Search results for: external mechanical forces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6794

Search results for: external mechanical forces

3854 India, Pakistan and the US in the Afghan Imbroglio: The Way Forward

Authors: Saroj Kumar Rath

Abstract:

When insurgency erupted in Kashmir in 1989, it was quickly backed by Pakistan. Kashmir witnessed terrorism for more than a decade till 2004 when Indian forces decimated militancy. After the US pressure in 1992, terrorist training camps of Pakistan shifted to Afghanistan and al Qaeda and the Taliban had taken over training of Kashmiri militants in Afghanistan after 1997 as part of their global jihad. The Indo-Pak rivalry over Kashmir dispute had taken a new turn in the aftermath of 9/11 developments. Islamabad viewed its Afghan policy through the prism of denying India any advantage in Kabul. Pakistan was successful in refuting Indian presence in Kabul for a decade through the Taliban. After the 9/11 attacks the Inter Services Intelligence (ISI) saw Northern Alliance, supported by the Americans and all of Pakistan’s regional rivals – India, Iran, and Russia – as claiming victory in Kabul. For Pakistan’s military regime, this was a strategic disaster and prompted the ISI to give refuge to the escaping Taliban, while denying full support to Hamid Karzai. The new development in Afghanistan prompted India to establish a foothold it had lost nearly a decade earlier. India established diplomatic contacts with Afghanistan; supported the Karzai government and funded aid programs. Pakistan alleged that Indian agents are training Baloch and Sindhi dissidents in Pakistan through Afghanistan. Kabul had suddenly become the new Kashmir – the new battleground for India-Pakistan rivalry.

Keywords: Afghan imbroglio, Kashmir conflict, Indo-Pak rivalry, US policy in South Asia

Procedia PDF Downloads 428
3853 Effect of Infill Walls on Response of Multi Storey Reinforced Concrete Structure

Authors: Ayman Abd-Elhamed, Sayed Mahmoud

Abstract:

The present research work investigates the seismic response of reinforced concrete (RC) frame building considering the effect of modeling masonry infill (MI) walls. The seismic behavior of a residential 6-storey RC frame building, considering and ignoring the effect of masonry, is numerically investigated using response spectrum (RS) analysis. The considered herein building is designed as a moment resisting frame (MRF) system following the Egyptian code (EC) requirements. Two developed models in terms of bare frame and infill walls frame are used in the study. Equivalent diagonal strut methodology is used to represent the behavior of infill walls, whilst the well-known software package ETABS is used for implementing all frame models and performing the analysis. The results of the numerical simulations such as base shear, displacements, and internal forces for the bare frame as well as the infill wall frame are presented in a comparative way. The results of the study indicate that the interaction between infill walls and frames significantly change the responses of buildings during earthquakes compared to the results of bare frame building model. Specifically, the seismic analysis of RC bare frame structure leads to underestimation of base shear and consequently damage or even collapse of buildings may occur under strong shaking. On the other hand, considering infill walls significantly decrease the peak floor displacements and drifts in both X and Y-directions.

Keywords: masonry infill, bare frame, response spectrum, seismic response

Procedia PDF Downloads 397
3852 Oi̇l Absorption Behavior and Its Effect on Charpy Impact Test of Glass Reinforced Polyester Composites Used in the Manufacture of Naval Ship Hulls

Authors: Bouhafara Djaber, Menail Younes, Mesrafet Farouk, Aissaoui Mohammed Islem

Abstract:

This article presents results of experimental investigations of the durability of (GFRP) composite exposed to typical environments of marine industries applications,The use of fiber-glass reinforced polyester composites in marine applications such as Hulls of voyage boats and hulls of small vessels for the military navy , this type of composite is becoming attractive because of their reduced weight and improved corrosion resistance. However,a deep understating of oil ageing effect on composite structures is essential to ensure long-term performance and durability. in this work evaluate the effect of oil ageing on absorptıon behavıor and ımpact properties of glass/polyester composites manufactured with two types of fiber fabrics (fibreglass mat and fiberglass woven roving) and isophthalic polyester resin. The specimens obtained from commercial (GFRP) profiles made of unsaturated polyester resin were subjected to immersion in (i) marine oil for boats and (ii) salt water at ambient temperature for up to 1 month. The effects of such exposure conditions on this types of profile we analysed in what concerns their (i) mass change,(ii) mechanical response in impact, namely on the mechanical response – oil immersion caused a higher level of degradation, compared with salt water immersion;fracture surface examination by scanning electron microscopy revealed delamination, fiber debonding and resin crumbling due to oil effect.

Keywords: Marine Engine Oil, Absorption, Polyester, Glass Fibre

Procedia PDF Downloads 76
3851 [Keynote Speech]: Simulation Studies of Pulsed Voltage Effects on Cells

Authors: Jiahui Song

Abstract:

In order to predict or explain a complicated biological process, it is important first to construct mathematical models that can be used to yield analytical solutions. Through numerical simulation, mathematical model results can be used to test scenarios that might not be easily attained in a laboratory experiment, or to predict parameters or phenomena. High-intensity, nanosecond pulse electroporation has been a recent development in bioelectrics. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into pore formation energy equation to analyze and predict such electroporation effects. For greater accuracy, with inclusion of atomistic details, molecular dynamics (MD) simulations were also carried out during this study. Besides inducing pores in cells, external voltages could also be used in principle to modulate action potential generation in nerves. This could have an application in electrically controlled ‘pain management’. Also a simple model-based rate equation treatment of the various cellular bio-chemical processes has been used to predict the pulse number dependent cell survival trends.

