Search results for: non-asbestos organic (NAO) friction materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9443

Search results for: non-asbestos organic (NAO) friction materials

6503 Synthesis, Electrochemical and Theoretical Study of Corrosion Inhibition on Carbon Steel in 1M HCl Medium by 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide)

Authors: Tanghourte Mohamed, Ouassou Nazih, El Mesky Mohammed, Znini Mohamed, Mabrouk El Houssine

Abstract:

In the present study, a distinct organic inhibitor, namely 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide) (PBRA), was synthesized and characterized using ¹H, ¹³C NMR, and IR spectroscopy. Subsequently, the inhibition effect of PBRA on the corrosion of carbon steel in 1 M HCl was studied using electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed that the inhibition efficiency increased with concentration, reaching 87% at 10-³M. Furthermore, PBRA remained effective at temperatures ranging from 298 to 328 K. The adsorption of the inhibitor onto carbon steel was well described by the Langmuir adsorption isotherm. Additionally, a correlation between the molecular structure and quantum chemistry indices was established using density functional theory (DFT).

Keywords: synthesis, corrosion, inhibition, piperazine, efficacy, isotherm, acetamide

Procedia PDF Downloads 5
6502 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars

Authors: Ankit Khurana

Abstract:

The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.

Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum

Procedia PDF Downloads 408
6501 Long-Persistent Luminescent MAl2O4:Eu;Dy Phoshors Synthesized by Combustion

Authors: Yusuf Ziya Halefoğlu

Abstract:

Phosphorescence, classically, excitation effects (radiation, electron beam, electric field, temperature, etc.) is the name given after the elimination of materials that glow in the visible region. This event continues to glow after the elimination of the effect of excitation is called phosphorescence. In this study were synthesized by the method of the combustion lanthanide doped alkaline earth aluminates. High temperature and long reaction time required and the sol-gel method of combustion according to the methods of solid state synthesis temperature lower than the short reaction time, a small particle size, convenience, and is superior in terms of being secured. Their microstructures and its effect on the photoluminescence properties were studied. Phosphorescence is derived in the dark when produced materials are held in sunlight or under ultraviolet light typically at 365-520 nm wavelength range. In this study, the optimal ratio of rare earth elements, in terms of brightness and glow duration was examined by SEM, XRD and photoluminescence analysis.

Keywords: persistence luminescence, phosphorescence, trap depth, combustion method

Procedia PDF Downloads 240
6500 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina

Abstract:

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity

Procedia PDF Downloads 344
6499 The Composition of Biooil during Biomass Pyrolysis at Various Temperatures

Authors: Zoltan Sebestyen, Eszter Barta-Rajnai, Emma Jakab, Zsuzsanna Czegeny

Abstract:

Extraction of the energy content of lignocellulosic biomass is one of the possible pathways to reduce the greenhouse gas emission derived from the burning of the fossil fuels. The application of the bioenergy can mitigate the energy dependency of a country from the foreign natural gas and the petroleum. The diversity of the plant materials makes difficult the utilization of the raw biomass in power plants. This problem can be overcome by the application of thermochemical techniques. Pyrolysis is the thermal decomposition of the raw materials under inert atmosphere at high temperatures, which produces pyrolysis gas, biooil and charcoal. The energy content of these products can be exploited by further utilization. The differences in the chemical and physical properties of the raw biomass materials can be reduced by the use of torrefaction. Torrefaction is a promising mild thermal pretreatment method performed at temperatures between 200 and 300 °C in an inert atmosphere. The goal of the pretreatment from a chemical point of view is the removal of water and the acidic groups of hemicelluloses or the whole hemicellulose fraction with minor degradation of cellulose and lignin in the biomass. Thus, the stability of biomass against biodegradation increases, while its energy density increases. The volume of the raw materials decreases so the expenses of the transportation and the storage are reduced as well. Biooil is the major product during pyrolysis and an important by-product during torrefaction of biomass. The composition of biooil mostly depends on the quality of the raw materials and the applied temperature. In this work, thermoanalytical techniques have been used to study the qualitative and quantitative composition of the pyrolysis and torrefaction oils of a woody (black locust) and two herbaceous samples (rape straw and wheat straw). The biooil contains C5 and C6 anhydrosugar molecules, as well as aromatic compounds originating from hemicellulose, cellulose, and lignin, respectively. In this study, special emphasis was placed on the formation of the lignin monomeric products. The structure of the lignin fraction is different in the wood and in the herbaceous plants. According to the thermoanalytical studies the decomposition of lignin starts above 200 °C and ends at about 500 °C. The lignin monomers are present among the components of the torrefaction oil even at relatively low temperatures. We established that the concentration and the composition of the lignin products vary significantly with the applied temperature indicating that different decomposition mechanisms dominate at low and high temperatures. The evolutions of decomposition products as well as the thermal stability of the samples were measured by thermogravimetry/mass spectrometry (TG/MS). The differences in the structure of the lignin products of woody and herbaceous samples were characterized by the method of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). As a statistical method, principal component analysis (PCA) has been used to find correlation between the composition of lignin products of the biooil and the applied temperatures.

