Search results for: industrial networks
3037 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology
Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester
Abstract:
Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production
Procedia PDF Downloads 2403036 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM
Authors: N. Yogal, C. Lehrmann
Abstract:
The use of Permanent magnet (PM) is increasing in the Permanent magnet synchronous machines (PMSM) to fulfill the requirement of high efficiency machines in modern industry. PMSM is widely used in industrial application, wind power plant and automotive industry. Since the PMSM are used in different environment condition, the long-term effect of NdFeB-based magnets at high temperatures and corrosion behavior has to be studied due to irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in the climatic chamber has been presented. The magnetic moment and magnetic field of the magnet were studied experimentally.Keywords: permanent magnet (PM), NdFeB, corrosion behavior, temperature effect, Permanent magnet synchronous machine (PMSM)
Procedia PDF Downloads 3953035 The Evolution of National Technological Capability Roles From the Perspective of Researcher’s Transfer: A Case Study of Artificial Intelligence
Authors: Yating Yang, Xue Zhang, Chengli Zhao
Abstract:
Technology capability refers to the comprehensive ability that influences all factors of technological development. Among them, researchers’ resources serve as the foundation and driving force for technology capability, representing a significant manifestation of a country/region's technological capability. Therefore, the cross-border transfer behavior of researchers to some extent reflects changes in technological capability between countries/regions, providing a unique research perspective for technological capability assessment. This paper proposes a technological capability assessment model based on personnel transfer networks, which consists of a researchers' transfer network model and a country/region role evolution model. It evaluates the changes in a country/region's technological capability roles from the perspective of researcher transfers and conducts an analysis using artificial intelligence as a case study based on literature data. The study reveals that the United States, China, and the European Union are core nodes, and identifies the role evolution characteristics of several major countries/regions.Keywords: transfer network, technological capability assessment, central-peripheral structure, role evolution
Procedia PDF Downloads 933034 Wireless Sensor Network Energy Efficient and QoS-Aware MAC Protocols: A Survey
Authors: Bashir Abdu Muzakkari, Mohamad Afendee Mohamad, Mohd Fadzil Abdul Kadir
Abstract:
Wireless Sensor Networks (WSNs) is an aggregation of several tiny, low-cost sensor nodes, spatially distributed to monitor physical or environmental status. WSN is constantly changing because of the rapid technological advancements in sensor elements such as radio, battery and operating systems. The Medium Access Control (MAC) protocols remain very vital in the WSN because of its role in coordinating communication amongst the sensors. Other than battery consumption, packet collision, network lifetime and latency are factors that largely depend on WSN MAC protocol and these factors have been widely treated in recent days. In this paper, we survey some latest proposed WSN Contention-based, Scheduling-based and Hybrid MAC protocols while presenting an examination, correlation of advantages and limitations of each protocol. Concentration is directed towards investigating the treatment of Quality of Service (QoS) performance metrics within these particular protocols. The result shows that majority of the protocols leaned towards energy conservation. We, therefore, believe that other performance metrics of guaranteed QoS such as latency, throughput, packet loss, network and bandwidth availability may play a critical role in the design of future MAC protocols for WSNs.Keywords: WSN, QoS, energy consumption, MAC protocol
Procedia PDF Downloads 4003033 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network
Authors: Habtemariam Alemu
Abstract:
It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink
Procedia PDF Downloads 5173032 Heat Transfer Enhancement by Turbulent Impinging Jet with Jet's Velocity Field Excitations Using OpenFOAM
Authors: Naseem Uddin
Abstract:
Impinging jets are used in variety of engineering and industrial applications. This paper is based on numerical simulations of heat transfer by turbulent impinging jet with velocity field excitations using different Reynolds Averaged Navier-Stokes Equations models. Also Detached Eddy Simulations are conducted to investigate the differences in the prediction capabilities of these two simulation approaches. In this paper the excited jet is simulated in non-commercial CFD code OpenFOAM with the goal to understand the influence of dynamics of impinging jet on heat transfer. The jet’s frequencies are altered keeping in view the preferred mode of the jet. The Reynolds number based on mean velocity and diameter is 23,000 and jet’s outlet-to-target wall distance is 2. It is found that heat transfer at the target wall can be influenced by judicious selection of amplitude and frequencies.Keywords: excitation, impinging jet, natural frequency, turbulence models
