Synthesis and Evaluation of Photovoltaic Properties of an Organic Dye for Dye-Sensitized Solar Cells

Authors: M. Hosseinnejad, K. Gharanjig

Abstract:

In the present study, metal free organic dyes were prepared and used as photo-sensitizers in dye-sensitized solar cells. Double rhodanine was utilized as the fundamental electron acceptor group to which electron donor aldehyde with varying substituents was attached to produce new organic dye. This dye was first purified and then characterized by analytical techniques. Spectrophotometric evaluations of the prepared dye in solution and on a nano anatase TiO2 substrate were carried out in order to assess possible changes in the status of the dyes in different environments. The results show that the dye form j-type aggregates on the nano TiO2. Additionally, oxidation potential measurements were also carried out. Finally, dye sensitized solar cell based on synthesized dye was fabricated in order to determine the photovoltaic behavior and conversion efficiency of individual dye.

Keywords: conversion efficiency, dye-sensitized solar cell, photovoltaic behavior, sensitizer

Procedia PDF Downloads 152
4321 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells

Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos

Abstract:

Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.

Keywords: nickel doped cobalt sulfide, counter electrodes, dye-sensitized solar cells, quasi-solid state electrolyte, hybrid organic-inorganic materials

Procedia PDF Downloads 713
4320 Electrical Properties of Roystonea regia Fruit Extract as Dye Sensitized Solar Cells

Authors: Adenike Boyo Olasunkanmi Kesinro, Henry Boyo, Surukite Oluwole

Abstract:

Utilizing solar energy in producing electricity can minimize environmental pollution generated by fossil fuel in producing electricity. Our research was base on the extraction of dye from Roystonea regia fruit by using methanol as solvent. The dye extracts were used as sensitizers in Dye-sensitized solar cell (DSSCs). Study was done on the electrical properties from the extracts of Roystonea regia fruit as Dye-sensitized solar cell (DSSCs). The absorptions of the extracts and extracts with dye were determined at different wavelengths (350-1000nm). Absorption peak was observed at 1.339 at wavelength 400nm. The obtained values for methanol extract Roystonea regia extract are, Imp = 0.015mA, Vmp = 12.0mV, fill factor = 0.763, Isc= 0.018 mA and Voc = 13.1 mV and efficiency of 0.32%. .The phytochemical screening was taken and it was observed that Roystonea regia extract contained less of anthocyanin compared to flavonoids. The nanostructured dye sensitized solar cell (DSSC) will provide economically credible alternative to present day silicon p–n junction photovoltaic.

Keywords: methanol, ethanol, titanium dioxide, roystonea regia fruit, dye-sensitized solar cell

Procedia PDF Downloads 366
4319 Heterodimetallic Ferrocenyl Dithiophosphonate Complexes of Nickel(II), Zinc(II) and Cadmium(II) as High Efficiency Co-Sensitizers in Dye-Sensitized Solar Cells

Authors: Tomilola J. Ajayi, Moses Ollengo, Lukas le Roux, Michael N. Pillay, Richard J. Staples, Shannon M. Biros Werner E. van Zyl

Abstract:

The formation, characterization, and dye-sensitized solar cell application of nickel(II), zinc(II) and cadmium(II) ferrocenyl dithiophosphonate complexes were investigated. The multidentate monoanionic ligand [S₂PFc(OH)]¯ (L1) was synthesized from the reaction between ferrocenyl Lawesson’s reagent, [FcP(=S)μ-S]₂ (FcLR), (Fc = ferrocenyl) and water. Ligand L1 could potentially coordinate to metal centers through the S, S’ and O donor atoms. The reaction between metal salt precursors and L1 produced a Ni(II) complex of the type [Ni{S₂P(Fc)(OH)}₂] (1) (molar ratio 1:2), a tetranickel (II) complex of the type [Ni₂{S₂OP(Fc)}₂]₂ (2) (molar ratio (1:1), as well as a Zn(II) complex [Zn{S₂P(Fc)(OH)}₂]₂ (3), and a Cd(II) complex [Cd{S₂P(Fc)(OH)}₂]₂ (4). Complexes 1-4 were characterized by 1H and 31P NMR and FT-IR, and complexes 1 and 2 were additionally analysed by X-Ray crystallography. After co-sensitization, the DSSCs were characterized using UV-Vis, cyclic voltammetry, electrochemical impedance spectroscopy, and photovoltaic measurements (I-V curves). Overall finding shows that co-sensitization of our compounds with ruthenium dye N719 resulted in a better overall solar conversion efficiency than only pure N719 dye under the same experimental conditions. In conclusion, we report the first examples of dye-sensitized solar cells (DSSCs) co-sensitized with ferrocenyl dithiophosphonate complexes.