Keywords: pyrolysis, torrefaction, biooil, lignin

Procedia PDF Downloads 329
6498 Non-Destructive Technique for Detection of Voids in the IC Package Using Terahertz-Time Domain Spectrometer

Authors: Sung-Hyeon Park, Jin-Wook Jang, Hak-Sung Kim

Abstract:

In recent years, Terahertz (THz) time-domain spectroscopy (TDS) imaging method has been received considerable interest as a promising non-destructive technique for detection of internal defects. In comparison to other non-destructive techniques such as x-ray inspection method, scanning acoustic tomograph (SAT) and microwave inspection method, THz-TDS imaging method has many advantages: First, it can measure the exact thickness and location of defects. Second, it doesn’t require the liquid couplant while it is very crucial to deliver that power of ultrasonic wave in SAT method. Third, it didn’t damage to materials and be harmful to human bodies while x-ray inspection method does. Finally, it exhibits better spatial resolution than microwave inspection method. However, this technology couldn’t be applied to IC package because THz radiation can penetrate through a wide variety of materials including polymers and ceramics except of metals. Therefore, it is difficult to detect the defects in IC package which are composed of not only epoxy and semiconductor materials but also various metals such as copper, aluminum and gold. In this work, we proposed a special method for detecting the void in the IC package using THz-TDS imaging system. The IC package specimens for this study are prepared by Packaging Engineering Team in Samsung Electronics. Our THz-TDS imaging system has a special reflection mode called pitch-catch mode which can change the incidence angle in the reflection mode from 10 o to 70 o while the others have transmission and the normal reflection mode or the reflection mode fixed at certain angle. Therefore, to find the voids in the IC package, we investigated the appropriate angle as changing the incidence angle of THz wave emitter and detector. As the results, the voids in the IC packages were successfully detected using our THz-TDS imaging system.

Keywords: terahertz, non-destructive technique, void, IC package

Procedia PDF Downloads 473
6497 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes

Authors: Sofia Lazareva, Artem Smolentsev

Abstract:

Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.

Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state

Procedia PDF Downloads 679
6496 Elucidation of the Photoreactivity of 2-Hydroxychalcones and the Effect of Continuous Photoflow Method on the Photoreactivity

Authors: Sobiya George, Anna Dora Gudmundsdottir

Abstract:

The 2-hydroxychalcones form an important group of organic compounds not only because of their pharmacological properties but also because they are intermediates in the biosynthesis of flavanones. We studied the photoreactivity of 2-hydroxychalcone derivatives in aprotic solvent acetonitrile and found that their photochemistry is concentration-dependent. Irradiation of 2-hydroxychalcone derivatives with 365 nm light emitting diode (LED) in dilute concentration selectively forms flavanones, whereas, at higher concentrations, an additional photoproduct is observed. However, the application of the continuous photo-flow method resulted in the selective formation of flavanones even at higher concentrations. To understand the reaction mechanism and explain the concentration-dependent photoreactivity of 2-hydroxychalcones, we preformed trapping studies with tris(trimethylsilyl)silane, nanosecond laser flash photolysis, and time dependent-density functional theory (TD-DFT) calculations.

