Search results for: additive
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 619

Search results for: additive

619 Logistic Regression Model versus Additive Model for Recurrent Event Data

Authors: Entisar A. Elgmati

Abstract:

Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.

Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event

Procedia PDF Downloads 598
618 An Evaluation Model for Enhancing Flexibility in Production Systems through Additive Manufacturing

Authors: Angela Luft, Sebastian Bremen, Nicolae Balc

Abstract:

Additive manufacturing processes have entered large parts of the industry and their range of application have progressed and grown significantly in the course of time. A major advantage of additive manufacturing is the innate flexibility of the machines. This corelates with the ongoing demand of creating highly flexible production environments. However, the potential of additive manufacturing technologies to enhance the flexibility of production systems has not yet been truly considered and quantified in a systematic way. In order to determine the potential of additive manufacturing technologies with regards to the strategic flexibility design in production systems, an integrated evaluation model has been developed, that allows for the simultaneous consideration of both conventional as well as additive production resources. With the described model, an operational scope of action can be identified and quantified in terms of mix and volume flexibility, process complexity, and machine capacity that goes beyond the current cost-oriented approaches and offers a much broader and more holistic view on the potential of additive manufacturing. A respective evaluation model is presented this paper.

Keywords: additive manufacturing, capacity planning, production systems, strategic production planning, flexibility enhancement

Procedia PDF Downloads 115
617 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures

Authors: Adriano Z. Zambom, Preethi Ravikumar

Abstract:

One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.

Keywords: additive model, nonparametric regression, variable selection, Akaike Information Criteria

Procedia PDF Downloads 231
616 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology

Authors: Anjian Chen, Joseph C. Chen

Abstract:

This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.

Keywords: additive manufacturing, fused deposition modeling, surface roughness, six-sigma, Taguchi method, 3D printing

Procedia PDF Downloads 337
615 Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective

Authors: Micheal O. Alabi

Abstract:

Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country.

Keywords: additive manufacturing, 3D printing technology, industrial applications, manufacturing

Procedia PDF Downloads 433
614 Laser Additive Manufacturing of Carbon Nanotube-Reinforced Polyamide 12 Composites

Authors: Kun Zhou

Abstract:

Additive manufacturing has emerged as a disruptive technology that is capable of manufacturing products with complex geometries through an accumulation of material feedstock in a layer-by-layer fashion. Laser additive manufacturing such as selective laser sintering has excellent printing resolution, high printing speed and robust part strength, and has led to a widespread adoption in the aerospace, automotive and biomedical industries. This talk highlights and discusses the recent work we have undertaken in the development of carbon nanotube-reinforced polyamide 12 (CNT/PA12) composites printed using laser additive manufacturing. Numerical modelling studies have been conducted to simulate various processes within laser additive manufacturing of CNT/PA12 composites, and extensive experimental work has been carried out to investigate the mechanical and functional properties of the printed parts. The results from these studies grant a deeper understanding of the intricate mechanisms occurring within each process and enables an accurate optimization of process parameters for the CNT/PA12 and other polymer composites.

Keywords: CNT/PA12 composites, laser additive manufacturing, process parameter optimization, numerical modeling

Procedia PDF Downloads 122
613 Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education

Authors: J. Otegui, M. Agirre, M. A. Cestau, H. Erauskin

Abstract:

The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated.

Keywords: 3D printing, additive manufacturing, mechanical design, stirling engine.

Procedia PDF Downloads 5
612 Exploring Mechanical Properties of Additive Manufacturing Ceramic Components Across Techniques and Materials

Authors: Venkatesan Sundaramoorthy

Abstract:

The field of ceramics has undergone a remarkable transformation with the advent of additive manufacturing technologies. This comprehensive review explores the mechanical properties of additively manufactured ceramic components, focusing on key materials such as Alumina, Zirconia, and Silicon Carbide. The study delves into various authors' review technology into the various additive manufacturing techniques, including Stereolithography, Powder Bed Fusion, and Binder Jetting, highlighting their advantages and challenges. It provides a detailed analysis of the mechanical properties of these ceramics, offering insights into their hardness, strength, fracture toughness, and thermal conductivity. Factors affecting mechanical properties, such as microstructure and post-processing, are thoroughly examined. Recent advancements and future directions in 3D-printed ceramics are discussed, showcasing the potential for further optimization and innovation. This review underscores the profound implications of additive manufacturing for ceramics in industries such as aerospace, healthcare, and electronics, ushering in a new era of engineering and design possibilities for ceramic components.

