Search results for: network dynamic transmission modes
7872 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes
Authors: Frank Kuebler, Rolf Steinhilper
Abstract:
Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process
Procedia PDF Downloads 5247871 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression
Procedia PDF Downloads 2867870 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4907869 Cryptography and Cryptosystem a Panacea to Security Risk in Wireless Networking
Authors: Modesta E. Ezema, Chikwendu V. Alabekee, Victoria N. Ishiwu, Ifeyinwa NwosuArize, Chinedu I. Nwoye
Abstract:
The advent of wireless networking in computing technology cannot be overemphasized, it opened up easy accessibility to information resources, networking made easier and brought internet accessibility to our doorsteps, but despite all these, some mishap came in with it that is causing mayhem in today ‘s overall information security. The cyber criminals will always compromise the integrity of a message that is not encrypted or that is encrypted with a weak algorithm.In other to correct the mayhem, this study focuses on cryptosystem and cryptography. This ensures end to end crypt messaging. The study of various cryptographic algorithms, as well as the techniques and applications of the cryptography for efficiency, were all considered in the work., present and future applications of cryptography were dealt with as well as Quantum Cryptography was exposed as the current and the future area in the development of cryptography. An empirical study was conducted to collect data from network users.Keywords: algorithm, cryptography, cryptosystem, network
Procedia PDF Downloads 3497868 A Cooperative Signaling Scheme for Global Navigation Satellite Systems
Authors: Keunhong Chae, Seokho Yoon
Abstract:
Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.Keywords: global navigation satellite network, cooperative signaling, data combining, nodes
Procedia PDF Downloads 2807867 Comparison of Meshing Stiffness of Altered Tooth Sum Spur Gear Tooth with Different Pressure Angles
Authors: H. K. Sachidananda, K. Raghunandana, B. Shivamurthy
Abstract:
The estimation of gear tooth stiffness is important for finding the load distribution between the gear teeth when two consecutive sets of teeth are in contact. Based on dynamic model a C-program has been developed to compute mesh stiffness. By using this program position dependent mesh stiffness of spur gear tooth for various profile shifts have been computed for a fixed center distance and altering tooth-sum gearing (100 by ± 4%). It is found that the C-program using dynamic model is one of the rapid soft computing technique which helps in design of gears. The mesh tooth stiffness along the path of contact is studied for both 20° and 25° pressure angle gears at various profile shifts. Better tooth stiffness is noticed in case of negative alteration tooth-sum gears compared to standard and positive alteration tooth-sum gears. Also, in case of negative alteration tooth-sum gearing better mesh stiffness is noticed in 20° pressure angle when compared to 25°.Keywords: altered tooth-sum gearing, bending fatigue, mesh stiffness, spur gear
Procedia PDF Downloads 3257866 Harnessing Earth's Electric Field and Transmission of Electricity
Authors: Vaishakh Medikeri
Abstract:
Energy in this Universe is the most basic characteristic of every particle. Since the birth of life on this planet, there has been a quest undertaken by the living beings to analyze, understand and harness the precious natural facts of the nature. In this quest, one of the greatest undertaken is the process of harnessing the naturally available energy. Scientists around the globe have discovered many ways to harness the freely available energy. But even today we speak of “Power Crisis”. Nikola Tesla once said “Nature has stored up in this universe infinite energy”. Energy is everywhere around us in unlimited quantities; all of it waiting to be harnessed by us. Here in this paper a method has been proposed to harness earth's electric field and transmit the stored electric energy using strong magnetic fields and electric fields. In this paper a new technique has been proposed to harness earth's electric field which is everywhere around the world in infinite quantities. Near the surface of the earth there is an electric field of about 120V/m. This electric field is used to charge a capacitor with high capacitance. Later the energy stored is allowed to pass through a device which converts the DC stored into AC. The AC so produced is then passed through a step down transformer to magnify the incoming current. Later the current passes through the RLC circuit. Later the current can be transmitted wirelessly using the principle of resonant inductive coupling. The proposed apparatus can be placed in most of the required places and any circuit tuned to the frequency of the transmitted current can receive the energy. The new source of renewable energy is of great importance if implemented since the apparatus is not costly and can be situated in most of the required places. And also the receiver which receives the transmitted energy is just an RLC circuit tuned to the resonant frequency of the transmitted energy. By using the proposed apparatus the energy losses can be reduced to a very large extent.Keywords: capacitor, inductive resonant coupling, RLC circuit, transmission of electricity