Keywords: dithiophosphonate, dye sensitized solar cell, co-sensitization, solar efficiency

Procedia PDF Downloads 115
4318 Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses

Authors: A. Mourtzikou, D. Sygkridou, T. Georgakopoulos, G. Katsagounos, E. Stathatos

Abstract:

Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm2 were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte.

Keywords: Dye-sensitized solar panels, inkjet printing, quasi-solid state electrolyte, semi-transparency, scale up

Procedia PDF Downloads 106
4317 Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application

Authors: Thierry Pauporté, Sana Koussi, Fabrice Odobel

Abstract:

The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described.

Keywords: NiO, layer, p-type sensitized solar cells, electrodeposition

Procedia PDF Downloads 261
4316 Extracts of Cola acuminata, Lupinus arboreus and Bougainvillea spectabilis as Natural Photosensitizers for Dye-Sensitized Solar Cells

Authors: M. L. Akinyemi, T. J. Abodurin, A. O. Boyo, J. A. O. Olugbuyiro

Abstract:

Organic dyes from Cola acuminata (C. acuminata), Lupinus arboreus (L. arboreus) and Bougainvillea spectabilis (B. spectabilis) leaves and their mixtures were used as sensitizers to manufacture dye-sensitized solar cells (DSSC). Photoelectric measurements of C. acuminata showed a short circuit current (Jsc) of 0.027 mA/ cm2, 0.026 mA/ cm2 and 0.018 mA/ cm2 with a mixture of mercury chloride and iodine (Hgcl2 + I); potassium bromide and iodine (KBr + I); and potassium chloride and iodine (KCl + I) respectively. The open circuit voltage (Voc) was 24 mV, 25 mV and 20 mV for the three dyes respectively. L. arboreus had Jsc of 0.034 mA/ cm2, 0.021 mA/ cm2 and 0.013 mA/ cm2; and corresponding Voc of 28 mV, 14.2 mV and 15 mV for the three electrolytes respectively. B. spectabilis recorded Jsc 0.023 mA/ cm2, 0.026 mA/ cm2 and 0.015 mA/ cm2; and corresponding Voc values of 6.2 mV, 14.3 mV and 4.0 mV for the three electrolytes respectively. It was observed that the fill factor (FF) was 0.140 for C. acuminata, 0.3198 for L. arboreus and 0.1138 for B. spectabilis. Internal conversions of 0.096%, 0.056% and 0.063% were recorded for three dyes when combined with (KBr + I) electrolyte. The internal efficiency of C. acuminata DSSC was highest in value.

Keywords: dye-sensitized solar cells, organic dye, C. acuminate, L. arboreus, B. spectabilis, dye mixture

Procedia PDF Downloads 253
4315 Additive Carbon Dots Nanocrystals for Enhancement of the Efficiency of Dye-Sensitized Solar Cell in Energy Applications Technology

Authors: Getachew Kuma Watiro

Abstract:

The need for solar energy is constantly increasing and it is widely available on the earth’s surface. Photovoltaic technology is one of the most capable of all viable energy technology and is seen as a promising approach to the control era as it is readily available and has zero carbon emissions. Inexpensive and versatile solar cells have achieved the conversion efficiency and long life of dye-sensitized solar cells, improving the conversion efficiency from the sun to electricity. DSSCs have received a lot of attention for Various potential commercial uses, such as mobile devices and portable electronic devices, as well as integrated solar cell modules. The systematic reviews were used to show the critical impact of additive C-dots in the Dye-Sensitized solar cell for energy application technology. This research focuses on the following methods to synthesize nanoparticles such as facile, polyol, calcination, and hydrothermal technique. In addition to these, there are additives C-dots by the Hydrothermal method. This study deals with the progressive development of DSSC in photovoltaic technology. The applications of single and heterojunction structure technology devices were used (ZnO, NiO, SnO2, and NiO/ZnO/N719) and applied some additives C-dots (ZnO/C-dots /N719, NiO/C-dots /N719, SnO2 /C-dots /N719 and NiO/ZnO/C-dots/N719) and the effects of C-dots were reviewed. More than all, the technology of DSSC with C-dots enhances efficiency. Finally, recommendations have been made for future research on the application of DSSC with the use of these additives.