Keywords: flavanones, hydroxychalcones, laser flash photolysis, TD-DFT calculations

Procedia PDF Downloads 149
6495 Metallic-Diamond Tools with Increased Abrasive Wear Resistance for Grinding Industrial Floor Systems

Authors: Elżbieta Cygan, Bączek, Piotr Wyżga

Abstract:

This paper presents the results of research on the physical, mechanical, and tribological properties of materials constituting the matrix in sintered metallic-diamond tools. The ground powders based on the Fe-Mn-Cu-Sn-C system were modified with micro-sized particles of the ceramic phase: SiC, Al₂O₃ and consolidated using the SPS (spark plasma sintering) method to a relative density of over 98% at 850-950°C, at a pressure of 35 MPa and time 10 min. After sintering, an analysis of the microstructure was conducted using scanning electron microscopy. The resulting materials were tested for the apparent density determined by Archimedes’ method, Rockwell hardness (scale B), Young’s modulus, as well as for technological properties. The performance results of obtained diamond composites were compared with the base material (Fe–Mn–Cu–Sn–C) and the commercial alloy Co-20% WC. The hardness of composites has achieved the maximum at a temperature of 900°C; therefore, it should be considered that at this temperature it was obtained optimal physical and mechanical properties of the subjects' composites were. Research on tribological properties showed that the composites modified with micro-sized particles of the ceramic phase are characterized by more than twice higher wear resistance in comparison with base materials and the commercial alloy Co-20% WC. Composites containing Al₂O₃ phase particles in the matrix material were composites containing Al₂O₃ phase particles in the matrix material were characterized by the lowest abrasion wear resistance. The manufacturing technology presented in the paper is economically justified and can be successfully used in the production process of the matrix in sintered diamond-impregnated tools used for the machining of an industrial floor system. Acknowledgment: The study was performed under LIDER IX Research Project No. LIDER/22/0085/L-9/17/NCBR/2018 entitled “Innovative metal-diamond tools without the addition of critical raw materials for applications in the process of grinding industrial floor systems” funded by the National Centre for Research and Development of Poland, Warsaw.

Keywords: abrasive wear resistance, metal matrix composites, sintered diamond tools, Spark Plasma Sintering

Procedia PDF Downloads 78
6494 Enhanced Oxygen Reduction Reaction by N-Doped Mesoporous Carbon Nanospheres

Authors: Bita Bayatsarmadi, Shi-Zhang Qiao

Abstract:

The development of ordered mesoporous carbon materials with controllable structures and improved physicochemical properties by doping heteroatoms such as nitrogen into the carbon framework has attracted a lot of attention, especially in relation to energy storage and conversion. Herein, a series of Nitrogen-doped mesoporous carbon spheres (NMC) was synthesized via a facile dual soft-templating procedure by tuning the nitrogen content and carbonization temperature. Various physical and (electro) chemical properties of the NMCs have been comprehensively investigated to pave the way for feasible design of nitrogen-containing porous carbon materials. The optimized sample showed a favorable electrocatalytic activity as evidenced by high kinetic current and positive onset potential for oxygen reduction reaction (ORR) due to its large surface area, high pore volume, good conductivity and high nitrogen content, which make it as a highly efficient ORR metal-free catalyst in alkaline solutions.