Keywords: mechanical properties, additive manufacturing, ceramic materials, PBF

Procedia PDF Downloads 27
611 Laser Additive Manufacturing: A Literature Review

Authors: Pranav Mohan Parki, C. Mallika Parveen, Tahseen Ahmad Khan, Mihika Shivkumar

Abstract:

Additive manufacturing (AM) is one of the several manufacturing processes in use today. AM comprises of techniques such as ‘Selective Laser Sintering’ and ‘Selective Laser Melting’ etc. along with other equipment and materials has been developed way back in 1980s, although major use of these methods has risen during the last decade. AM seems to be the most efficient way when compared to the traditional machining procedures. Still many problems continue to hinder its progress to becoming the most widely used of all. This paper contributes to the better understanding of AM and also aims at providing viable solutions to these problems, which may further help in enabling AM to become the most flaw free production method.

Keywords: additive manufacturing (AM), 3D printing, prototype, laser sintering

Procedia PDF Downloads 339
610 Potentials of Additive Manufacturing: An Approach to Increase the Flexibility of Production Systems

Authors: A. Luft, S. Bremen, N. Balc

Abstract:

The task of flexibility planning and design, just like factory planning, for example, is to create the long-term systemic framework that constitutes the restriction for short-term operational management. This is a strategic challenge since, due to the decision defect character of the underlying flexibility problem, multiple types of flexibility need to be considered over the course of various scenarios, production programs, and production system configurations. In this context, an evaluation model has been developed that integrates both conventional and additive resources on a basic task level and allows the quantification of flexibility enhancement in terms of mix and volume flexibility, complexity reduction, and machine capacity. The model helps companies to decide in early decision-making processes about the potential gains of implementing additive manufacturing technologies on a strategic level. For companies, it is essential to consider both additive and conventional manufacturing beyond pure unit costs. It is necessary to achieve an integrative view of manufacturing that incorporates both additive and conventional manufacturing resources and quantifies their potential with regard to flexibility and manufacturing complexity. This also requires a structured process for the strategic production systems design that spans the design of various scenarios and allows for multi-dimensional and comparative analysis. A respective guideline for the planning of additive resources on a strategic level is being laid out in this paper.

Keywords: additive manufacturing, production system design, flexibility enhancement, strategic guideline

Procedia PDF Downloads 87
609 Cat Stool as an Additive Aggregate to Garden Bricks

Authors: Mary Joy B. Amoguis, Alonah Jane D. Labtic, Hyna Wary Namoca, Aira Jane V. Original

Abstract:

Animal waste has been rapidly increasing due to the growing animal population and the lack of innovative waste management practices. In a country like the Philippines, animal waste is rampant. This study aims to minimize animal waste by producing garden bricks using cat stool as an additive. The research study analyzes different levels of concentration to determine the most efficient combination in terms of compressive strength and durability of cat stool as an additive to garden bricks. The researcher's first collects the cat stool and incinerates the different concentrations. The first concentration is 25% cat stool and 75% cement mixture. The second concentration is 50% cat stool and 50% cement mixture. And the third concentration is 75% cat stool and 25% cement mixture. The researchers analyze the statistical data using one-way ANOVA, and the statistical analysis revealed a significant difference compared to the controlled variable. The research findings show an inversely proportional relationship: the higher the concentration of cat stool additive, the lower the compressive strength of the bricks, and the lower the concentration of cat stool additive, the higher the compressive strength of the bricks.

Keywords: cat stool, garden bricks, cement, concentrations, animal wastes, compressive strength, durability, one-way ANOVA, additive, incineration, aggregates, stray cats

Procedia PDF Downloads 16
608 Wire Arc Additive Manufacturing of Aluminium–Magnesium Alloy AlMg4.5Mn With TiC Nanoparticles

Authors: Javad Karimi

Abstract:

The grain morphology and size of the additively manufactured (AM) aluminium alloys play a vital role in the performance and mechanical properties. AM-fabricated aluminium parts exhibit a relatively coarse microstructure with a columnar morphology. Ceramic nanoparticles, such as Titanium carbide (TiC), have shown great potential to reduce grain size and consequently influence the mechanical properties. In this study, the microstructural and mechanical properties of aluminium parts with TiC nanoparticles will be investigated. AM aluminium components will be fabricated using wire arc additive manufacturing (WAAM). The effect of the addition of TiC nanoparticles with different wt% on the melt pool geometry will be examined, and the obtained results will be compared to those obtained from pure ER5183. The impact of TiC nanoparticles addition in the AM parts will be analyzed comprehensively, and the results will be discussed in detail.