Keywords: model, high-intensity, nanosecond, bioelectrics

Procedia PDF Downloads 223
3850 Influence of Brazing Process Parameters on the Mechanical Properties of Nickel Based Superalloy

Authors: M. Zielinska, B. Daniels, J. Gabel, A. Paletko

Abstract:

A common nickel based superalloy Inconel625 was brazed with Ni-base braze filler material (AMS4777) containing melting-point-depressants such as B and Si. Different braze gaps, brazing times and forms of braze filler material were tested. It was determined that the melting point depressants B and Si tend to form hard and brittle phases in the joint during the braze cycle. Brittle phases significantly reduce mechanical properties (e. g. tensile strength) of the joint. Therefore, it is important to define optimal process parameters to achieve high strength joints, free of brittle phases. High ultimate tensile strength (UTS) values can be obtained if the joint area is free of brittle phases, which is equivalent to a complete isothermal solidification of the joint. Isothermal solidification takes place only if the concentration of the melting point depressant in the braze filler material of the joint is continuously reduced by diffusion into the base material. For a given brazing temperature, long brazing times and small braze filler material volumes (small braze gaps) are beneficial for isothermal solidification. On the base of the obtained results it can be stated that the form of the braze filler material has an additional influence on the joint quality. Better properties can be achieved by the use of braze-filler-material in form of foil instead of braze-filler-material in form of paste due to a reduced amount of voids and a more homogeneous braze-filler-material-composition in the braze-gap by using foil.

Keywords: diffusion brazing, microstructure, superalloy, tensile strength

Procedia PDF Downloads 358
3849 Evaluation of Anti-Inflammatory Activities in Wild Herb Urginea wightii

Authors: S. K. Hemalata, M. N. Shiva Kameshwari

Abstract:

The present work focusses on anti-inflammatory action of Urginea wightii in-vitro. Urginea wightii is a member of Hyacinthaceae and considered to be wonder plant because of its varied important medicinal properties. The plant is endemic to India, Africa, and Mediterranian regions. Presence of alkaloids, flavonoid-glycosides especially flavonone derivatives are responsible for the strong anti-inflammatory activity of Urginea wightii. In present research work, anti-inflammatory activity of methanol extract of the bulb powder was tested on Male Wistar Rats. In these test animals, inflammation was induced by injecting carrageenan as the irritant to induce paw edema in Wistar rats. Inflammation of Paw edema was treated with both plant extract and Pyrox gel a known synthetic anti-inflammatory drug through external application. The result indicated that anti-inflammatory activity of Urginea wightii extract was almost similar to the synthetic Pyrox gel. This disproves the modern world's scepticism towards the herbal medicines and encourages to rely on natural plant extracts.

Keywords: anti-inflammatory activity, flavonoid-glycosides, Pyrox gel, Urginia wightii

Procedia PDF Downloads 162
3848 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement

Authors: Haibin Zhou, Pingping Yao, Kunyang Fan

Abstract:

Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.

Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism

Procedia PDF Downloads 270
3847 Growth of Algal Biomass in Laboratory and in Pilot-Scale Algal Photobioreactors in the Temperate Climate of Southern Ireland

Authors: Linda A. O’Higgins, Astrid Wingler, Jorge Oliveira

Abstract:

The growth of Chlorella vulgaris was characterized as a function of irradiance in a laboratory turbidostat (1 L) and compared to batch growth in sunlit modules (5–25 L) of the commercial Phytobag photobioreactor. The effects of variable sunlight and culture density were deconvoluted by a mathematical model. The analysis showed that algal growth was light-limited due to shading by external construction elements and due to light attenuation within the algal bags. The model was also used to predict maximum biomass productivity. The manipulative experiments and the model predictions were confronted with data from a production season of a 10m2 pilot-scale photobioreactor, Phytobag (10,000 L). The analysis confirmed light limitation in all three photobioreactors. An additional limitation of biomass productivity was caused by the nitrogen starvation that was used to induce lipid accumulation. Reduction of shading and separation of biomass and lipid production are proposed for future optimization.

Keywords: microalgae, batch cultivation, Chlorella vulgaris, Mathematical model, photobioreactor, scale-up

Procedia PDF Downloads 101
3846 Structural Assessment of Low-Rise Reinforced Concrete Frames under Tsunami Loads

Authors: Hussain Jiffry, Kypros Pilakoutas, Reyes Garcia Lopez

Abstract:

This study examines the effect of tsunami loads on reinforced concrete (RC) frame buildings analytically. The impact of tsunami wave loads and waterborne objects are analyzed using a typical substandard full-scale two-story RC frame building tested as part of the EU-funded Ecoleader project. The building was subjected to shake table tests in bare condition and subsequently strengthened using Carbon Fiber Reinforced Polymers (CFRP) composites and retested. Numerical models of the building in both bare and CFRP-strengthened conditions are calibrated in DRAIN-3DX software to match the test results. To investigate the response of wave loads and impact forces, the numerical models are subjected to nonlinear dynamic analyses using force-time history input records. The analytical results are compared in terms of displacements at the floors and the 'impact point' of a boat. The results show that the roof displacement of the CFRP-strengthened building reduced by 63% when compared to the bare building. The results also indicate that strengthening only the mid-height of the impact column using CFRP is more efficient at reducing damage when compared to strengthening other parts of the column. Alternative solutions to mitigate damage due to tsunami loads are suggested.