Procedia PDF Downloads 3737865 Semantic Network Analysis of the Saudi Women Driving Decree
Authors: Dania Aljouhi
Abstract:
September 26th, 2017, is a historic date for all women in Saudi Arabia. On that day, Saudi Arabia announced the decree on allowing Saudi women to drive. With the advent of vision 2030 and its goal to empower women and increase their participation in Saudi society, we see how Saudis’ Twitter users deliberate the 2017 decree from different social, cultural, religious, economic and political factors. This topic bridges social media 'Twitter,' gender and social-cultural studies to offer insights into how Saudis’ tweets reflect a broader discourse on Saudi women in the age of social media. The present study aims to explore the meanings and themes that emerge by Saudis’ Twitter users in response to the 2017 royal decree on women driving. The sample used in the current study involves (n= 1000) tweets that were collected from Sep 2017 to March 2019 to account for the Saudis’ tweets before and after implementing the decree. The paper uses semantic and thematic network analysis methods to examine the Saudis’ Twitter discourse on the women driving issue. The paper argues that Twitter as a platform has mediated the discourse of women driving among the Saudi community and facilitated social changes. Finally, framing theory (Goffman, 1974) and Networked framing (Meraz & Papacharissi 2013) are both used to explain the tweets on the decree of allowing Saudi women to drive based on # Saudi women-driving-cars.Keywords: Saudi Arabia, women, Twitter, semantic network analysis, framing
Procedia PDF Downloads 1567864 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes
Authors: Ipek Kivanc, Demet Ozgur-Unluakin
Abstract:
Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes
Procedia PDF Downloads 1357863 Analysis of Noise Environment and Acoustics Material in Residential Building
Authors: Heruanda Alviana Giska Barabah, Hilda Rasnia Hapsari
Abstract:
Acoustic phenomena create an acoustic interpretation condition that describes the characteristics of the environment. In urban areas, the tendency of heterogeneous and simultaneous human activity form a soundscape that is different from other regions, one of the characteristics of urban areas that developing the soundscape is the presence of vertical model houses or residential building. Activities both within the building and surrounding environment are able to make the soundscape with certain characteristics. The acoustics comfort of residential building becomes an important aspect, those demand lead the building features become more diverse. Initial steps in mapping acoustic conditions in a soundscape are important, this is the method to determine uncomfortable condition. Noise generated by road traffic, railway, and plane is an important consideration, especially for urban people, therefore the proper design of the building becomes very important as an effort to bring appropriate acoustics comfort. In this paper the authors developed noise mapping on the location of the residential building. Mapping done by taking some point referring to the noise source. The mapping result become the basis for modeling the acoustics wave interacted with the building model. Material selection is done based on literature study and modeling simulation using Insul by considering the absorption coefficient and Sound Transmission Class. The analysis of acoustics rays is ray tracing method using Comsol simulator software that can show the movement of acoustics rays and their interaction with a boundary. The result of this study can be used to consider boundary material in residential building as well as consideration for improving the acoustic quality in the acoustics zones that are formed.Keywords: residential building, noise, absorption coefficient, sound transmission class, ray tracing
Procedia PDF Downloads 2477862 Enhance Security in XML Databases: XLog File for Severity-Aware Trust-Based Access Control
Authors: A: Asmawi, L. S. Affendey, N. I. Udzir, R. Mahmod
Abstract:
The topic of enhancing security in XML databases is important as it includes protecting sensitive data and providing a secure environment to users. In order to improve security and provide dynamic access control for XML databases, we presented XLog file to calculate user trust values by recording users’ bad transaction, errors and query severities. Severity-aware trust-based access control for XML databases manages the access policy depending on users' trust values and prevents unauthorized processes, malicious transactions and insider threats. Privileges are automatically modified and adjusted over time depending on user behaviour and query severity. Logging in database is an important process and is used for recovery and security purposes. In this paper, the Xlog file is presented as a dynamic and temporary log file for XML databases to enhance the level of security.Keywords: XML database, trust-based access control, severity-aware, trust values, log file