Keywords: dye-sensitized solar cells, heterojunction’s structure, carbon dot, conversion efficiency

Procedia PDF Downloads 85
4314 Investigation of Graphene-MoS₂ Nanocomposite as Counter Electrode in Dye-Sensitized Solar Cells

Authors: Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Mehdi Ghahari

Abstract:

Dye-sensitized solar cells are sustainable tool for generating electrical energy using sunlight. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Herein, we employed a MoS₂/graphene composite instead of platinum in the DSSCs. Platinum is an efficient and conventional counter electrode in the preparation of DSSCs, for this purpose, the effect of the presence of platinum electrode was also studied under similar conditions. The prepared nanocomposite product was checked by analysis methods to confirm the correctness of the construction and the desired structure. Finally, the DSSCs were fabricated using MoS₂/graphene composite, and to compare the results, the DSSCs were also prepared using platinum. The results showed that the prepared composite has a similar performance compared to platinum and can replace it.

Keywords: efficiency, dye-sensitized solar cell, nano-composite MoS₂, platinum free

Procedia PDF Downloads 29
4313 A Compilation of Nanotechnology in Thin Film Solar Cell Devices

Authors: Nurul Amziah Md Yunus, Izhal Abdul Halin, Nasri Sulaiman, Noor Faezah Ismail, Nik Hasniza Nik Aman

Abstract:

Nanotechnology has become the world attention in various applications including the solar cells devices due to the uniqueness and benefits of achieving low cost and better performances of devices. Recently, thin film solar cells such as cadmium telluride (CdTe), copper-indium-gallium-diSelenide (CIGS), copper-zinc-tin-sulphide (CZTS), and dye-sensitized solar cells (DSSC) enhanced by nanotechnology have attracted much attention. Thus, a compilation of nanotechnology devices giving the progress in the solar cells has been presented. It is much related to nanoparticles or nanocrystallines, carbon nanotubes, and nanowires or nanorods structures.

Keywords: nanotechnology, nanocrystalline, nanowires, carbon nanotubes, nanorods, thin film solar cells

Procedia PDF Downloads 584
4312 Up-Scaling of Highly Transparent Quasi-Solid State Dye-Sensitized Solar Devices Composed of Nanocomposite Materials

Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos

Abstract:

At the present work highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.

Keywords: dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up-scaling

Procedia PDF Downloads 300
4311 Beneficiation of Dye Sensitized Solar Cell as Energy Saving from Apple Skin with TiO2 Electrolysis

Authors: Astari Indarsari, Bastian B. Purba, Muhammad Fadlilah

Abstract:

In Indonesian climates that have the tropic climate, one of the potential energy sources is coming from solar energy. From the solar energy, we can convert it into the others energy, such as electrical energy. In this topic, we want to do the research about Dye Sensitized Solar Cell (DSSC). The materials that we use as sensitizer is anthocyanin that we extract from apple skin, because the anthocyanin is one of the most effective as a sensitizer for DSSC. The variable in this research is pH. The pH that we used are pH 0,5; pH 1; pH 1,5; pH 2; pH 2,5. The method is electrolysis, and we use TiO2 as sensitized material. The hypothesis from this research is the smaller pH can make higher the efficiency of the absorbent of the solar energy.

Keywords: anthocyanin, TiO2, DSSC, apple skin

Procedia PDF Downloads 256
4310 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells

Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah

Abstract:

Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.

Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell

Procedia PDF Downloads 250
4309 Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell

Authors: Eka Maulana, Sholeh Hadi Pramono, Dody Fanditya, M. Julius

Abstract:

In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 200-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence were obtained Voc and Isc of 235.5 mV and 14 μA, respectively.