Keywords: tsunami loads, hydrodynamic load, impact load, waterborne objects, RC buildings

Procedia PDF Downloads 452
3845 Towards the Integration of a Micro Pump in μTAS

Authors: Y. Haik

Abstract:

The objective of this study is to present a micro mechanical pump that was fabricated using SwIFT™ microfabrication surface micromachining process and to demonstrate the feasibility of integrating such micro pump into a micro analysis system. The micropump circulates the bio-sample and magnetic nanoparticles through different compartments to separate and purify the targeted bio-sample. This article reports the flow characteristics in the microchannels and in a crescent micro pump.

Keywords: crescent micropumps, microanalysis, nanoparticles, MEMS

Procedia PDF Downloads 211
3844 Numerical Simulation of Unsteady Cases of Fluid Flow Using Modified Dynamic Boundary Condition (mDBC) in Smoothed Particle Hydrodynamics Models

Authors: Exa Heydemans, Jessica Sjah, Dwinanti Rika Marthanty

Abstract:

This paper presents numerical simulations using an open boundary algorithm with modified dynamic boundary condition (mDBC) for weakly compressible smoothed particle hydrodynamics models from particle-based code Dualsphysics. The problems of piping erosion in dams and dikes are aimed for studying the algorithm. The case 2D model of unsteady fluid flow past around a fixed cylinder is simulated, where various values of Reynold’s numbers (Re40, Re60, Re80, and Re100) and different model’s resolution are considered. A constant velocity with different values of viscosity for generating various Reynold’s numbers and different numbers of particles over a cylinder for the resolution are modeled. The interaction between solid particles of the cylinder and fluid particles is concerned. The cylinder is affected by the hydrodynamics force caused by the flow of fluid particles. The solid particles of the cylinder are the observation points to obtain force and pressure due to the hydrodynamics forces. As results of the simulation, which is to show the capability to model 2D unsteady with various Reynold’s numbers, the pressure coefficient, drag coefficient, lift coefficient, and Strouhal number are compared to the previous work from literature.

Keywords: hydrodynamics, internal erosion, dualsphysics, viscous fluid flow

Procedia PDF Downloads 158
3843 July 15 Coup Attempt and the Use of New Communication Technologies

Authors: Yasemin Gulsen Yilmaz, Suleyman Hakan Yilmaz, Muhammet Erbay

Abstract:

The new communication technologies have gradually improved its efficiency in all fields of life and made its presence irreplaceable. These technologies which appear in every aspect of life differently showed itself during the failed coup attempt in Turkey too. The evening of July 15, 2016, have already taken its place in the Turkish political history. In the evening of July 15, Turkish nation confronted to a coup attempted by a group within the Turkish Armed Forces. That evening, the scene of the confrontation between the coup attempters and the resisting civilians were watched minute-by-minute by the people using the new communication technologies. Pro-coup soldiers and the resisting groups that came face to face in the streets of metropolitan cities, made their in-group communications by using new media tools very actively. New media turned into the most important weapon both for coup plotters and for those who resisted. In the morning of next day, whoever used these tools better had the upper hand. The civilians were successful in protecting democracy not only by resisting against tanks and bullets but also by following the internet, organising in social media, sharing information-photos on the net and telling large masses their experiences through these technologies. In this study, we focused on and analysed the use of new media both by coup soldiers and resisting civilians during the failed coup attempt in July 15. Within the scope of this study, coup attempt news that took place in printed media within one week were examined; the information about the use of new media tools during the night of failed coup were compiled; and it was determined how, to what extend and what for these tools were used and how effective they were.

Keywords: communication, July 15, new media, media

Procedia PDF Downloads 240
3842 Enhancing Vehicle Efficiency Through Vapor Absorption Refrigeration Systems

Authors: Yoftahe Nigussie Worku

Abstract:

This paper explores the utilization of vapor absorption refrigeration systems (VARS) as an alternative to the conventional vapor compression refrigerant systems (VCRS) in vehicle air conditioning (AC) systems. Currently, most vehicles employ VCRS, which relies on engine power to drive the compressor, leading to additional fuel consumption. In contrast, VARS harnesses low-grade heat, specifically from the exhaust of high-power internal combustion engines, reducing the burden on the vehicle's engine. The historical development of vapor absorption technology is outlined, dating back to Michael Faraday's discovery in 1824 and the subsequent creation of the first vapor absorption refrigeration machine by Ferdinand Carre in 1860. The paper delves into the fundamental principles of VARS, emphasizing the replacement of mechanical processes with physicochemical interactions, utilizing heat rather than mechanical work. The study compares the basic concepts of the current vapor compression systems with the proposed vapor absorption systems, highlighting the efficiency gains achieved by eliminating the need for engine-driven compressors. The vapor absorption refrigeration cycle (VARC) is detailed, focusing on the generator's role in separating and vaporizing ammonia, chosen for its low-temperature evaporation characteristics. The project's statement underscores the need for increased efficiency in vehicle AC systems beyond the limitations of VCRS. By introducing VARS, driven by low-grade heat, the paper advocates for a reduction in engine power consumption and, consequently, a decrease in fuel usage. This research contributes to the ongoing efforts to enhance sustainability and efficiency in automotive climate control systems.