Procedia PDF Downloads 2743031 Theoretical Analysis of Performance Parameters of a Microchannel Heat Exchanger
Authors: Shreyas Kotian, Nishant Jainm, Nachiket Methekar
Abstract:
The increase in energy demands in various industrial sectors has called for devices small in size with high heat transfer rates. Microchannel heat exchangers (MCHX) have thus been studied and applied in various fields such as thermal engineering, aerospace engineering and nanoscale heat transfer. They have been a case of investigation due to their augmented thermal characteristics and low-pressure drop. The goal of the current investigation is to analyze the thermohydraulic performance of the heat exchanger analytically. Studies are done for various inlet conditions and flow conditions. At Thi of 90°C, the effectiveness increased by about 22% for an increase in Re from 1000 to 5000 of the cold fluid. It was also observed that at Re = 5000 for the hot fluid, the heat recovered by the hot fluid increases by about 69% for an increase in inlet temperature of the hot fluid from 50°C to 70°C.Keywords: theoretical analysis, performance parameters, microchannel heat exchanger, Reynolds number
Procedia PDF Downloads 1523030 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 1123029 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine
Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li
Abstract:
Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.Keywords: false alarm, fault diagnosis, SVM, k-means, BIT
Procedia PDF Downloads 1553028 The Effect of Mineral Addition (Natural Pozzolana) on the Capillary Absorption and Compressive Strength of Environmental Mortar
Authors: W. Deboucha, M. N. Oudjit, A. Bouzid, L. Belagraa, A.Noui
Abstract:
The cement manufacturing is the one of the factors that pollutes the atmosphere in the industrial sector. The common way to reduce this pollution is using mineral additions as partial replacement of Portland cement. Particularly, natural pozzolana (NP) is component in which they can be used to decrease the rate of pollution. The main objective of this experimental work is the study of the effect of mineral addition (natural pozzolana) on the capillary water absorption and compressive-flexural strength of cement mortar. The results obtained in the present research showed that the higher dosages of natural pozzolana added could be the principal parameter of such decrease in strength at early and medium term. Further, this increase of incorporated addition has been believed to reduce the capillary water absorption.Keywords: Natural pozzolana, mortar, strength, capillary absorption
Procedia PDF Downloads 3493027 Experiences of Discrimination and Coping Strategies of Second Generation Academics during the Career-Entry Phase in Austria
Authors: R. Verwiebe, L. Seewann, M. Wolf
Abstract:
This presentation addresses marginalization and discrimination as experienced by young academics with a migrant background in the Austrian labor market. Focusing on second generation academics of Central Eastern European and Turkish descent we explore two major issues. First, we ask whether their career-entry and everyday professional life entails origin-specific barriers. As educational residents, they show competences which, when lacking, tend to be drawn upon to explain discrimination: excellent linguistic skills, accredited high-level training, and networks. Second, we concentrate on how this group reacts to discrimination and overcomes experiences of marginalization. To answer these questions, we utilize recent sociological and social psychological theories that focus on the diversity of individual experiences. This distinguishes us from a long tradition of research that has dealt with the motives that inform discrimination, but has less often considered the effects on those concerned. Similarly, applied coping strategies have less often been investigated, though they may provide unique insights into current problematic issues. Building upon present literature, we follow recent discrimination research incorporating the concepts of ‘multiple discrimination’, ‘subtle discrimination’, and ‘visual social markers’. 