Keywords: additive manufacturing, wire arc additive manufacturing, nanoparticles, grain refinement

Procedia PDF Downloads 40
607 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.

Keywords: fly-ash, carbon black, nanotechnology, geopolymer

Procedia PDF Downloads 52
606 Effect of Liquid Additive on Dry Grinding for Desired Surface Structure of CaO Catalyst

Authors: Wiyanti Fransisca Simanullang, Shinya Yamanaka

Abstract:

Grinding method was used to control the active site and to improve the specific surface area (SSA) of calcium oxide (CaO) derived from scallop shell as a sustainable resource. The dry grinding of CaO with acetone and tertiary butanol as a liquid additive was carried out using a planetary ball mill with a laboratory scale. The experiments were operated by stepwise addition with time variations to determine the grinding limit. The active site of CaO was measured by X-Ray Diffraction and FT-IR. The SSA variations of products with grinding time were measured by BET method. The morphology structure of CaO was observed by SEM. The use of liquid additive was effective for increasing the SSA and controlling the active site of CaO. SSA of CaO was increased in proportion to the amount of the liquid additive and the grinding time. The performance of CaO as a solid base catalyst for biodiesel production was tested in the transesterification reaction of used cooking oil to produce fatty acid methyl ester (FAME).

Keywords: active site, calcium oxide, grinding, specific surface area

Procedia PDF Downloads 256
605 Energy-efficient Buildings In Construction Industry Using Fly Ash-based Geopolymer Technology

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of nanoparticles additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of nanoparticles flexural strength, water absorption, and micro-structural properties of the cured samples. The results revealed that the inclusion of nanoparticles additive significantly enhanced the mechanical and electrical properties of the geopolymer binder. Micro-structural analysis using scanning electron microscopy (SEM) revealed a more compact and homogeneous structure in the geopolymer samples with nanoparticles. The dispersion of nanoparticles particles within the geopolymer matrix was observed, suggesting improved inter-particle bonding and increased density. Overall, this study demonstrates the positive impact of nanoparticles additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications for the development of construction and infrastructure for energy buildings.

Keywords: fly-ash, geopolymer, energy buildings, nanotechnology

Procedia PDF Downloads 47
604 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing

Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano

Abstract:

Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.

Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning

Procedia PDF Downloads 410
603 Effect of Addition Rate of Expansive Additive on Autogenous Shrinkage and Delayed Expansion of Ultra-High Strength Mortar

Authors: Yulu Zhang, Atushi Teramoto, Taka-Aki Ohkubo

Abstract:

In this study, the effect of expansive additives on autogenous shrinkage and delayed expansion of ultra-high strength mortar was explored. The specimens made for the study were composed of ultra-high strength mortar, which was mixed with ettringite-lime composite type expansive additive. Two series of experiments were conducted with the specimens. The experimental results confirmed that the autogenous shrinkage of specimens was effectively decreased by increasing the proportion of the expansive additive. On the other hand, for the specimens, which had 7% expansive additive, and were cured for seven days at a constant temperature of 20°C, and then cured for a long time in either in an underwater, moist (Relative humidity: 100%) or dry air (Relative humidity: 60%) environment, excessively large expansion strain occurred. Specifically, typical turtle shell-like swelling expansion cracks were confirmed in the specimens that underwent long-term curing in an underwater and moist environment. According to the result of hydration analysis, the formation of expansive substances, calcium hydroxide and alumina, ferric oxide, tri-sulfate contribute to the occurrence of delayed expansion.

Keywords: ultra-high strength mortar, expansive additive, autogenous shrinkage, delayed expansion

Procedia PDF Downloads 207
602 Discrete Estimation of Spectral Density for Alpha Stable Signals Observed with an Additive Error

Authors: R. Sabre, W. Horrigue, J. C. Simon

Abstract:

This paper is interested in two difficulties encountered in practice when observing a continuous time process. The first is that we cannot observe a process over a time interval; we only take discrete observations. The second is the process frequently observed with a constant additive error. It is important to give an estimator of the spectral density of such a process taking into account the additive observation error and the choice of the discrete observation times. In this work, we propose an estimator based on the spectral smoothing of the periodogram by the polynomial Jackson kernel reducing the additive error. In order to solve the aliasing phenomenon, this estimator is constructed from observations taken at well-chosen times so as to reduce the estimator to the field where the spectral density is not zero. We show that the proposed estimator is asymptotically unbiased and consistent. Thus we obtain an estimate solving the two difficulties concerning the choice of the instants of observations of a continuous time process and the observations affected by a constant error.