Keywords: VCRS, VARS, efficiency, sustainability

Procedia PDF Downloads 68
3841 Hydrodynamics and Heat Transfer Characteristics of a Solar Thermochemical Fluidized Bed Reactor

Authors: Selvan Bellan, Koji Matsubara, Nobuyuki Gokon, Tatsuya Kodama, Hyun Seok-Cho

Abstract:

In concentrated solar thermal industry, fluidized-bed technology has been used to produce hydrogen by thermochemical two step water splitting cycles, and synthetic gas by gasification of coal coke. Recently, couple of fluidized bed reactors have been developed and tested at Niigata University, Japan, for two-step thermochemical water splitting cycles and coal coke gasification using Xe light, solar simulator. The hydrodynamic behavior of the gas-solid flow plays a vital role in the aforementioned fluidized bed reactors. Thus, in order to study the dynamics of dense gas-solid flow, a CFD-DEM model has been developed; in which the contact forces between the particles have been calculated by the spring-dashpot model, based on the soft-sphere method. Heat transfer and hydrodynamics of a solar thermochemical fluidized bed reactor filled with ceria particles have been studied numerically and experimentally for beam-down solar concentrating system. An experimental visualization of particles circulation pattern and mixing of two-tower fluidized bed system has been presented. Simulation results have been compared with experimental data to validate the CFD-DEM model. Results indicate that the model can predict the particle-fluid flow of the two-tower fluidized bed reactor. Using this model, the key operating parameters can be optimized.

Keywords: solar reactor, CFD-DEM modeling, fluidized bed, beam-down solar concentrating system

Procedia PDF Downloads 192
3840 Beggar-Thy-Neighbor's Beach: Pricing Adaptation to Sea-Level Rise

Authors: Arlan Zandro Brucal, John Lynham

Abstract:

With the accelerated sea-level rise (SLR) increasingly becoming a concern, demand for coastal management and protection is expected to grow. Among the coastal management and protection methods, building seawalls are among the most controversial due to the negative externalities they impose on beachgoers and neighboring properties. This paper provides estimates of the external cost associated with building seawalls on the island of Oahu in Hawaii. Using hedonic pricing approach on real properties sold between 1980-2010 and aerial photographs of seawalls in 1995, the paper finds that (1) while seawalls do increase the value of protected properties, the share of armored properties appear to be negatively correlated with property sale prices, suggesting that the positive effect of seawalls tend to decline as more and more rely on this coastal management method; and (2) the value of beachfront properties tend to decline as they get approach seawalls. Results suggest that policymakers should devise a policy that would internalize the externalities associated with private-sector adaptation to climate change.

Keywords: private sector climate change adaptation, externalities, sea-level rise, hedonic pricing

Procedia PDF Downloads 285
3839 The Analyses of July 15 Coup Attempt through the Turkish Press

Authors: Yasemin Gülşen Yılmaz, Süleyman Hakan Yılmaz, Muhammet Erbay

Abstract:

Military interventions have an important place in the Turkish Political History. Military interventions are commonly called coup in the society. By coup we mean that the armed forces seize political power either by a group of officer in the army or by chain of command. Coups not only weaken but also suspend the democracy in a country. All periods of coup created its own victims. Two military coups which took place in May 27, 1960 and September 12, 1980 are the most important ones in terms of political and social effect in the Turkish Political History. Apart these, March 12, 1971, February 28, 1997 and April 27, 2007 e-memorandum are the periods when Army submitted a memorandum and intervened the political government indirectly. Beside the memorandums and coups there were also many coup attempts that have been experienced in the Turkish Political History. In this study, we examined the coup attempted by FETO’s military members in the evening of July 15, 2016 from the point of the Turkish Press. Cumhuriyet, Haber Türk, Hürriyet, Milliyet, Sabah, Star, Yeni Akit and Yeni Şafak Newspapers which have different publication policies were examined within the scope of the study. The first pages of the newspapers dated July 16, 2016 were examined using content analysis method. The headlines, news, news headlines and the visual materials used for news were examined and the collected data were analysed.