Keywords: porous carbon, N-doping, oxygen reduction reaction, soft-template

Procedia PDF Downloads 253
6493 Application of Biomass Ashes as Supplementary Cementitious Materials in the Cement Mortar Production

Authors: S. Šupić, M. Malešev, V. Radonjanin, M. Radeka, M. Laban

Abstract:

The production of low cost and environmentally friendly products represents an important step for developing countries. Biomass is one of the largest renewable energy sources, and Serbia is among the top European countries in terms of the amount of available and unused biomass. Substituting cement with the ashes obtained by the combustion of biomass would reduce the negative impact of concrete industry on the environment and would provide a waste valorization by the reuse of this type of by-product in mortars and concretes manufacture. The study contains data on physical properties, chemical characteristics and pozzolanic properties of obtained biomass ashes: wheat straw ash and mixture of wheat and soya straw ash in Serbia, which were, later, used as supplementary cementitious materials in preparation of mortars. Experimental research of influence of biomass ashes on physical and mechanical properties of cement mortars was conducted. The results indicate that the biomass ashes can be successfully used in mortars as substitutes of cement without compromising their physical and mechanical performances.

Keywords: biomass, ash, cementitious material, mortar

Procedia PDF Downloads 184
6492 Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure

Authors: Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, Philomela Komninou

Abstract:

A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation.

Keywords: chromium-rich tannery residues, glass-ceramic materials, mechanical properties, microstructure

Procedia PDF Downloads 342
6491 Technology Computer Aided Design Simulation of Space Charge Limited Conduction in Polycrystalline Thin Films

Authors: Kunj Parikh, S. Bhattacharya, V. Natarajan

Abstract:

TCAD numerical simulation is one of the most tried and tested powerful tools for designing devices in semiconductor foundries worldwide. It has also been used to explain conduction in organic thin films where the processing temperature is often enough to make homogeneous samples (often imperfect, but homogeneously imperfect). In this report, we have presented the results of TCAD simulation in multi-grain thin films. The work has addressed the inhomogeneity in one dimension, but can easily be extended to two and three dimensions. The effect of grain boundaries has mainly been approximated as barriers located at the junction between two adjacent grains. The effect of the value of grain boundary barrier, the bulk traps, and the measurement temperature have been investigated.

Keywords: polycrystalline thin films, space charge limited conduction, Technology Computer-Aided Design (TCAD) simulation, traps

Procedia PDF Downloads 214
6490 Synthesis of Highly Porous Cyclowollastonite Bioactive Ceramic

Authors: Mehieddine Bouatrous

Abstract:

Recently bioactive ceramic materials have been applied in the biomedical field as bulk, granular, or coating materials for more than half a century. More recently, bone tissue engineering scaffolds made of highly porous bioactive ceramic, glass-ceramic, and composite materials have also been created. As a result, recent bioactive ceramic structures have a high bioactivity rate, an open pores network, and good mechanical characteristics simulating cortical bone. Cyclowollastonite frameworks are also suggested for use as a graft material. As a porogenous agent, various amounts of the polymethyl methacrylate (PMMA) powders were used in this study successfully to synthesize a highly interrelated, nanostructured porous cyclowollastonite with a large specific surface area where the morphology and porosity were investigated. Porous cyclowollastonite bioactive ceramics were synthesized with a cost-effective and eco-friendly wet chemical method. The synthesized biomaterial is bioactive according to in vitro tests and can be used for bone tissue engineering scaffolds where cyclowollastonite sintered dense discs were submerged in simulated body fluid (S.B.F.) for various periods of time (1-4 weeks), resulting in the formation of a dense and consistent layer of hydroxyapatite on the surface of the ceramics, indicating its good in vitro bioactivity. Therefore, the cyclowollastonite framework exhibits good in vitro bioactivity due to its highly interconnecting porous structure and open macropores. The results demonstrate that even after soaking for several days, the surface of cyclowollastonite ceramic can generate a dense and consistent layer of hydroxyapatite. The results showed that cyclowollastonite framework exhibits good in vitro bioactivity due to highly interconnecting porous structure and open macropores.

Keywords: porous, bioactive, biomaterials, S.B.F, cyclowollastonite, biodegradability

Procedia PDF Downloads 77
6489 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships

Authors: Vijaya Dixit Aasheesh Dixit

Abstract:

Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.