Procedia PDF Downloads 3007861 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load
Procedia PDF Downloads 3527860 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90˚/0˚] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of sub-elements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.Keywords: dynamic finite element, localized interface degeneration, proportional damping, state-space modeling
Procedia PDF Downloads 2967859 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents
Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary
Abstract:
Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis
Procedia PDF Downloads 3637858 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks
Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry
Abstract:
Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices
Procedia PDF Downloads 517857 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 2097856 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 1107855 Experimental Options for the Role of Dynamic Torsion in General Relativity
Authors: Ivan Ravlich, Ivan Linscott, Sigrid Close
Abstract:
The experimental search for spin coupling in General Relativity via torsion has been inconclusive. In this work, further experimental avenues to test dynamic torsion are proposed and evaluated. In the extended theory, by relaxing the torsion free condition on the metric connection, general relativity is reformulated to relate the spin density of particles to a new quantity, the torsion tensor. In torsion theories, the spin tensor and torsion tensor are related in much the same way as the stress-energy tensor is related to the metric connection. Similarly, as the metric is the field associated with the metric connection, fields can be associated with the torsion tensor resulting in a field that is either propagating or static. Experimental searches for static torsion have thus far been inconclusive, and currently, there have been no experimental tests for propagating torsion. Experimental tests of propagating theories of torsion are proposed utilizing various spin densities of matter, such as interfaces in superconducting materials and plasmas. The experimental feasibility and observable bounds are estimated, and the most viable candidates are selected to pursue in detail in a future work.Keywords: general relativity, gravitation, propagating torsion, spin density
Procedia PDF Downloads 2307854 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning
Authors: Kwaku Damoah
Abstract:
This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.
Procedia PDF Downloads 707853 Estimates of Freshwater Content from ICESat-2 Derived Dynamic Ocean Topography
Authors: Adan Valdez, Shawn Gallaher, James Morison, Jordan Aragon
Abstract:
Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport and modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116 km3/year. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff. The total climatological freshwater content is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity driven pycnocline as opposed to the temperature driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and remotely sensed dynamic ocean topography (DOT). In-situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time consuming. NASA’s Advanced Topographic Laser Altimeter System (ATLAS) derived dynamic ocean topography (DOT), and Air Expendable CTD (AXCTD) derived Freshwater Content are used to develop a linear regression model. In-situ data for the regression model is collected across the 150° West meridian, which typically defines the centerline of the Beaufort Gyre. Two freshwater content models are determined by integrating the freshwater volume between the surface and an isopycnal corresponding to reference salinities of 28.7 and 34.8. These salinities correspond to those of the winter pycnocline and total climatological freshwater content, respectively. Using each model, we determine the strength of the linear relationship between freshwater content and satellite derived DOT. The result of this modeling study could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non in-situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially reduce reliance on field deployment platforms to characterize physical ocean properties.Keywords: ICESat-2, dynamic ocean topography, freshwater content, beaufort gyre
Procedia PDF Downloads 877852 SISSLE in Consensus-Based Ripple: Some Improvements in Speed, Security, Last Mile Connectivity and Ease of Use
Authors: Mayank Mundhra, Chester Rebeiro
Abstract:
Cryptocurrencies are rapidly finding wide application in areas such as Real Time Gross Settlements and Payments Systems. Ripple is a cryptocurrency that has gained prominence with banks and payment providers. It solves the Byzantine General’s Problem with its Ripple Protocol Consensus Algorithm (RPCA), where each server maintains a list of servers, called Unique Node List (UNL) that represents the network for the server, and will not collectively defraud it. The server believes that the network has come to a consensus when members of the UNL come to a consensus on a transaction. In this paper we improve Ripple to achieve better speed, security, last mile connectivity and ease of use. We implement guidelines and automated systems for building and maintaining UNLs for resilience, robustness, improved security, and efficient information propagation. We enhance the system so as to ensure that each server receives information from across the whole network rather than just from the UNL members. We also introduce the paradigm of UNL overlap as a function of information propagation and the trust a server assigns to its own UNL. Our design not only reduces vulnerabilities such as eclipse attacks, but also makes it easier to identify malicious behaviour and entities attempting to fraudulently Double Spend or stall the system. We provide experimental evidence of the benefits of our approach over the current Ripple scheme. We observe ≥ 4.97x and 98.22x in speedup and success rate for information propagation respectively, and ≥ 3.16x and 51.70x in speedup and success rate in consensus.Keywords: Ripple, Kelips, unique node list, consensus, information propagation
Procedia PDF Downloads 1467851 Defense Mechanism Maturity and the Severity of Mood Disorder Symptoms
Authors: Maja Pandža, Sanjin Lovrić, Iva Čolak, Josipa Mandarić, Miro Klarić
Abstract:
This study explores the role of symptoms related to mood disorders salience on different types of defense mechanisms (mature, neurotic, immature) predominance. Total of 177 both clinical and non-clinical participants in Mostar, Bosnia & Herzegovina, completed a battery of questionnaires associated with defense mechanisms and self-reported depression and anxiety symptoms. The sample was additionally divided into four groups, given the level of symptoms experienced: 1. minimal, 2. mild, 3. moderate, 4. severe depression/anxiety. Participants with minimal anxiety and depression symptoms use mature defense mechanisms more often than other three groups. Immature mechanisms are most commonly used by the group with severe depression/anxiety levels in comparison with other groups. These differences are discussed on the dynamic level of analysis to have a better understanding of the relationship between defense mechanisms' maturity and degree of mood disorders' symptom severity. Also, results given could serve as an implication for the psychotherapeutic treatment plans.Keywords: anxiety/depression symptoms, clinical/non-clinical sample, defense mechanism maturity, dynamic approach
Procedia PDF Downloads 4577850 Transportation Mode Choice Analysis for Accessibility of the Mehrabad International Airport by Statistical Models
Authors: Navid Mirzaei Varzeghani, Mahmoud Saffarzadeh, Ali Naderan, Amirhossein Taheri
Abstract:
Countries are progressing, and the world's busiest airports see year-on-year increases in travel demand. Passenger acceptability of an airport depends on the airport's appeals, which may include one of these routes between the city and the airport, as well as the facilities to reach them. One of the critical roles of transportation planners is to predict future transportation demand so that an integrated, multi-purpose system can be provided and diverse modes of transportation (rail, air, and land) can be delivered to a destination like an airport. In this study, 356 questionnaires were filled out in person over six days. First, the attraction of business and non-business trips was studied using data and a linear regression model. Lower travel costs, a range of ages more significant than 55, and other factors are essential for business trips. Non-business travelers, on the other hand, have prioritized using personal vehicles to get to the airport and ensuring convenient access to the airport. Business travelers are also less price-sensitive than non-business travelers regarding airport travel. Furthermore, carrying additional luggage (for example, more than one suitcase per person) undoubtedly decreases the attractiveness of public transit. Afterward, based on the manner and purpose of the trip, the locations with the highest trip generation to the airport were identified. The most famous district in Tehran was District 2, with 23 visits, while the most popular mode of transportation was an online taxi, with 12 trips from that location. Then, significant variables in separation and behavior of travel methods to access the airport were investigated for all systems. In this scenario, the most crucial factor is the time it takes to get to the airport, followed by the method's user-friendliness as a component of passenger preference. It has also been demonstrated that enhancing public transportation trip times reduces private transportation's market share, including taxicabs. Based on the responses of personal and semi-public vehicles, the desire of passengers to approach the airport via public transportation systems was explored to enhance present techniques and develop new strategies for providing the most efficient modes of transportation. Using the binary model, it was clear that business travelers and people who had already driven to the airport were the least likely to change.Keywords: multimodal transportation, demand modeling, travel behavior, statistical models