Keywords: July 15, news, military coup, press

Procedia PDF Downloads 257
3838 Structural Characteristics of HPDSP Concrete on Beam Column Joints

Authors: Hari Krishan Sharma, Sanjay Kumar Sharma, Sushil Kumar Swar

Abstract:

Inadequate transverse reinforcement is considered as the main reason for the beam column joint shear failure observed during recent earthquakes. DSP matrix consists of cement and high content of micro-silica with low water to cement ratio while the aggregates are graded quartz sand. The use of reinforcing fibres leads not only to the increase of tensile/bending strength and specific fracture energy, but also to reduction of brittleness and, consequently, to production of non-explosive ruptures. Besides, fibre-reinforced materials are more homogeneous and less sensitive to small defects and flaws. Recent works on the freeze-thaw durability (also in the presence of de-icing salts) of fibre-reinforced DSP confirm the excellent behaviour in the expected long term service life.DSP materials, including fibre-reinforced DSP and CRC (Compact Reinforced Composites) are obtained by using high quantities of super plasticizers and high volumes of micro-silica. Steel fibres with high tensile yield strength of smaller diameter and short length in different fibre volume percentage and aspect ratio tilized to improve the performance by reducing the brittleness of matrix material. In the case of High Performance Densified Small Particle Concrete (HPDSPC), concrete is dense at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. Beam-column sub-assemblages used as moment resisting constructed using HPDSPC in the joint region with varying quantities of steel fibres, fibre aspect ratio and fibre orientation in the critical section. These HPDSPC in the joint region sub-assemblages tested under cyclic/earthquake loading. Besides loading measurements, frame displacements, diagonal joint strain and rebar strain adjacent to the joint will also be measured to investigate stress-strain behaviour, load deformation characteristics, joint shear strength, failure mechanism, ductility associated parameters, stiffness and energy dissipated parameters of the beam column sub-assemblages also evaluated. Finally a design procedure for the optimum design of HPDSPC corresponding to moment, shear forces and axial forces for the reinforced concrete beam-column joint sub-assemblage proposed. The fact that the implementation of material brittleness measure in the design of RC structures can improve structural reliability by providing uniform safety margins over a wide range of structural sizes and material compositions well recognized in the structural design and research. This lead to the development of high performance concrete for the optimized combination of various structural ratios in concrete for the optimized combination of various structural properties. The structural applications of HPDSPC, because of extremely high strength, will reduce dead load significantly as compared to normal weight concrete thereby offering substantial cost saving and by providing improved seismic response, longer spans, and thinner sections, less reinforcing steel and lower foundation cost. These cost effective parameters will make this material more versatile for use in various structural applications like beam-column joints in industries, airports, parking areas, docks, harbours, and also containers for hazardous material, safety boxes and mould & tools for polymer composites and metals.

Keywords: high performance densified small particle concrete (HPDSPC), steel fibre reinforced concrete (SFRC), slurry infiltrated concrete (SIFCON), Slurry infiltrated mat concrete (SIMCON)

Procedia PDF Downloads 299
3837 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: composite, fuzzy, tool life, wear

Procedia PDF Downloads 292
3836 An Attempt to Explore Occupational Stressors among West Bengal Police Officials

Authors: Malini Nandi Majumdar, Avijan Dutta

Abstract:

The West Police (WBP) is restructured under provisions of the Police Act 1861 during the period of British domination. It is one of the two police forces of the Indian state of west Bengal and is headed by an officer designated as Director General of Police (DG) who directly reports to the State Government. It covers a jurisdiction with eighteen revenue districts of the state and a District Superintendent of Police (SP) controls each district. The purpose of this empirical study is to explore the causes and factors of occupational stress in West Bengal Police officers so that the incumbents can perform their assigned tasks more diligently and the society could be free from evils and devils at a large. Using a self-developed close ended questionnaire that covers 20 critical job-related stressors, the study captures 310 respondents across the organizational hierarchy ranging from Sub Inspectors to the Superintendant of police and covers 5 districts and one commision rate under the jurisdiction of West Bengal Police. The present research has successfully indicated four major occupational stressors such as Organizational Stressors, Hierarchical Stressors, Situational Stressors and Environmental Stressors with 64% of the variance. Further we have employed CFA to determine the goodness of fit indices in terms of i) Absolute Fit Measures like CMIN, FMIN, RMSEA, ECVI ii) Incremental Fit Measures like TLI, NFI, AGFI, CFI(Byne, 2010) demonstrate that value of the measure has passed the requirement criteria and thus fit the model. The major stressors of West Bengal Police have been explored and the ways to deal with these inevitable stressors have been suggested.

Keywords: organizational stressors, hierarchical stressors, situational stressors, environmental stressors

Procedia PDF Downloads 391
3835 Effect of Accelerated Aging on Antibacterial and Mechanical Properties of SEBS Compounds

Authors: Douglas N. Simoes, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana

Abstract:

Thermoplastic elastomers (TPE) compounds are used in a wide range of applications, like home appliances, automotive components, medical devices, footwear, and others. These materials are susceptible to microbial attack, causing a crack in polymer chains compounds based on SEBS copolymers, poly (styrene-b-(ethylene-co-butylene)-b-styrene, are a class of TPE, largely used in domestic appliances like refrigerator seals (gaskets), bath mats and sink squeegee. Moisture present in some areas (such as shower area and sink) in addition to organic matter provides favorable conditions for microbial survival and proliferation, contributing to the spread of diseases besides the reduction of product life cycle due the biodegradation process. Zinc oxide (ZnO) has been studied as an alternative antibacterial additive due its biocidal effect. It is important to know the influence of these additives in the properties of the compounds, both at the beginning and during the life cycle. In that sense, the aim of this study was to evaluate the effect of accelerated aging in oven on antibacterial and mechanical properties of ZnO loaded SEBS based TPE compounds. Two different comercial zinc oxide, named as WR and Pe were used in proportion of 1%. A compound with no antimicrobial additive (standard) was also tested. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials, screw rotation rate was set at 226 rpm, with a temperature profile from 150 to 190 ºC. Test specimens were prepared using the injection molding machine at 190 ºC. The Standard Test Method for Rubber Property—Effect of Liquids was applied in order to simulate the exposition of TPE samples to detergent ingredients during service. For this purpose, ZnO loaded TPE samples were immersed in a 3.0% w/v detergent (neutral) and accelerated aging in oven at 70°C for 7 days. Compounds were characterized by changes in mechanical (hardness and tension properties) and mass. The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The microbiological tests showed a reduction up to 42% in E. coli and up to 49% in S. aureus population in non-aged samples. There were observed variations in elongation and hardness values with the addition of zinc The changes in tensile at rupture and mass were not significant between non-aged and aged samples.

Keywords: antimicrobial, domestic appliance, sebs, zinc oxide

Procedia PDF Downloads 242
3834 The Status and Role of Women in Indian IT Industry and Relevant Role and Scope of HRM

Authors: Shivani Kolarkar

Abstract:

Splendid growth in Indian IT has generated women employment on a large scale in India and continues to do it. Indian IT industry has achieved this in spite of total masculine dominance in other Indian engineering industries, where the ratio of women employment is almost negligible as compared to men. Indian IT today proudly enjoys a strong pool of technically educated, intellectual, and skillful women employees. IT industry has encouraged technical education for women in India, to a great extent. The software industry has definitely contributed to developing a positive and dignified role and status of women employees in Indian IT industry. It has promoted women’s social and economic role and status. In spite of all, gender discrimination still persists in Indian IT, also, which is low as compared to other industries, but it is a matter of concern. An Indian woman is bound to carry dual roles which are equally over-stressed for IT women employees. Long working hours, night shifts, work pressures and insufficient safety majors and necessary facilities for women contributes to making her physical-mental life, family and married life troublesome. Which forces her either to cluster at low-end jobs in IT/elsewhere or to sacrifice her career. Nature, role and status of HRM needs to be broadened, deepened and shaped into research-oriented multidimensional perspective in the context of really enhancing role and status of Indian IT women with high appreciation of women employees’ dignity and entity.

Keywords: attrition, gender discrimination, HRM, Indian IT, software industry, job satisfaction, safety, technical education, women employment

Procedia PDF Downloads 644
3833 Experimental Uniaxial Tensile Characterization of One-Dimensional Nickel Nanowires

Authors: Ram Mohan, Mahendran Samykano, Shyam Aravamudhan

Abstract:

Metallic nanowires with sub-micron and hundreds of nanometer diameter have a diversity of applications in nano/micro-electromechanical systems (NEMS/MEMS). Characterizing the mechanical properties of such sub-micron and nano-scale metallic nanowires are tedious; require sophisticated and careful experimentation to be performed within high-powered microscopy systems (scanning electron microscope (SEM), atomic force microscope (AFM)). Also, needed are nanoscale devices for placing the nanowires; loading them with the intended conditions; obtaining the data for load–deflection during the deformation within the high-powered microscopy environment poses significant challenges. Even picking the grown nanowires and placing them correctly within a nanoscale loading device is not an easy task. Mechanical characterizations through experimental methods for such nanowires are still very limited. Various techniques at different levels of fidelity, resolution, and induced errors have been attempted by material science and nanomaterial researchers. The methods for determining the load, deflection within the nanoscale devices also pose a significant problem. The state of the art is thus still at its infancy. All these factors result and is seen in the wide differences in the characterization curves and the reported properties in the current literature. In this paper, we discuss and present our experimental method, results, and discussions of uniaxial tensile loading and the development of subsequent stress–strain characteristics curves for Nickel nanowires. Nickel nanowires in the diameter range of 220–270 nm were obtained in our laboratory via an electrodeposition method, which is a solution based, template method followed in our present work for growing 1-D Nickel nanowires. Process variables such as the presence of magnetic field, its intensity; and varying electrical current density during the electrodeposition process were found to influence the morphological and physical characteristics including crystal orientation, size of the grown nanowires1. To further understand the correlation and influence of electrodeposition process variables, associated formed structural features of our grown Nickel nanowires to their mechanical properties, careful experiments within scanning electron microscope (SEM) were conducted. Details of the uniaxial tensile characterization, testing methodology, nanoscale testing device, load–deflection characteristics, microscopy images of failure progression, and the subsequent stress–strain curves are discussed and presented.