Keywords: learning curve, materials management, shipbuilding, sister ships

Procedia PDF Downloads 502
6488 Analysis of Weather Radar Data for the Cloud Seeding in Korea, 2018

Authors: Yonghun Ro, Joo-Wan Cha, Sanghee Chae, Areum Ko, Woonseon Jung, Jong-Chul Ha

Abstract:

National Institute of Meteorological Science (NIMS) in South Korea has performed the cloud seeding to support the field of cloud physics. This is to determine the precipitation occurrence analyzing the changes in the microphysical schemes of clouds. NIMS conducted 12 times of cloud seeding in the lower height of the troposphere at Kangwon and Kyunggi provinces throughout 2018. The change in the reflectivity of the weather radar was analyzed to verify the enhancement of precipitation according to the cloud seeding in this study. First, the natural system in the near of the target area was separated to clear the seeding effect. The radar reflectivity in the point of ground gauge station was extracted in every 10 minutes and the increased values during the reaction time of cloud particles and seeding materials were estimated as a seeding effect considering the cloud temperature, wind speed and direction, and seeding line that the aircraft had passed by. The radar reflectivity affected by seeding materials was showed an increment of 5 to 10 dBZ, and enhanced precipitation cloud was also detected in the 11 cases of cloud seeding experiments.

Keywords: cloud seeding, reflectivity, weather radar, seeding effect

Procedia PDF Downloads 170
6487 Micro-Study of Dissimilar Welded Materials

Authors: Ezzeddin Anawa, Abdol-Ghane Olabi

Abstract:

The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.

Keywords: microharness , microstructure, laser welding and dissimilar jointed materials.

Procedia PDF Downloads 374
6486 Flexural Behavior of Geocell Reinforced Subgrade with Demolition Waste as Infill Material

Authors: Mahima D, Sini T

Abstract:

The use of geocell in subgrade has been previously studied by various researchers in the past. It was observed that the infill material used could affect the performance of the geocell reinforced subgrade. So, the use of waste materials as infill in geocell reinforced subgrade may prove to be more effective, economical, and environment-friendly. The performance of demolition waste as an infill was studied using flexure testing, and we compared the results with that of the other infill materials; soil and sand. Flexural behaviour is very important to the geosynthetic application in pavements as it acts as a the geocell reinforcement acts as flexible layer embedded in pavements and leads to an improvement in stress distribution and reduction in stress on the soil subgrade. The flexural behaviour was determined using four-point bending tests and results were expressed in terms of modulus improvement factor (MIF) and load-deflection behaviour. The geocell reinforced subgrade with different infill materials was tested for flexural behaviour in a polywood-polywood three-layered beam model. The deflections of the three-layered model beam were measured for the corresponding load increments. Elastic modulus of the soil-geocell composite was calculated using closed-form solutions. Geocells were prepared from geonets with three different aspect ratios 0.45, 0.67, and 1. The demolition waste infilled geocell mattress with aspect ratio 0.67 showed improved flexural behavior with MIF of 2.67 followed by soil and sand. Owing to its improved flexural resistance as seen from the MIF and load-deflection behivour, crushed demolition waste can be effectively used as infill material for geocell reinforced subgrade, thereby reducing the difficulties in the management of demolition waste and improving the load distribution of weaker subgrade.

Keywords: demolition waste, flexural behavior, geocell, modulus improvement factor

Procedia PDF Downloads 132
6485 Produced Water Treatment Using Novel Solid Scale Inhibitors Based on Silver Tungstate Loaded Kit-6: Static and Modeling Evaluation

Authors: R. Hosny, Mahmoud F. Mubarak, Heba M. Salem, Asmaa A. Abdelrahman

Abstract:

Oilfield scaling is a major problem in the oil and gas industry. Scale issues cost the industry millions of dollars in damage and lost production every year. One of the main causes of global production decline is scale. In this study, solid scale inhibitors based on silver tungstate loaded KIT-6 were synthesized and evaluated in both static and scale inhibition modeling. The silver tungstate loaded KIT-6 catalysts were synthesized via a simple impregnated method using 3D mesoporous KIT-6 as support. The synthesized materials were characterized using wide and low XRD, N2 adsorption–desorption analysis, TGA analysis, and FTIR, SEM, and XPS analysis. The scale inhibition efficiency of the synthesized materials was evaluated using a static scale inhibition test. The results of this study demonstrate the potential application of silver tungstate-loaded KIT-6 solid scale inhibitors for the oil and gas industry. The results of this study will contribute to the development of new and innovative solid scale inhibitors based on silver tungstate-loaded KIT-6. The inhibition efficiency of the scale inhibitor increases, and calcite scale inhibitor decreases with increasing pH (2 to8), it proposes that the scale inhibitor was more effective under alkaline conditions. An inhibition efficiency of 99% on calcium carbonate can be achieved at the optimal dosage of 7.5 ppm at 55oC, indicating that the scale inhibitor exhibits a relatively good inhibition performance on calcium carbonate. The use of these materials can potentially lead to more efficient and cost-effective solutions for scaling inhibition in various industrial processes.

Keywords: produced water treatment, solid scale inhibitors, calcite, silver tungestate, 3 D mesoporous KIT-6, oilfield scales, adsorption

Procedia PDF Downloads 144
6484 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization

Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang

Abstract:

The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.

Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling

Procedia PDF Downloads 254
6483 Engineering a Band Gap Opening in Dirac Cones on Graphene/Tellurium Heterostructures

Authors: Beatriz Muñiz Cano, J. Ripoll Sau, D. Pacile, P. M. Sheverdyaeva, P. Moras, J. Camarero, R. Miranda, M. Garnica, M. A. Valbuena

Abstract:

Graphene, in its pristine state, is a semiconductor with a zero band gap and massless Dirac fermions carriers, which conducts electrons like a metal. Nevertheless, the absence of a bandgap makes it impossible to control the material’s electrons, something that is essential to perform on-off switching operations in transistors. Therefore, it is necessary to generate a finite gap in the energy dispersion at the Dirac point. Intense research has been developed to engineer band gaps while preserving the exceptional properties of graphene, and different strategies have been proposed, among them, quantum confinement of 1D nanoribbons or the introduction of super periodic potential in graphene. Besides, in the context of developing new 2D materials and Van der Waals heterostructures, with new exciting emerging properties, as 2D transition metal chalcogenides monolayers, it is fundamental to know any possible interaction between chalcogenide atoms and graphene-supporting substrates. In this work, we report on a combined Scanning Tunneling Microscopy (STM), Low Energy Electron Diffraction (LEED), and Angle-Resolved Photoemission Spectroscopy (ARPES) study on a new superstructure when Te is evaporated (and intercalated) onto graphene over Ir(111). This new superstructure leads to the electronic doping of the Dirac cone while the linear dispersion of massless Dirac fermions is preserved. Very interestingly, our ARPES measurements evidence a large band gap (~400 meV) at the Dirac point of graphene Dirac cones below but close to the Fermi level. We have also observed signatures of the Dirac point binding energy being tuned (upwards or downwards) as a function of Te coverage.

Keywords: angle resolved photoemission spectroscopy, ARPES, graphene, spintronics, spin-orbitronics, 2D materials, transition metal dichalcogenides, TMDCs, TMDs, LEED, STM, quantum materials

Procedia PDF Downloads 79
6482 Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam

Authors: Cheng Yang Kwa, Yoke Rung Wong

Abstract:

Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency.