Keywords: DSSC (Dye-Sensitized Solar Cell), natural dye, chlorophyll, absorption

Procedia PDF Downloads 452
4308 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells

Authors: Soumitra Satapathi, Anubhav Raghav

Abstract:

Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.

Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells

Procedia PDF Downloads 120
4307 Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell

Authors: N. Prabavathy, R. Balasundaraprabhu, S. Shalini, Dhayalan Velauthapillai, S. Prasanna, N. Muthukumarasamy

Abstract:

Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins.

Keywords: Caesalpinia pulcherrima, citric acid, dye sensitized solar cells, TiO₂ nanorods

Procedia PDF Downloads 245
4306 Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device

Authors: M. Hoseinnezhad, K. Gharanjig

Abstract:

Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated.

Keywords: dye-sensitized solar cells, indoline dye, nanostructure, oxidation potential, solar energy

Procedia PDF Downloads 157
4305 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System

Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae

Abstract:

Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.

Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy

Procedia PDF Downloads 266
4304 Investigation of Length Effect on Power Conversion Efficiency of Perovskite Solar Cells Composed of ZnO Nanowires

Authors: W. S. Li, S. T. Yang, H. C. Cheng

Abstract:

The power conversion efficiency (PCE) of the perovskite solar cells has been achieved by inserting vertically-aligned ZnO nanowires (NWs) between the cathode and the active layer and shows better solar cells performance. Perovskite solar cells have drawn significant attention due to the superb efficiency and low-cost fabrication process. In this experiment, ZnO nanowires are used as the electron transport layer (ETL) due to its low temperature process. The main idea of this thesis is utilizing the 3D structures of the hydrothermally-grown ZnO nanowires to increase the junction area to improve the photovoltaic performance of the perovskite solar cells. The infiltration and the surface coverage of the perovskite precursor solution changed as tuning the length of the ZnO nanowires. It is revealed that the devices with ZnO nanowires of 150 nm demonstrated the best PCE of 8.46 % under the AM 1.5G illumination (100 mW/cm2).

Keywords: hydrothermally-grown ZnO nanowires, perovskite solar cells, low temperature process, pinholes

Procedia PDF Downloads 285
4303 Electrospinning in situ Synthesis of Graphene-Doped Copper Indium Disulfide Composite Nanofibers for Efficient Counter Electrode in Dye-Sensitized Solar Cells

Authors: Lidan Wang, Shuyuan Zhao, Jianxin He

Abstract:

In this paper, graphene-doped copper indium disulfide (rGO+CuInS2) composite nanofibers were fabricated via electrospinning, in situ synthesis, and carbonization, using polyvinyl pyrrolidone (PVP), copper dichloride (CuCl2), indium trichloride (InCl3), thiourea (C2H5NS) and graphene oxide nanosheets (Go) as the precursor solution for electrospinning. The average diameter of rGO+CuInS2 nanofibers were about 100 nm, and graphene nanosheets anchored with chalcopyrite CuInS2 nanocrystals 8-15 nm in diameter were overlapped and embedded, aligning along the fiber axial direction. The DSSC with a rGO+CuInS2 counter electrode exhibits a power conversion efficiency of 5.93%; better than the corresponding values for a DSSC with a CuInS2 counter electrode, and comparable to that of a reference DSSC with a Pt counter electrode. The excellent photoelectric performance of the rGO+CuInS2 counter electrode was attributed to its high specific surface area, which facilitated permeation of the liquid electrolytes, promoted electron and ion transfer and provided numerous catalytically active sites for the oxidation reaction of the electrolytic (I- /I3-).

Keywords: dye-sensitized solar cells, counter electrode, electrospinning, graphene

Procedia PDF Downloads 421
4302 Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D

Authors: Hassane Ben Slimane, Benmoussa Dennai, Abderrahman Hemmani, Abderrachid Helmaoui

Abstract:

During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells.