21 problem-centered interviews are the empirical foundation underlying this study. The interviewees completed their entire educational career in Austria, graduated in different universities and disciplines and are working in their first post-graduate jobs (career entry phase). In our analysis, we combined thematic charting with a coding method. The results emanating from our empirical material indicated a variety of discrimination experiences ranging from barely perceptible disadvantages to directly articulated and overt marginalization. The spectrum of experiences covered stereotypical suppositions at job interviews, the disavowal of competencies, symbolic or social exclusion by new colleges, restricted professional participation (e.g. customer contact) and non-recruitment due to religious or ethnical markers (e.g. headscarves). In these experiences the role of the academics education level, networks, or competences seemed to be minimal, as negative prejudice on the basis of visible ‘social markers’ operated ‘ex-ante’. The coping strategies identified in overcoming such barriers are: an increased emphasis on effort, avoidance of potentially marginalizing situations, direct resistance (mostly in the form of verbal opposition) and dismissal of negative experiences by ignoring or ironizing the situation. In some cases, the academics drew into their specific competences, such as an intellectual approach of studying specialist literature, focus on their intercultural competences or planning to migrate back to their parent’s country of origin. Our analysis further suggests a distinction between reactive (i.e. to act on and respond to experienced discrimination) and preventative strategies (applied to obviate discrimination) of coping. In light of our results, we would like to stress that the tension between educational and professional success experienced by academics with a migrant background – and the barriers and marginalization they continue to face – are essential issues to be introduced to socio-political discourse. It seems imperative to publicly accentuate the growing social, political and economic significance of this group, their educational aspirations, as well as their experiences of achievement and difficulties.Keywords: coping strategies, discrimination, labor market, second generation university graduates
Procedia PDF Downloads 2213026 Short Review on Models to Estimate the Risk in the Financial Area
Authors: Tiberiu Socaciu, Tudor Colomeischi, Eugenia Iancu
Abstract:
Business failure affects in various proportions shareholders, managers, lenders (banks), suppliers, customers, the financial community, government and society as a whole. In the era in which we have telecommunications networks, exists an interdependence of markets, the effect of a failure of a company is relatively instant. To effectively manage risk exposure is thus require sophisticated support systems, supported by analytical tools to measure, monitor, manage and control operational risks that may arise. As we know, bankruptcy is a phenomenon that managers do not want no matter what stage of life is the company they direct / lead. In the analysis made by us, by the nature of economic models that are reviewed (Altman, Conan-Holder etc.), estimating the risk of bankruptcy of a company corresponds to some extent with its own business cycle tracing of the company. Various models for predicting bankruptcy take into account direct / indirect aspects such as market position, company growth trend, competition structure, characteristics and customer retention, organization and distribution, location etc. From the perspective of our research we will now review the economic models known in theory and practice for estimating the risk of bankruptcy; such models are based on indicators drawn from major accounting firms.Keywords: Anglo-Saxon models, continental models, national models, statistical models
Procedia PDF Downloads 4053025 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables
Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi
Abstract:
In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table
Procedia PDF Downloads 2403024 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma
Procedia PDF Downloads 1553023 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages
Authors: Y. Galerkin, A. Rekstin, K. Soldatova
Abstract:
Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrated ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φdes deserves additional study.Keywords: centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser
Procedia PDF Downloads 4673022 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion
Authors: M. Sari Yilmaz, N. Karamahmut Mermer
Abstract:
Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence (XRF) spectroscopy and X-ray diffraction (XRD). The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry (ICP-OES).Keywords: extraction, fly ash, fusion, XRD
Procedia PDF Downloads 3223021 Air Flows along Perforated Metal Plates with the Heat Transfer
Authors: Karel Frana, Sylvio Simon
Abstract:
The objective of the paper is a numerical study of heat transfer between perforated metal plates and the surrounding air flows. Different perforation structures can nowadays be found in various industrial products. Besides improving the mechanical properties, the perforations can intensify the heat transfer as well. The heat transfer coefficient depends on a wide range of parameters such as type of perforation, size, shape, flow properties of the surrounding air etc. The paper was focused on three different perforation structures which have been investigated from the point of the view of the production in the previous studies. To determine the heat coefficients and the Nusselt numbers, the numerical simulation approach was adopted. The calculations were performed using the OpenFOAM software. The three-dimensional, unstable, turbulent and incompressible air flow around the perforated surface metal plate was considered.Keywords: perforations, convective heat transfers, turbulent flows, numerical simulations
Procedia PDF Downloads 5803020 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru
Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama
Abstract:
There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.Keywords: water economy, simulation, modeling, integration
Procedia PDF Downloads 1553019 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period
Authors: Xu Wang
Abstract:
This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty
Procedia PDF Downloads 1673018 Cloning and Expression a Gene of β-Glucosidase from Penicillium echinulatum in Pichia pastoris
Authors: Amanda Gregorim Fernandes, Lorena Cardoso Cintra, Rosalia Santos Amorim Jesuino, Fabricia Paula De Faria, Marcio José Poças Fonseca
Abstract:
Bioethanol is one of the most promising biofuels and able to replace fossil fuels and reduce its different environmental impacts and can be generated from various agroindustrial waste. The Brazil is in first place in bioethanol production to be the largest producer of sugarcane. The bagasse sugarcane (SCB) has lignocellulose which is composed of three major components: cellulose, hemicellulose and lignin. Cellulose is a homopolymer of glucose units connected by glycosidic linkages. Among all species of Penicillium, Penicillium echinulatum has been the focus of attention because they produce high quantities of cellulase and the mutant strain 9A02S1 produces higher enzyme levels compared to the wild. Among the cellulases, the cellobiohydrolases enzymes are the main components of the cellulolytic system of fungi, and are also responsible for most of the potential hydrolytic in enzyme cocktails for the industrial processing of plant biomass and several cellobiohydrolases Penicillium had higher specific activity against cellulose compared to CBH I from Trichoderma reesei. This fact makes it an interesting pattern for higher yields in the enzymatic hydrolysis, and also they are important enzymes in the hydrolysis of crystalline regions of cellulose. Therefore, finding new and more active enzymes become necessary. Meanwhile, β-glycosidases act on soluble substrates and are highly dependent on cellobiohydrolases and endoglucanases action to provide the substrate in the hydrolysis of the biomass, but the cellobiohydrolases and endoglucanases are highly dependent β-glucosidases to maintain efficient hydrolysis. Thus, there is a need to understand the structure-function relationships that govern the catalytic activity of cellulolytic enzymes to elucidate its mechanism of action and optimize its potential as industrial biocatalysts. To evaluate the enzyme β-glucosidase of Penicillium echinulatum (PeBGL1) the gene was synthesized from the assembly sequence from a library in induction conditions and then the PeBGL1 gene was cloned in the vector pPICZαA and transformed into P. pastoris GS115. After processing, the producers of PeBGL1 were analyzed for enzyme activity and protein profile where a band of approximately 100 kDa was viewed. It was also carried out the zymogram. In partial characterization it was determined optimum temperature of 50°C and optimum pH of 6,5. In addition, to increase the secreted recombinant PeBGL1 production by Pichia pastoris, three parameters of P. pastoris culture medium were analysed: methanol, nitrogen source concentrations and the inoculum size. A 23 factorial design was effective in achieving the optimum condition. Altogether, these results point to the potential application of this P. echinulatum β-glucosidase in hydrolysis of cellulose for the production of bioethanol.Keywords: bioethanol, biotechnology, beta-glucosidase, penicillium echinulatum
Procedia PDF Downloads 2423017 Using Deep Learning in Lyme Disease Diagnosis
Authors: Teja Koduru
Abstract:
Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash
Procedia PDF Downloads 2413016 Iron Doping Enhanced Photocatalytic Nitrogen Fixation Performance of WO₃ with Three-Dimensionally Orderd Macroporous Structure
Authors: Xiaoling Ren, Guidong Yang
Abstract:
Ammonia, as one of the largest-volume industrial chemicals, is mostly produced by century-old Haber-Bosch process with extreme conditionsand high-cost. Under the circumstance, researchersarededicated in finding new ways to replace the Haber-Bosch process. Photocatalytic nitrogen fixation is a promising sustainable, clear and green strategy for ammonia synthesis, butit is still a big challenge due to the high activation energy for nitrogen. It is essential to develop an efficient photocatalyst for making this approach industrial application. Constructing chemisorption active sites through defect engineering can be defined as an effective and reliable means to improve nitrogen activation by forming the extraordinary coordination environment and electronic structure. Besides, the construction of three-dimensionally orderdmacroporous (3DOM) structured photocatalyst is considered to be one of effectivestrategiesto improve the activity due to it canincrease the diffusion rate of reactants in the interior, which isbeneficial to the mass transfer process of nitrogen molecules in photocatalytic nitrogen reduction. Herein, Fe doped 3DOM WO₃(Fe-3DOM WO₃) without noble metal cocatalysts is synthesized by a polystyrene-template strategy, which is firstly used for photocatalytic nitrogen fixation. To elucidate the chemical nature of the dopant, the X-ray diffraction (XRD) analysiswas conducted. The pure 3DOM WO₃ has a monoclinic type crystal structure. And no additional peak is observed in Fe doped 3DOM WO₃, indicating that the incorporation of Fe atoms did not result in a secondary phase formation. In order to confirm the morphologies of Fe-3DOM WO₃and 3DOM WO₃, scanning electron microscopy (SEM) was employed. The synthesized Fe-3DOM WO₃and 3DOM WO₃ both exhibit a highly ordered three dimensional inverse opal structure with interconnected pores. From high-resolution TEM image of Fe-3DOM WO₃, the ordered lattice fringes with a spacing of 3.84 Å can be assigned to the (001) plane of WO₃, which is consistent with the XRD results. Finally, the photocatalytic nitrogen reduction performance of 3DOM WO₃ and Fe doped 3DOM WO₃with various Fe contents were examined. As a result, both Fe-3DOM WO₃ samples achieve higher ammonia production rate than that of pure 3DOM WO₃, indicating that the doped Fe plays a critical role in the photocatalytic nitrogen fixation performance. To verify the reaction process upon N2 reduction on the Fe-3DOM WO₃, in-situ diffuse reflectance infrared Fourier-transform spectroscopy was employed to monitor the intermediates. The in-situ DRIFTS spectra of Fe-3DOM WO₃ exhibit the increased signals with the irradiation time from 0–60min in the N2 atmosphere. The above results prove that nitrogen is gradually hydrogenated to produce ammonia over Fe-3DOM WO₃. Thiswork would enrich our knowledge in designing efficient photocatalystsfor photocatalytic nitrogen reduction.Keywords: ammonia, photocatalytic, nitrogen fixation, Fe doped 3DOM WO₃
Procedia PDF Downloads 1713015 Integration of Constraints Related to Composite Materials in the Design of Industrial Products
Authors: A. Boumedine, K. Benfriha, S. Lecheb
Abstract:
Manufacturing methods for products and structures made of composite materials reduce the number of parts and integrate technical functions, this advantage of composite materials leads to a lot of innovation but also to a reduction of costs and a gain in quality. A material has attributes: its density, it’s resistance, it’s cost, it’s resistance to corrosion. For the design of a product, a certain profile of these attributes is required: low density, resistance removed, low cost. The problem is then to identify this attribute profile and to compare it with those of the materials, in order to find the one that comes closest. The aim of this work is to demonstrate the feasibility of characterizing a mini turbine made of 3D printed fiber-filled composite material by the process of additive manufacturing, then compare the performance of the alloy turbine with the composite turbine according to the results of the simulation by Abaqus software.Keywords: additive manufacturing, composite materials, design, 3D printer, turbine
Procedia PDF Downloads 1343014 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 1663013 Management Opposition, Strikes, and Union Threats
Authors: Patrick Nüß
Abstract:
I estimate management opposition against unions in terms of hiring discrimination by a large scale field experiment in the German labor market. The results show that callback rates for union members decrease significantly in the presence of high sectoral union density and large firm size. I further explore how this effect varies with regional and sectoral labor dispute intensity and find that management opposition is stronger when a sector is exposed to an intense labor dispute. There is evidence that the observed management opposition can be explained by sectoral union threat effects. Sectors with lower hiring discrimination have lower coverage of collective agreements, and in the absence of a collective agreement, they are less likely to follow the collective agreement wage setting.Keywords: trade unions, Industrial relations, management opposition, union threat, labor disputes, field experiments
Procedia PDF Downloads 1853012 Some Discrepancies between Experimentally-Based Theory of Toxic Metals Combined Action and Actual Approaches to Occupational and Environmental Health Risk Assessment and Management
Authors: Ilzira A. Minigalieva
