Search results for: hybrid working models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11204

Search results for: hybrid working models

8294 Sexual and Reproductive Rights After the Signing of the Peace Process: A Territorial Commitment

Authors: Rocio Murad, Juan Carlos Rivillas, Nury Alejandra Rodriguez, Daniela Roldán

Abstract:

In Colombia, around 5 million women have suffered forced displacement and all forms of gender-based violence, mostly adolescents and young women, single mothers, or widows with children affected by the war. After the signing of the peace agreements, the department of Antioquia has been one of the most affected by the armed conflict, from a territorial and gender perspective in the period. The objective of the research was to analyze the situation of sexual and reproductive rights in the department of Antioquia from a territorial and gender perspective in the period after the signing of the Peace Agreement. A mixed methodology was developed. The quantitative component conducted a cross-sectional descriptive study of barriers to access to contraceptive methods, safe abortion and gender-based violence based on microdata from the 2015 National Demographic and Health Survey. In the qualitative component, a case study was developed in Dabeiba, a municipality of Antioquia prioritized in order to deepen the experiences before, during and after the armed conflict in sexual and reproductive rights; using three research techniques: Focused observation, Semi-structured interviews, and Documentary review. The results showed that there is a gradient of greater vulnerability to greater effects of the conflict and that the subregion of Urabá Antioqueño, to which Dabeiba belongs, has the highest levels of vulnerability in relation to departmental data. In this subregion, the percentage of women with an unmet need for contraceptive methods (9%), women with unintended pregnancies (31%), of women between 15 and 19 years of age who are already mothers or are pregnant with their first child (32%) and the percentage of women victims of physical violence (42%) and sexual violence (13%) by their partners are significantly higher. Women, particularly rural and indigenous women, were doubly affected due to the existence of violence that is specifically directed at them or that has a greater impact on their life projects. There was evidence of insufficient, fragmented and disjointed social and institutional action in relation to women's rights and the existence of androcentric and patriarchal social imaginaries through which women and the feminine are undervalued. These results provide evidence of violations of sexual and reproductive rights in contexts of armed conflict and make it possible to identify mechanisms to guarantee the re-establishment of the rights of the victims, particularly women and girls. Among the mechanisms evidenced are: working for the elimination of gender stereotypes; supporting the formation and strengthening of women's social organizations; working for the concerted definition and articulated implementation of actions necessary to respond to sexual and reproductive health needs; and working for the recognition of reproductive violence as specific and different from sexual violence in the context of armed conflict. Also, it was evidenced that it is necessary to implement prevention, attention and reparation actions.

Keywords: sexual and reproductive rights, Colombia, armed conflict, violence against women

Procedia PDF Downloads 91
8293 Cognitive Deficits and Association with Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder in 22q11.2 Deletion Syndrome

Authors: Sinead Morrison, Ann Swillen, Therese Van Amelsvoort, Samuel Chawner, Elfi Vergaelen, Michael Owen, Marianne Van Den Bree

Abstract:

22q11.2 Deletion Syndrome (22q11.2DS) is caused by the deletion of approximately 60 genes on chromosome 22 and is associated with high rates of neurodevelopmental disorders such as Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders (ASD). The presentation of these disorders in 22q11.2DS is reported to be comparable to idiopathic forms and therefore presents a valuable model for understanding mechanisms of neurodevelopmental disorders. Cognitive deficits are thought to be a core feature of neurodevelopmental disorders, and possibly manifest in behavioural and emotional problems. There have been mixed findings in 22q11.2DS on whether the presence of ADHD or ASD is associated with greater cognitive deficits. Furthermore, the influence of developmental stage has never been taken into account. The aim was therefore to examine whether the presence of ADHD or ASD was associated with cognitive deficits in childhood and/or adolescence in 22q11.2DS. We conducted the largest study to date of this kind in 22q11.2DS. The same battery of tasks measuring processing speed, attention and spatial working memory were completed by 135 participants with 22q11.2DS. Wechsler IQ tests were completed, yielding Full Scale (FSIQ), Verbal (VIQ) and Performance IQ (PIQ). Age-standardised difference scores were produced for each participant. Developmental stages were defined as children (6-10 years) and adolescents (10-18 years). ADHD diagnosis was ascertained from a semi-structured interview with a parent. ASD status was ascertained from a questionnaire completed by a parent. Interaction and main effects of cognitive performance of those with or without a diagnosis of ADHD or ASD in childhood or adolescence were conducted with 2x2 ANOVA. Significant interactions were followed up with t-tests of simple effects. Adolescents with ASD displayed greater deficits in all measures (processing speed, p = 0.022; sustained attention, p = 0.016; working memory, p = 0.006) than adolescents without ASD; there was no difference between children with and without ASD. There were no significant differences on IQ measures. Both children and adolescents with ADHD displayed greater deficits on sustained attention (p = 0.002) than those without ADHD. There were no significant differences on any other measures for ADHD. Magnitude of cognitive deficit in individuals with 22q11.2DS varied by cognitive domain, developmental stage and presence of neurodevelopmental disorder. Adolescents with 22q11.2DS and ASD showed greater deficits on all measures, which suggests there may be a sensitive period in childhood to acquire these domains, or reflect increasing social and academic demands in adolescence. The finding of poorer sustained attention in children and adolescents with ADHD supports previous research and suggests a specific deficit which can be separated from processing speed and working memory. This research provides unique insights into the association of ASD and ADHD with cognitive deficits in a group at high genomic risk of neurodevelopmental disorders.

Keywords: 22q11.2 deletion syndrome, attention deficit hyperactivity disorder, autism spectrum disorder, cognitive development

Procedia PDF Downloads 151
8292 Phonological Encoding and Working Memory in Kannada Speaking Adults Who Stutter

Authors: Nirmal Sugathan, Santosh Maruthy

Abstract:

Background: A considerable number of studies have evidenced that phonological encoding (PE) and working memory (WM) skills operate differently in adults who stutter (AWS). In order to tap these skills, several paradigms have been employed such as phonological priming, phoneme monitoring, and nonword repetition tasks. This study, however, utilizes a word jumble paradigm to assess both PE and WM using different modalities and this may give a better understanding of phonological processing deficits in AWS. Aim: The present study investigated PE and WM abilities in conjunction with lexical access in AWS using jumbled words. The study also aimed at investigating the effect of increase in cognitive load on phonological processing in AWS by comparing the speech reaction time (SRT) and accuracy scores across various syllable lengths. Method: Participants were 11 AWS (Age range=19-26) and 11 adults who do not stutter (AWNS) (Age range=19-26) matched for age, gender and handedness. Stimuli: Ninety 3-, 4-, and 5-syllable jumbled words (JWs) (n=30 per syllable length category) constructed from Kannada words served as stimuli for jumbled word paradigm. In order to generate jumbled words (JWs), the syllables in the real words were randomly transpositioned. Procedures: To assess PE, the JWs were presently visually using DMDX software and for WM task, JWs were presented through auditory mode through headphones. The participants were asked to silently manipulate the jumbled words to form a Kannada real word and verbally respond once. The responses for both tasks were audio recorded using record function in DMDX software and the recorded responses were analyzed using PRAAT software to calculate the SRT. Results: SRT: Mann-Whitney test results demonstrated that AWS performed significantly slower on both tasks (p < 0.001) as indicated by increased SRT. Also, AWS presented with increased SRT on both the tasks in all syllable length conditions (p < 0.001). Effect of syllable length: Wilcoxon signed rank test was carried out revealed that, on task assessing PE, the SRT of 4syllable JWs were significantly higher in both AWS (Z= -2.93, p=.003) and AWNS (Z= -2.41, p=.003) when compared to 3-syllable words. However, the findings for 4- and 5-syllable words were not significant. Task Accuracy: The accuracy scores were calculated for three syllable length conditions for both PE and PM tasks and were compared across the groups using Mann-Whitney test. The results indicated that the accuracy scores of AWS were significantly below that of AWNS in all the three syllable conditions for both the tasks (p < 0.001). Conclusion: The above findings suggest that PE and WM skills are compromised in AWS as indicated by increased SRT. Also, AWS were progressively less accurate in descrambling JWs of increasing syllable length and this may be interpreted as, rather than existing as a uniform deficiency, PE and WM deficits emerge when the cognitive load is increased. AWNS exhibited increased SRT and increased accuracy for JWs of longer syllable length whereas AWS was not benefited from increasing the reaction time, thus AWS had to compromise for both SRT and accuracy while solving JWs of longer syllable length.