Keywords: multijunction solar cell, GaAs, CIGS, AMPS-1D

Procedia PDF Downloads 466
4301 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 42
4300 Binder-Free Porous Photocathode Based on Cuprous Oxide for High-Performing P-Type Dye-Sensitized Solar Cells

Authors: Marinela Miclau, Melinda Vajda, Nicolae Miclau, Daniel Ursu

Abstract:

Characterized by a simple structure, easy and low cost fabrication, the dye-sensitized solar cell (DSSC) attracted the interest of the scientific community as an attractive alternative of conventional Si-based solar cells and thin-film solar cells. Over the past 20 years, the main efforts have attempted to enhance the efficiency of n-type DSSCs, the highest efficiency record of 14.30% was achieved using the co-sensitization of two metal-free organic dyes and Co (II/III) tris(phenanthroline)-based redox electrolyte. In the last years, the development of the efficient p-type DSSC has become a research focus owing to the fact that the concept of tandem solar cell was proposed as the solution to increase the power conversion efficiency. A promising alternative for the photocathodes of p-type DSSC, cuprous (Cu2O) and cupric (CuO) oxides have been investigated because of its nontoxic nature, low cost, high natural abundance, a good absorption coefficient for visible light and a higher dielectric constant than NiO. In case of p-type DSSC based on copper oxides with I3-/I- as redox mediator, the highest conversion efficiency of 0.42% (Cu2O) and 0.03% (CuO) has achieved. Towards the increase in the performance, we have fabricated and analyzed the performance of p-type DSSC prepared with the binder-free porous Cu2O photocathodes. Porous thin film could be an attractive alternative for DSSC because of their large surface areas which enable the efficient absorption of the dyes and light. We propose a simple and one-step hydrothermal method for the preparation of porous Cu2O thin film using copper substrate, cupric acetate and ethyl cellulose. The cubic structure of Cu2O has been determined by X-ray diffraction (XRD) and porous morphology of thin film was emphasized by Scanning Electron Microscope Inspect S (SEM). Optical and Mott-Schottky measurements attest of the high quality of the Cu2O thin film. The binder-free porous Cu2O photocathode has confirmed the excellent photovoltaic properties, the best value reported for p-type DSSC (1%) in similar conditions being reached.

Keywords: cuprous oxide, dye-sensitized solar cell, hydrothermal method, porous photocathode

Procedia PDF Downloads 135
4299 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles

Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake

Abstract:

Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.

Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM

Procedia PDF Downloads 390
4298 The Conjugated Polymers in improving the Organic Solar Cells Efficiency

Authors: Samia Moulebhar, Chahrazed Bendenia, Souhila Bendenia, Hanaa Merad-dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri

Abstract:

The photovoltaic solar field is today experiencing exponential advancement with the exploitation of new technological sectors of nanoparticles, namely the field of solar cells based on organic polymer materials. These cells are flexible, easy to process and low cost. This work includes a presentation of the conjugated polymer materials used in the design of photovoltaic technology devices while determining their properties and then the models used for the modeling of thin film photovoltaic cells heterojunction.

Keywords: photovoltaic, cells, nanoparticles, organic

Procedia PDF Downloads 36
4297 Development of Dye Sensitized Solar Window by Physical Parameters Optimization

Authors: Tahsin Shameem, Chowdhury Sadman Jahan, Mohammad Alam

Abstract:

Interest about Net Zero Energy Buildings have gained traction in recent years following the need to sustain energy consumption with generations on site and to reduce dependence on grid supplied energy from large plants using fossil fuel. With this end in view, building integrated photovoltaics are being studied attempting to utilize all exterior facades of a building to generate power. In this paper, we have looked at the physical parameters defining a dye sensitized solar cell (DSSC) and discussed their impact on energy harvest. Following our discussion and experimental data obtained from literature, we have attempted to optimize these physical parameters accordingly so as to allow maximum light absorption for a given active layer thickness. We then modified a planer DSSC design with our optimized properties to allow adequate light transmission which demonstrated a high fill factor and an External Quantum Efficiency (EQE) of greater than 9% by computer aided design and simulation. In conclusion, a DSSC based solar window with such high output values even after such high light transmission through it definitely flags a promising future for this technology and our work elicits the need for further study and practical experimentation.

Keywords: net zero energy building, integrated photovoltaics, dye sensitized solar cell, fill factor, External Quantum Efficiency

Procedia PDF Downloads 103
4296 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 79