Keywords: uniaxial tensile characterization, nanowires, electrodeposition, stress-strain, nickel

Procedia PDF Downloads 402
3832 Innovation and Technologies Synthesis of Various Components: A Contribution to the New Precision Irrigation Development for Open-Field Fruit Orchards

Authors: Pipop Chatrabhuti, S. Visessri, T. Charinpanitkul

Abstract:

Precision irrigation (PI) technology has emerged as a solution to optimize water usage in agriculture, aiming to maximize crop yields while minimizing water waste. Developing a new PI for commercialization requires developers to research, synthesize, evaluate, and select appropriate technologies and make use of such information to produce innovative products. The objective of this review is to facilitate innovators by providing them with a summary of existing knowledge and the identification of gaps in research linking to the innovative development of PI. This paper reviews and synthesizes technologies and components relevant to precision irrigation, highlighting its potential benefits and challenges. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework is used for the review. The study is intended to contribute to innovators who apply for collaborative approach to problem-solving and idea generation that involves seeking external input and resources from a diverse range of individuals and organizations.

Keywords: innovation synthesis, technology assessment, precision irrigation technologies, precision irrigation components, new product development

Procedia PDF Downloads 60
3831 Development of Noninvasive Method to Analyze Dynamic Changes of Matrix Stiffness and Elasticity Characteristics

Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Dobdin, Anatoly Skripal, Andrey Usanov, Dmitry Usanov

Abstract:

One of the most important unsolved problems in modern medicine is the increase of chronic diseases that lead to organ dysfunction or even complete loss of function. Current methods of treatment do not result in decreased mortality and disability statistics. Currently, the best treatment for many patients is still transplantation of organs and/or tissues. Therefore, finding a way of correct artificial matrix biofabrication in case of limited number of natural organs for transplantation is a critical task. One important problem that needs to be solved is development of a nondestructive and noninvasive method to analyze dynamic changes of mechanical characteristics of a matrix with minimal side effects on the growing cells. This research was focused on investigating the properties of matrix as a marker of graft condition. In this study, the collagen gel with human primary dermal fibroblasts in suspension (60, 120, 240*103 cells/mL) and collagen gel with cell spheroids were used as model objects. The stiffness and elasticity characteristics were evaluated by a semiconductor laser autodyne. The time and cell concentration dependency of the stiffness and elasticity were investigated. It was shown that these properties changed in a non-linear manner with respect to cell concentration. The maximum matrix stiffness was observed in the collagen gel with the cell concentration of 120*103 cells/mL. This study proved the opportunity to use the mechanical properties of matrix as a marker of graft condition, which can be measured by noninvasive semiconductor laser autodyne technique.

Keywords: graft, matrix, noninvasive method, regenerative medicine, semiconductor laser autodyne

Procedia PDF Downloads 342
3830 Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure

Authors: A. B. Chehreh, M. Grätzel, M. Klein, J. P. Bergmann, F. Walther

Abstract:

Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams.

Keywords: aluminum alloy, fatigue performance, fracture, friction stir welding

Procedia PDF Downloads 149
3829 The Vicissitudes of Monetary Policy Rates and Macro-Economic Variables in the West African Monetary Zone

Authors: Jonathan Olusegun Famoroti, Mathew Ekundayo Rotimi, Mishelle Doorasamy

Abstract:

This study offers an empirical investigation into some selected macroeconomic drivers of the monetary policy rate in member countries of the West African Monetary Zone (WAMZ), considering both internal and external variables. We employed Autoregressive Distributed Lag (ARDL) to carry out the investigation between monetary policy and some macroeconomic variables in both the long-run and short-run relationship. The results suggest that the drivers of the policy rate in this zone, in the long run, include, among others, global oil price, exchange rate, inflation rate, and gross domestic product, while in the short run, federal fund rate, trade openness, exchange rate, inflation rate, and gross domestic product are core determinants of the policy rate. Therefore, in order to ensure long-run stability in the policy rate among the members’ states, these drivers should be given closer consideration so that the trajectory for effective structure can be designed and fused into the economic structure and policy frameworks accordingly.

Keywords: monetary policy rate, macroeconomic variables, WAMZ, ARDL

Procedia PDF Downloads 60
3828 Study on the Effect of Sports Academic Journals in the Construction of Strong Sporting Nation in China

Authors: Qinghui Li, Lei Zhang

Abstract:

In China, sport will play a more important role in the future development of the national economy, are facing greater challenges. Sports industry development in this background,innovative technology and cultural forces which will play an important role. Therefore, as a guide of sports culture, the development of science and technology, display the sports scientific and technological achievements, culture showed important - Sports Academic Journals sports technology platform of talent, but also innovation and value-added will through its value function,play an important role in the development of China's sports development and sports industry. At the same time, in the Chinese academic journals of social environment has undergone great changes,one aspect is the national news publishing system reform, change, development group of scientific publishing market has become the mainstream trend of development; on the other hand, digitalization, internationalization development speed of academic journal soon, in such a social background, how sports academic journal of development? How to serve for the development of sports? This research will be based on the sports academic journals in the past, the development status and characteristics and now plays in the history and context of modern academic value and social value, to explore the new era background, especially the development of the reform of the cultural system, marketization and the digital innovation situation of sports academic periodical show in sports, sports industry development and play a more important role in study.