Keywords: spectral density, stable processes, aliasing, periodogram

Procedia PDF Downloads 106
601 Investigating the Environmental Impact of Additive Manufacturing Compared to Conventional Manufacturing through Life Cycle Assessment

Authors: Gustavo Menezes De Souza Melo, Arnaud Heitz, Johannes Henrich Schleifenbaum

Abstract:

Additive manufacturing is a growing market that is taking over in many industries as it offers numerous advantages like new design possibilities, weight-saving solutions, ease of manufacture, and simplification of assemblies. These are all unquestionable technical or financial assets. As to the environmental aspect, additive manufacturing is often discussed whether it is the best solution to decarbonize our industries or if conventional manufacturing remains cleaner. This work presents a life cycle assessment (LCA) comparison based on the technological case of a motorbike swing-arm. We compare the original equipment manufacturer part made with conventional manufacturing (CM) methods to an additive manufacturing (AM) version printed using the laser powder bed fusion process. The AM version has been modified and optimized to achieve better dynamic performance without any regard to weight saving. Lightweight not being a priority in the creation of the 3D printed part brings us a unique perspective in this study. To achieve the LCA, we are using the open-source life cycle, and sustainability software OpenLCA combined with the ReCiPe 2016 at midpoint and endpoint level method. This allows the calculation and the presentation of the results through indicators such as global warming, water use, resource scarcity, etc. The results are then showing the relative impact of the AM version compared to the CM one and give us a key to understand and answer questions about the environmental sustainability of additive manufacturing.

Keywords: additive manufacturing, environmental impact, life cycle assessment, laser powder bed fusion

Procedia PDF Downloads 216
600 Effect of the Addition of Additives on the Improvement of the Performances of Lead–Acid Batteries

Authors: Malika Foudia, Larbi Zerroual

Abstract:

The objective of this work is to improve the electrical proprieties of lead-acid battery with the addition of additives in electrolyte and in the cured plates before oxidation. The results showed that the addition of surfactant in sulfuric acid and 3% mineral additive in the cured plates change the morphology and the crystallite size of PAM after oxidation. The discharge capacity increases with the decrease of the crystallite size and the resistance of the active mass. This shows that the addition of mineral additive and the surfactant additive to the PAM, the electrical performance and the cycle life of lead- acid battery are significantly increases.

Keywords: lead-acid battery, additives, positive plate, impedance (EIS).

Procedia PDF Downloads 385
599 Synthesis of Oxygenated Fuel Additive from Bio-Glycerol

Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent, and it is odorless organic liquid used as a fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-glycerol, catalyst, green additive, biomass

Procedia PDF Downloads 206
598 On the Development of Medical Additive Manufacturing in Egypt

Authors: Khalid Abdelghany

Abstract:

Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans.

Keywords: additive manufacturing, dental and orthopeadic stents, patient specific surgical tools, titanium implants

Procedia PDF Downloads 275
597 Method for Evaluating the Monetary Value of a Customized Version of the Digital Twin for the Additive Manufacturing

Authors: Fabio Oettl, Sebastian Hoerbrand, Tobias Wittmeir, Johannes Schilp

Abstract:

By combining the additive manufacturing (AM)- process with digital concepts, like the digital twin (DT) or the downsized and basing concept of the digital part file (DPF), the competitiveness of additive manufacturing is enhanced and new use cases like decentral production are enabled. But in literature, one can´t find any quantitative approach for valuing the usage of a DT or DPF in AM. Out of this fact, such an approach will be developed within this paper in order to further promote or dissuade the usage of these concepts. The focus is set on the production as an early lifecycle phase, which means that the AM-production process gets analyzed regarding the potential advantages of using DPF in AM. These advantages are transferred to a monetary value with this approach. By calculating the costs of the DPF, an overall monetary value is a result. Thereon a tool, based on a simulation environment is constructed, where the algorithms are transformed into a program. The results of applying this tool show that an overall value of 20,81 € for the DPF can be realized for one special use case. For the future application of the DPF there is the recommendation to integrate especially sustainable information because out of this, a higher value of the DPF can be expected.