Keywords: adults who stutter, phonological ability, working memory, encoding, jumbled words

Procedia PDF Downloads 240
8291 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism

Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman

Abstract:

Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.

Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator

Procedia PDF Downloads 368
8290 Synthesis of an Organic-Inorganic Salt of 12-Silicotungstate, (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40, was synthesized. Investigation on the anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: polyoxometalate, keggin, organic-inorganic salt, TMV

Procedia PDF Downloads 291
8289 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 369
8288 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis

Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan

Abstract:

This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.

Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis

Procedia PDF Downloads 227
8287 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates

Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe

Abstract:

Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.

Keywords: machine learning, MTB, WGS, drug resistant TB

Procedia PDF Downloads 52
8286 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks

Procedia PDF Downloads 142
8285 Impact of Hybrid Optical Amplifiers on 16 Channel Wavelength Division Multiplexed System

Authors: Inderpreet Kaur, Ravinder Pal Singh, Kamal Kant Sharma

Abstract:

This paper addresses the different configurations used of optical amplifiers with 16 channels in Wavelength Division Multiplexed system. The systems with 16 channels have been simulated for evaluation of various parameters; Bit Error Rate, Quality Factor, for threshold values for a range of wavelength from 1471 nm to 1611 nm. Comparison of various combination of configurations have been analyzed with EDFA and FRA but EDFA-FRA configuration performance has been found satisfactory in terms of performance indices and stable region. The paper also compared various parameters quantized with different configurations individually. It has been found that Q factor has high value with less value of BER and high resolution for EDFA-FRA configuration.

Keywords: EDFA, FRA, WDM, Q factor, BER

Procedia PDF Downloads 354
8284 Impact of Chess Intervention on Cognitive Functioning of Children

Authors: Ebenezer Joseph

Abstract:

Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.

Keywords: chess, intelligence, creativity, children

Procedia PDF Downloads 257
8283 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications

Authors: Udayan Patankar, Shashwati Bhagat, Vilas Nitneware, Ants Koel

Abstract:

An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band.

Keywords: RFIC, PAE, RF CMOS, impedance matching

Procedia PDF Downloads 224
8282 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model

Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge

Abstract:

Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.

Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model

Procedia PDF Downloads 131
8281 Assessment of Nuclear Medicine Radiation Protection Practices Among Radiographers and Nurses at a Small Nuclear Medicine Department in a Tertiary Hospital

Authors: Nyathi Mpumelelo; Moeng Thabiso Maria

Abstract:

BACKGROUND AND OBJECTIVES: Radiopharmaceuticals are used for diagnosis, treatment, staging and follow up of various diseases. However, there is concern that the ionizing radiation (gamma rays, α and ß particles) emitted by radiopharmaceuticals may result in exposure of radiographers and nurses with limited knowledge of the principles of radiation protection and safety, raising the risk of cancer induction. This study aimed at investigation radiation safety awareness levels among radiographers and nurses at a small tertiary hospital in South Africa. METHODS: An analytical cross-sectional study. A validated two-part questionnaire was implemented to consenting radiographers and nurses working in a Nuclear Medicine Department. Part 1 gathered demographic information (age, gender, work experience, attendance to/or passing ionizing radiation protection courses). Part 2 covered questions related to knowledge and awareness of radiation protection principles. RESULTS: Six radiographers and five nurses participated (27% males and 73% females). The mean age was 45 years (age range 20-60 years). The study revealed that neither professional development courses nor radiation protection courses are offered at the Nuclear Medicine Department understudy. However, 6/6 (100%) radiographers exhibited a high level of awareness of radiation safety principles on handling and working with radiopharmaceuticals which correlated to their years of experience. As for nurses, 4/5 (80%) showed limited knowledge and awareness of radiation protection principles irrespective of the number of years in the profession. CONCLUSION: Despite their major role of caring for patients undergoing diagnostic and therapeutic treatments, the nurses showed limited knowledge of ionizing radiation and associated side effects. This was not surprising since they never received any formal basic radiation safety course. These findings were not unique to this Centre. A study conducted in a Kuwaiti Radiology Department also established that the vast majority of nurses did not understand the risks of working with ionizing radiation. Similarly, nurses in an Australian hospital exhibited knowledge limitations. However, nursing managers did provide the necessary radiation safety training when requested. In Guatemala and Saudi Arabia, where there was shortage of professional radiographers, nurses underwent radiography training, a course that equipped them with basic radiation safety principles. The radiographers in the Centre understudy unlike others in various parts of the world demonstrated substantial knowledge and awareness on radiation protection. Radiations safety courses attended when an opportunity arose played a critical role in their awareness. The knowledge and awareness levels of these radiographers were comparable to their counterparts in Sudan. However, it was much more above that of their counterparts in Jordan, Nigeria, Nepal and Iran who were found to have limited awareness and inadequate knowledge on radiation dose. Formal radiation safety and awareness courses and workshops can play a crucial role in raising the awareness of nurses and radiographers on radiation safety for their personal benefit and that of their patients.

Keywords: radiation safety, radiation awareness, training, nuclear medicine

Procedia PDF Downloads 80
8280 Promoting Incubation Support to Youth Led Enterprises: A Case Study from Bangladesh to Eradicate Hazardous Child Labour through Microfinance

Authors: Md Maruf Hossain Koli

Abstract:

The issue of child labor is enormous and cannot be ignored in Bangladesh. The problem of child exploitation is a socio-economic reality of Bangladesh. This paper will indicate the causes, consequences, and possibilities of using microfinance as remedies of hazardous child labor in Bangladesh. Poverty is one of the main reasons for children to become child laborers. It is an indication of economic vulnerability, inadequate law, and enforcement system and cultural and social inequities along with the inaccessible and low-quality educational system. An attempt will be made in this paper to explore and analyze child labor scenario in Bangladesh and will explain holistic intervention of BRAC, the largest nongovernmental organization in the world to address child labor through promoting incubation support to youth-led enterprises. A combination of research methods were used to write this paper. These include non-reactive observation in the form of literature review, desk studies as well as reactive observation like site visits and, semi-structured interviews. Hazardous Child labor is a multi-dimensional and complex issue. This paper was guided by the answer following research questions to better understand the current context of hazardous child labor in Bangladesh, especially in Dhaka city. The author attempted to figure out why child labor should be considered as a development issue? Further, it also encountered why child labor in Bangladesh is not being reduced at an expected pace? And finally what could be a sustainable solution to eradicate this situation. One of the most challenging characteristics of child labor is that it interrupts a child’s education and cognitive development hence limiting the building of human capital and fostering intergenerational reproduction of poverty and social exclusion. Children who are working full-time and do not attend school, cannot develop the necessary skills. This leads them and their future generation to remain in poor socio-economic condition as they do not get a better paying job. The vicious cycle of poverty will be reproduced and will slow down sustainable development. The outcome of the research suggests that most of the parents send their children to work to help them to increase family income. In addition, most of the youth engaged in hazardous work want to get training, mentoring and easy access to finance to start their own business. The intervention of BRAC that includes classroom and on the job training, tailored mentoring, health support, access to microfinance and insurance help them to establish startup. This intervention is working in developing business and management capacity through public-private partnerships and technical consulting. Supporting entrepreneurs, improving working conditions with micro, small and medium enterprises and strengthening value chains focusing on youth and children engaged with hazardous child labor.