Keywords: structural health monitoring, NDT, cantilever, laminate

Procedia PDF Downloads 101
6481 Evaluation of Iron Application Method to Remediate Coastal Marine Sediment

Authors: Ahmad Seiar Yasser

Abstract:

Sediment is an important habitat for organisms and act as a store house for nutrients in aquatic ecosystems. Hydrogen sulfide is produced by microorganisms in the water columns and sediments, which is highly toxic and fatal to benthic organisms. However, the irons have the capacity to regulate the formation of sulfide by poising the redox sequence and to form insoluble iron sulfide and pyrite compounds. Therefore, we conducted two experiments aimed to evaluate the remediation efficiency of iron application to organically enrich and improve sediments environment. Experiments carried out in the laboratory using intact sediment cores taken from Mikawa Bay, Japan at every month from June to September 2017 and October 2018. In Experiment 1, after cores were collected, the iron powder or iron hydroxide were applied to the surface sediment with 5 g/ m2 or 5.6 g/ m2, respectively. In Experiment 2, we experimentally investigated the removal of hydrogen sulfide using (2mm or less and 2 to 5mm) of the steelmaking slag. Experiments are conducted both in the laboratory with the same boundary conditions. The overlying water were replaced with deoxygenated filtered seawater, and cores were sealed a top cap to keep anoxic condition with a stirrer to circulate the overlying water gently. The incubation experiments have been set in three treatments included the control, and each treatment replicated and were conducted with the same temperature of the in-situ conditions. Water samples were collected to measure the dissolved sulfide concentrations in the overlying water at appropriate time intervals by the methylene blue method. Sediment quality was also analyzed after the completion of the experiment. After the 21 days incubation, experimental results using iron powder and ferric hydroxide revealed that application of these iron containing materials significantly reduced sulfide release flux from the sediment into the overlying water. The average dissolved sulfides concentration in the overlying water of the treatment group was significantly decrease (p = .0001). While no significant difference was observed between the control group after 21 day incubation. Therefore, the application of iron to the sediment is a promising method to remediate contaminated sediments in a eutrophic water body, although ferric hydroxide has better hydrogen sulfide removal effects. Experiments using the steelmaking slag also clarified the fact that capping with (2mm or less and 2 to 5mm) of slag steelmaking is an effective technique for remediation of bottom sediments enriched organic containing hydrogen sulfide because it leads to the induction of chemical reaction between Fe and sulfides occur in sediments which did not occur in conditions naturally. Although (2mm or less) of slag steelmaking has better hydrogen sulfide removal effects. Because of economic reasons, the application of steelmaking slag to the sediment is a promising method to remediate contaminated sediments in the eutrophic water body.

Keywords: sedimentary, H2S, iron, iron hydroxide

Procedia PDF Downloads 163
6480 Treatment of Tannery Effluents by the Process of Coagulation

Authors: Gentiana Shegani

Abstract:

Coagulation is a process that sanitizes leather effluents. It aims to reduce pollutants such as Chemical Oxygen Demand (COD), chloride, sulphate, chromium, suspended solids, and other dissolved solids. The current study aimed to evaluate coagulation efficiency of tannery wastewater by analysing the change in organic matter, odor, colour, ammonium ions, nutrients, chloride, H2S, sulphate, suspended solids, total dissolved solids, faecal pollution, and chromium hexavalent before and after treatment. Effluent samples were treated with coagulants Ca(OH)2 and FeSO4 .7H2O. The best advantages of this treatment included the removal of: COD (81.60%); ammonia ions (98.34%); nitrate ions (92%); chromium hexavalent (75.00%); phosphate (70.00%); chloride (69.20%); and H₂S (50%). Results also indicated a high level of efficiency in the reduction of fecal pollution indicators. Unfortunately, only a modest reduction of sulphate (19.00%) and TSS (13.00%) and an increase in TDS (15.60%) was observed.

Keywords: coagulation, effluent, tannery, treatment

Procedia PDF Downloads 343
6479 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: biocorrosion, concrete, leaching, bacteria

Procedia PDF Downloads 451
6478 Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface

Authors: Rattanan Tippayaphalapholgul, Yasothorn Sapsathiarn

Abstract:

Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM) together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell.