Procedia PDF Downloads 1737849 Malaria Management among Dispensers in Drug Retail Outlets in Buea Community: An Assessment of Knowledge of Malaria and Antimalarial Drug Prescription and Dispensing Practices
Authors: Marcelus U. Ajonina, Deodata B. Ngonga, Kenric B. Ware, Carine K. Nfor
Abstract:
Background: Lack of knowledge of rational use of antimalarial drugs among dispensers is a serious problem, especially in areas of intense transmission, thus increasing the risk of resistance and adverse drug reactions. This study was aimed at assessing the knowledge of malaria as well as perception and dispensing practices of antimalarials among vendors in Buea community. Methods: A community-based cross-sectional survey of a random sample of 140 drug vendors living within the Buea community was conducted between March and June 2017. A questionnaire was designed to obtain information from drug vendors on the general knowledge of malaria as well as dispensing practices. Data were analyzed using SPSS Statistics 20.0 and were considered significant at p ≤ 0.05. Results: Knowledge of malaria symptoms, transmission, and prevention was reasonable among 55.8% (77) of the respondents. Only 33.6% (47) of the respondents could attribute the cause of malaria to protozoan of genus Plasmodium species. Of the 140 vendors, 115 (82.7%) prescribe antimalarial drugs. The knowledge of the national protocol was malaria case management among dispensers was 35.0%. Vendors in hospital/community pharmacies were 2.4 times (OR = 3.14, 95% CI: 4.14 - 8.74, p < 0.001) more knowledgeable about malaria treatment protocol than those of in drugstores. The prevalence of self-prescription of antimalarials was 39.3%. Self-prescription was significantly higher in drugstores than hospital/community pharmacies (p=0.004). In all, 56 (40.6%) of vendors showed good practices regarding antimalarial drug dispensing with the majority (51.7%) from community pharmacies (OR=2.27,95% CI: 1.13-4.56). Conclusion: Findings reveal moderate knowledge of malaria but poor prescription and dispensing practices of antimalarial drugs among vendors, thus indicating a need for routine monitoring and evaluation to prevent the emergence of resistant strains to current efficacious antimalarials.Keywords: antimalarials, drug retail outlets, dispensing, drug resistance, prescription
Procedia PDF Downloads 1367848 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking
Authors: Jonas Colin
Abstract:
Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.Keywords: chatbot, GPT 3.5, metacognition, symbiose
Procedia PDF Downloads 707847 Implementation of the Interlock Protocol to Enhance Security in Unmanned Aerial Vehicles
Authors: Vikram Prabhu, Mohammad Shikh Bahaei
Abstract:
This paper depicts the implementation of a new infallible technique to protect an Unmanned Aerial Vehicle from cyber-attacks. An Unmanned Aerial Vehicle (UAV) could be vulnerable to cyber-attacks because of jammers or eavesdroppers over the network which pose as a threat to the security of the UAV. In the field of network security, there are quite a few protocols which can be used to establish a secure connection between UAVs and their Operators. In this paper, we discuss how the Interlock Protocol could be implemented to foil the Man-in-the-Middle Attack. In this case, Wireshark has been used as the sniffer (man-in-the-middle). This paper also shows a comparison between the Interlock Protocol and the TCP Protocols using cryptcat and netcat and at the same time highlights why the Interlock Protocol is the most efficient security protocol to prevent eavesdropping over the communication channel.Keywords: interlock protocol, Diffie-Hellman algorithm, unmanned aerial vehicles, control station, man-in-the-middle attack, Wireshark
Procedia PDF Downloads 3017846 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 2727845 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2967844 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer
Procedia PDF Downloads 4017843 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics
Authors: F. Lhafiane, A. Elbyed, M. Bouchoum
Abstract:
The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.Keywords: reverse logistics, multi agent system, prometheus methodology
Procedia PDF Downloads 471