Keywords: child labour, enterprise development, microfinance, youth entrepreneurship

Procedia PDF Downloads 128
8279 Designing Product-Service-System Applied to Reusable Packaging Solutions: A Strategic Design Tool

Authors: Yuan Long, Fabrizio Ceschin, David Harrison

Abstract:

Environmental sustainability is under the threat of excessive single-use plastic packaging waste, and current waste management fails to address this issue. Therefore, it has led to a reidentification of the alternative, which can curb the packaging waste without reducing social needs. Reusable packaging represents a circular approach to close the loop of consumption in which packaging can stay longer in the system to satisfy social needs. However, the implementation of reusable packaging is fragmented and lacks systematic approaches. The product-service system (PSS) is widely regarded as a sustainable business model innovation for embracing circular consumption. As a result, applying PSS to reusable packaging solutions will be promising to address the packaging waste issue. This paper aims at filling the knowledge gap relating to apply PSS to reusable packaging solutions and provide a strategic design tool that could support packaging professionals to design reusable packaging solutions. The methodology of this paper is case studies and workshops to provide a design tool. The respondents are packaging professionals who are packaging consultants, NGO professionals, and entrepreneurs. 57 cases collected show that 15 archetypal models operate in the market. Subsequently, a polarity diagram is developed to embrace those 15 archetypal models, and a total number of 24 experts were invited for the workshop to evaluate the design tool. This research finally provides a strategic design tool to support packaging professionals to design reusable packaging solutions. The application of the tool is to support the understanding of the reusable packaging solutions, analyzing the markets, identifying new opportunities, and generate new business models. The implication of this research is to provide insights for academics and businesses in terms of tackling single-use packaging waste and build a foundation for further development of the reusable packaging solution tool.

Keywords: environmental sustainability, product-service system, reusable packaging, design tool

Procedia PDF Downloads 148
8278 Concurrent Engineering Challenges and Resolution Mechanisms from Quality Perspectives

Authors: Grmanesh Gidey Kahsay

Abstract:

In modern technical engineering applications, quality is defined in two ways. The first one is that quality is the parameter that measures a product or service’s characteristics to meet and satisfy the pre-stated or fundamental needs (reliability, durability, serviceability). The second one is the quality of a product or service free of any defect or deficiencies. The American Society for Quality (ASQ) describes quality as a pursuit of optimal solutions to confirm successes and fulfillment to be accountable for the product or service's requirements and expectations. This article focuses on quality engineering tools in modern industrial applications. Quality engineering is a field of engineering that deals with the principles, techniques, models, and applications of the product or service to guarantee quality. Including the entire activities to analyze the product’s design and development, quality engineering emphasizes how to make sure that products and services are designed and developed to meet consumers’ requirements. This episode acquaints with quality tools such as quality systems, auditing, product design, and process control. The finding presents thoughts that aim to improve quality engineering proficiency and effectiveness by introducing essential quality techniques and tools in some selected industries.

Keywords: essential quality tools, quality systems and models, quality management systems, and quality assurance

Procedia PDF Downloads 152
8277 Empirical Modeling of Air Dried Rubberwood Drying System

Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit

Abstract:

Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (= 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.

Keywords: empirical models, rubberwood, moisture ratio, hot air drying

Procedia PDF Downloads 267
8276 Cognitive eTransformation Framework for Education Sector

Authors: A. Hol

Abstract:

21st century brought waves of business and industry eTransformations. The impact of change is also being seen in education. To identify the extent of this, scenario analysis methodology was utilised with the aim to assess business transformations across industry sectors ranging from craftsmanship, medicine, finance and manufacture to innovations and adoptions of new technologies and business models. Firstly, scenarios were drafted based on the current eTransformation models and its dimensions. Following this, eTransformation framework was utilised with the aim to derive the key eTransformation parameters, the essential characteristics that have enabled eTransformations across the sectors. Following this, identified key parameters were mapped to the transforming domain-education. The mapping assisted in deriving a cognitive eTransformation framework for education sector. The framework highlights the importance of context and the notion that education today needs not only to deliver content to students but it also needs to be able to meet the dynamically changing demands of specific student and industry groups. Furthermore, it pinpoints that for such processes to be supported, specific technology is required, so that instant, on demand and periodic feedback as well as flexible, dynamically expanding study content can be sought and received via multiple education mediums.