Keywords: additive manufacturing, digital concept costs, digital part file, digital twin, monetary value estimation

Procedia PDF Downloads 165
596 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps

Authors: Yong Bum Shin

Abstract:

This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.

Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process

Procedia PDF Downloads 54
595 Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance

Authors: Flora Babongo, Valerie Chavez

Abstract:

Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective.

Keywords: causal inference, DAGs, BAMLSS, financial index

Procedia PDF Downloads 117
594 Modern Methods of Technology and Organization of Production of Construction Works during the Implementation of Construction 3D Printers

Authors: Azizakhanim Maharramli

Abstract:

The gradual transition from entrenched traditional technology and organization of construction production to innovative additive construction technology inevitably meets technological, technical, organizational, labour, and, finally, social difficulties. Therefore, the chosen nodal method will lead to the elimination of the above difficulties, combining some of the usual methods of construction and the myth in world practice that the labour force is subjected to a strong stream of reduction. The nodal method of additive technology will create favourable conditions for the optimal degree of distribution of labour across facilities due to the consistent performance of homogeneous work and the introduction of additive technology and traditional technology into construction production.

Keywords: parallel method, sequential method, stream method, combined method, nodal method

Procedia PDF Downloads 42
593 Comparison of the Material Response Based on Production Technologies of Metal Foams

Authors: Tamas Mankovits

Abstract:

Lightweight cellular-type structures like metal foams have excellent mechanical properties, therefore the interest in these materials is widely spreading as load-bearing structural elements, e.g. as implants. Numerous technologies are available to produce metal foams. In this paper the material response of closed cell foam structures produced by direct foaming and additive technology is compared. The production technology circumstances are also investigated. Geometrical variations are developed for foam structures produced by additive manufacturing and simulated by finite element method to be able to predict the mechanical behavior.

Keywords: additive manufacturing, direct foaming, finite element method, metal foam

Procedia PDF Downloads 158
592 Strength and Permeability of the Granular Pavement Materials Treated with Polyacrylamide Based Additive

Authors: Romel N. Georgees, Rayya A Hassan, Robert P. Evans, Piratheepan Jegatheesan

Abstract:

Among other traditional and non-traditional additives, polymers have shown an efficient performance in the field and improved sustainability. Polyacrylamide (PAM) is one such additive that has demonstrated many advantages including a reduction in permeability, an increase in durability and the provision of strength characteristics. However, information about its effect on the improved geotechnical characteristics is very limited to the field performance monitoring. Therefore, a laboratory investigation was carried out to examine the basic and engineering behaviors of three types of soils treated with a PAM additive. The results showed an increase in dry density and unconfined compressive strength for all the soils. The results further demonstrated an increase in unsoaked CBR and a reduction in permeability for all stabilized samples.

Keywords: CBR, hydraulic conductivity, PAM, unconfined compressive strength

Procedia PDF Downloads 341
591 The Effect of Randomly Distributed Polypropylene Fibers and Some Additive Materials on Freezing-Thawing Durability of a Fine-Grained Soil

Authors: A. Şahin Zaimoglu

Abstract:

A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive and cohesionless soils. However, few studies have been carried out on freezing-thawing behavior of fine-grained soils modified with discrete fiber inclusions and additive materials. This experimental study was performed to investigate the effect of randomly distributed polypropylene fibers (PP) and some additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement (C)] on freezing-thawing durability (mass losses) of a fine-grained soil for 6,12 and 18 cycles. The Taguchi method was applied to the experiments and a standard L9 orthogonal array (OA) with four factors and three levels were chosen. A series of freezing-thawing tests were conducted on each specimen. 0-20 % BG, 0-20 % FA, 0-0.25 % PP and 0-3 % of C by total dry weight of mixture were used in the preparation of specimens. Experimental results showed that the most effective materials for the freezing-thawing durability (mass losses) of the samples were borogypsum and fly ash. The values of mass losses for 6, 12 and 18 cycles in optimum conditions were 16.1%, 5.1% and 3.6%, respectively.

Keywords: freezing-thawing, additive materials, reinforced soil, optimization

Procedia PDF Downloads 269
590 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification

Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor

Abstract:

Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.

Keywords: additive parameter, angular softmax, speaker verification, PLDA

Procedia PDF Downloads 58