Abstract:
Assessment of cumulative health risks associated with the widely observed combined exposures to two or more metals and their compounds on the organism in industrial or general environment, as well as respective regulatory and technical risk management decision-making have presumably the theoretical and experimental toxicology of mixtures as their reliable scientific basis. Analysis of relevant literature and our own experience proves, however, that there is no full match between these different practices. Moreover, some of the contradictions between them are of a fundamental nature. This unsatisfactory state of things may be explained not only by unavoidable simplifications characteristic of the methodologies of risk assessment and permissible exposure standards setting but also by the extreme intrinsic complexity of the combined toxicity theory, the most essential issues of which are considered and briefly discussed in this paper.Keywords: toxic metals, nanoparticles, typology of combined toxicity, mathematical modeling, health risk assessment and management
Procedia PDF Downloads 3253011 Energy Efficient Clustering with Adaptive Particle Swarm Optimization
Authors: KumarShashvat, ArshpreetKaur, RajeshKumar, Raman Chadha
Abstract:
Wireless sensor networks have principal characteristic of having restricted energy and with limitation that energy of the nodes cannot be replenished. To increase the lifetime in this scenario WSN route for data transmission is opted such that utilization of energy along the selected route is negligible. For this energy efficient network, dandy infrastructure is needed because it impinges the network lifespan. Clustering is a technique in which nodes are grouped into disjoints and non–overlapping sets. In this technique data is collected at the cluster head. In this paper, Adaptive-PSO algorithm is proposed which forms energy aware clusters by minimizing the cost of locating the cluster head. The main concern is of the suitability of the swarms by adjusting the learning parameters of PSO. Particle Swarm Optimization converges quickly at the beginning stage of the search but during the course of time, it becomes stable and may be trapped in local optima. In suggested network model swarms are given the intelligence of the spiders which makes them capable enough to avoid earlier convergence and also help them to escape from the local optima. Comparison analysis with traditional PSO shows that new algorithm considerably enhances the performance where multi-dimensional functions are taken into consideration.Keywords: Particle Swarm Optimization, adaptive – PSO, comparison between PSO and A-PSO, energy efficient clustering
Procedia PDF Downloads 2463010 Power Plants between Environmental Pollution and Eco-Sustainable Recycling of Industrial Wastes
Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu, Mihai Cruceru
Abstract:
Power plants represent the main source of air pollution, through combustion processes, both by releasing large amounts of dust, greenhouse gases and acidifying, and large quantities of waste, slag and ash disposed in landfills covering significant areas. SC Turceni S.A. is one of the largest power generating unit from Romania. Their policy is focused on the production and delivery of electricity in order to increase energy efficiency and to reduce the environmental impact. The paper presents environmental impact produced by slag and ash storage, while pointing out that the recovery of this waste significant improves the air quality in the area. An important aspect is the proprieties of the ash and slag evacuated by Turceni power plant in order to use them for building materials manufacturing.Keywords: ash and slag properties, air pollution, building materials industry, power plants
Procedia PDF Downloads 3303009 Design and Simulation of MEMS-Based Capacitive Pressure Sensors
Authors: Kirankumar B. Balavalad, Bhagyashree Mudhol, B. G. Sheeparamatti
Abstract:
MEMS sensor have gained popularity in automotive, biomedical, and industrial applications. In this paper, the design and simulation of conventional, slotted, and perforated MEMS capacitive pressure sensor is proposed. Polysilicon material is used as diaphragm material that deflects due to applied pressure. Better sensitivity is the main advantage of conventional pressure sensor as compared with other two sensors and perforated pressure sensor achieves large operating pressure range. The proposed MEMS sensor demonstrated with diaphragm length 50um, gap depth 3um is being modelled. The simulation is carried out for different types of MEMS capacitive pressure sensor using COMSOL Multiphysics and Coventor ware.Keywords: MEMS, conventional pressure sensor, slotted and perforated diaphragm, COMSOL multiphysics, coventor ware
Procedia PDF Downloads 5083008 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET
Authors: K. Gomathi
Abstract:
Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).Keywords: MANET, EDWCA, clustering, cluster head
Procedia PDF Downloads 398