Keywords: sports academin journals, strong sporting nation, innovation, China

Procedia PDF Downloads 496
3827 Use of Geosynthetics as Reinforcement Elements in Unpaved Tertiary Roads

Authors: Vivian A. Galindo, Maria C. Galvis, Jaime R. Obando, Alvaro Guarin

Abstract:

In Colombia, most of the roads of the national tertiary road network are unpaved roads with granular rolling surface. These are very important ways of guaranteeing the mobility of people, products, and inputs from the agricultural sector from the most remote areas to urban centers; however, it has not paid much attention to the search for alternatives to avoid the occurrence of deteriorations that occur shortly after its commissioning. In recent years, geosynthetics have been used satisfactorily to reinforce unpaved roads on soft soils, with geotextiles and geogrids being the most widely used. The interaction of the geogrid and the aggregate minimizes the lateral movement of the aggregate particles and increases the load capacity of the material, which leads to a better distribution of the vertical stresses, consequently reducing the vertical deformations in the subgrade. Taking into account the above, the research aimed at the mechanical behavior of the granular material, used in unpaved roads with and without the presence of geogrids, from the development of laboratory tests through the loaded wheel tester (LWT). For comparison purposes, the reinforced conditions and traffic conditions to which this type of material can be accessed in practice were simulated. In total four types of geogrids, were tested with granular material; this means that five test sets, the reinforced material and the non-reinforced control sample were evaluated. The results of the numbers of load cycles and depth rutting supported by each test body showed the influence of the properties of the reinforcement on the mechanical behavior of the assembly and the significant increases in the number of load cycles of the reinforced specimens in relation to those without reinforcement.

Keywords: geosynthetics, load wheel tester LWT, tertiary roads, unpaved road, vertical deformation

Procedia PDF Downloads 246
3826 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells

Authors: Salvatore Brischetto, Domenico Cesare

Abstract:

Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.

Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach

Procedia PDF Downloads 64
3825 Determination of Geogrid Reinforced Ballast Behavior Using Finite Element Modeling

Authors: Buğra Sinmez

Abstract:

In some countries, such as China, Turkey, andseveralEuropeanUnionnations, the therailwaypavementstructuralsystem has recently undergonerapid growth as a vital element of the transportation infrastructure, particularlyfortheuse of high-speed trains. It is vitaltoconsiderthe High-SpeedInfrastructureDemandwhendevelopingandconstructingtherailwaypavementstructure. HSRL can create more substantial ldifficultiestotheballastorbaselayer of regularlyusedballastedrailwaypavementsthanstandardrailwaytrains. The deterioration of the theballastorbaselayermayleadtosubstructuredegradation, which might lead to safety concerns and catastrophicincidents. As a result, the efficiency of railways will be impactedbylargecargoesorhigh-speed trains. A railwaypavement construction can be strengthened using geosyntheticmaterials in theballastorfoundationlayer as a countermeasure. However, there is still a need in the literature to quantifytheinfluence of geosynthetic materials, particularlygeogrid, on the mechanical responses of railwaypavementstructuresto HSRL loads which is essential knowledge in supporting the selection of appropriate material and geogridinstallationposition. As a result, the purpose of this research is to see how a geogridreinforcementlayermayaffectthekeyfeatures of a ballastedrailwaypavementstructure, with a particular focus on the materialtypeandgeogridplacementpositionthatmayassistreducethe rate of degradation of the therailwaypavementstructuresystem. Thisstudyusesnumericalmodeling in a genuinerailwaycontexttovalidatethebenefit of geogrid reinforcement. The usage of geogrids in the railway system has been thoroughly researched in the technical literature. Three distinct types of geogrid installed at two distinct positions (i.e.,withintheballastlayer, betweentheballastandthesub-ballast layer) within a railwaypavementconstructionwereevaluatedunder a variety of verticalwheelloadsusing a three-dimensional (3D) finite element model. As a result, fouralternativegeogridreinforcementsystemsweremodeledtoreflectdifferentconditions in the ballastedrailwaysystems (G0: no reinforcement; G1: reinforcedwithgeogridhavingthelowestdensityandYoung'smodulus; G2: reinforcedwithgeogridhavingtheintermediateYoung'smodulusanddensity; G3: reinforcedwithgeogridhavingthegreatestdensityandYoung'smodulus). Themechanicalreactions of the railway, such as verticalsurfacedeflection, maximumprimarystressandstrain, andmaximumshearstress, werestudiedandcomparedbetweenthefourgeogridreinforcementscenariosandfourverticalwheelloadlevels (i.e., 75, 100, 150, and 200 kN). Differences in the mechanical reactions of railwaypavementconstructionsowingtotheuse of differentgeogridmaterialsdemonstratethebenefits of suchgeosynthetics in ballast. In comparison to a non-reinforcedrailwaypavementconstruction, thereinforcedconstructionsfeaturedecreasedverticalsurfacedeflection, maximum shear stress at the sleeper-ballast contact, and maximum main stress at the bottom of the ballast layer. As a result, addinggeogridtotheballastlayerandbetweentheballastandsub-ballast layer in a ballastedrailwaypavementconstruction has beenfoundtolowercriticalshearand main stresses as well as verticalsurfacedeflection.

Keywords: geosynthetics, geogrid, railway, transportation

Procedia PDF Downloads 170