Keywords: effective engineering properties, electroelastic response, imperfect interface, piezocomposite

Procedia PDF Downloads 231
6477 Applications of Nanoparticles via Laser Ablation in Liquids: A Review

Authors: Fawaz M. Abdullah, Abdulrahman M. Al-Ahmari, Madiha Rafaqat

Abstract:

Laser ablation of any solid target in the liquid leads to fabricate nanoparticles (NPs) with metal or different compositions of materials such as metals, alloys, oxides, carbides, hydroxides. The fabrication of NPs in liquids based on laser ablation has grown up rapidly in the last decades compared to other techniques. Nowadays, laser ablation has been improved to prepare different types of NPs with special morphologies, microstructures, phases, and sizes, which can be applied in various fields. The paper reviews and highlights the different sizes, shapes and application field of nanoparticles that are produced by laser ablation under different liquids and materials. Also, the paper provides a case study for producing a titanium NPs produced by laser ablation submerged in distilled water. The size of NPs is an important parameter, especially for their usage and applications. The size and shape have been analyzed by SEM, (EDAX) was applied to evaluate the oxidation and elements of titanium NPs and the XRD was used to evaluate the phase composition and the peaks of both titanium and some element. SEM technique showed that the synthesized NPs size ranges were between 15-35 nm which can be applied in various field such as annihilator for cancerous cell etc.

Keywords: nanoparticles, laser ablation, titanium NPs, applications

Procedia PDF Downloads 139
6476 Reference Intensity Ratio Semi-Quantitative Analysis of Cordierite-Mullite Synthesis by a Solid State Method

Authors: D. Wattanasiriwech, S. Wattanasiriwech

Abstract:

In this paper, attempt to synthesize designed cordierite-mullite system with various ratios was performed using a solid-state method. Alumina, quartz, magnesia, and talc were used as starting materials for the synthesis. Talc was added for two purposes; to assist the reaction progress and to be the Mg source. The raw materials were mixed and fired at 1350°C for 2 h and 1400°C for 2 and 4 h. The resulting phase compositions were analysed using the Reference Intensity Ratio (RIR) semi-quantitative analysis method. The highest amount of cordierite up to Cordierite phase 96% could be obtained at the firing scheme of 1400°C for 4 h in the C100-M0. Mullite could not be formed at the selected scheme if talc did not present so no pure mullite was observed in the selected firing regime. The highest amount of mullite co-existed with cordierite and other phases were 74%.

Keywords: RIR semi-quantitative analysis, cordierite-mullite system, solid state synthesis, X-Ray diffraction

Procedia PDF Downloads 169
6475 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric

Authors: C. W. Kan

Abstract:

Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.

Keywords: learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA

Procedia PDF Downloads 305
6474 Chemical Reaction, Heat and Mass Transfer on Unsteady MHD Flow along a Vertical Stretching Sheet with Heat Generation/Absorption and Variable Viscosity

Authors: Jatindra Lahkar

Abstract:

The effect of chemical reaction on laminar mixed convection flow and heat and mass transfer along a vertical unsteady stretching sheet is investigated, in the presence of heat generation/absorption with variable viscosity and viscous dissipation. The governing non-linear partial differential equations are reduced to ordinary differential equations using similarity transformation and solved numerically using the fourth order Runge-Kutta method along with shooting technique. The effects of various flow parameters on the velocity, temperature and concentration distributions are analyzed and presented graphically. Skin-friction coefficient, Nusselt number and Sherwood number are derived at the sheet. It is observed that the influence of chemical reaction, the fluid flow along the sheet accelerate with the increase of chemical reaction parameter, on the other hand, temperature of the fluid increases with increase of chemical reaction parameter but concentration of the fluid reduces with it. The boundary layer decreases on the surface of the sheet for all values of unsteadiness parameter, increasing values of the chemical reaction parameter. The increases in the values of Sc cause the species concentration and its boundary layer thickness to decrease resulting in less induced flow and higher fluid temperatures. This is depicted in the decreases in the velocity and species concentration and increases in the fluid temperature as Sc increases.

Keywords: chemical reaction, heat generation/absorption, magnetic number, unsteadiness, variable viscosity

Procedia PDF Downloads 307