Keywords: education sector, business transformation, eTransformation model, cognitive model, cognitive systems, eTransformation

Procedia PDF Downloads 136
8275 A Dynamic Neural Network Model for Accurate Detection of Masked Faces

Authors: Oladapo Tolulope Ibitoye

Abstract:

Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.

Keywords: convolutional neural network, face detection, face mask, masked faces

Procedia PDF Downloads 68
8274 New Hybrid Process for Converting Small Structural Parts from Metal to CFRP

Authors: Yannick Willemin

Abstract:

Carbon fibre-reinforced plastic (CFRP) offers outstanding value. However, like all materials, CFRP also has its challenges. Many forming processes are largely manual and hard to automate, making it challenging to control repeatability and reproducibility (R&R); they generate significant scrap and are too slow for high-series production; fibre costs are relatively high and subject to supply and cost fluctuations; the supply chain is fragmented; many forms of CFRP are not recyclable, and many materials have yet to be fully characterized for accurate simulation; shelf life and outlife limitations add cost; continuous-fibre forms have design limitations; many materials are brittle; and small and/or thick parts are costly to produce and difficult to automate. A majority of small structural parts are metal due to high CFRP fabrication costs for the small-size class. The fact that CFRP manufacturing processes that produce the highest performance parts also tend to be the slowest and least automated is another reason CFRP parts are generally higher in cost than comparably performing metal parts, which are easier to produce. Fortunately, business is in the midst of a major manufacturing evolution—Industry 4.0— one technology seeing rapid growth is additive manufacturing/3D printing, thanks to new processes and materials, plus an ability to harness Industry 4.0 tools. No longer limited to just prototype parts, metal-additive technologies are used to produce tooling and mold components for high-volume manufacturing, and polymer-additive technologies can incorporate fibres to produce true composites and be used to produce end-use parts with high aesthetics, unmatched complexity, mass customization opportunities, and high mechanical performance. A new hybrid manufacturing process combines the best capabilities of additive—high complexity, low energy usage and waste, 100% traceability, faster to market—and post-consolidation—tight tolerances, high R&R, established materials, and supply chains—technologies. The platform was developed by Zürich-based 9T Labs AG and is called Additive Fusion Technology (AFT). It consists of a design software offering the possibility to determine optimal fibre layup, then exports files back to check predicted performance—plus two pieces of equipment: a 3d-printer—which lays up (near)-net-shape preforms using neat thermoplastic filaments and slit, roll-formed unidirectional carbon fibre-reinforced thermoplastic tapes—and a post-consolidation module—which consolidates then shapes preforms into final parts using a compact compression press fitted with a heating unit and matched metal molds. Matrices—currently including PEKK, PEEK, PA12, and PPS, although nearly any high-quality commercial thermoplastic tapes and filaments can be used—are matched between filaments and tapes to assure excellent bonding. Since thermoplastics are used exclusively, larger assemblies can be produced by bonding or welding together smaller components, and end-of-life parts can be recycled. By combining compression molding with 3D printing, higher part quality with very-low voids and excellent surface finish on A and B sides can be produced. Tight tolerances (min. section thickness=1.5mm, min. section height=0.6mm, min. fibre radius=1.5mm) with high R&R can be cost-competitively held in production volumes of 100 to 10,000 parts/year on a single set of machines.

Keywords: additive manufacturing, composites, thermoplastic, hybrid manufacturing

Procedia PDF Downloads 96
8273 Some Quality Parameters of Selected Maize Hybrids from Serbia for the Production of Starch, Bioethanol and Animal Feed

Authors: Marija Milašinović-Šeremešić, Valentina Semenčenko, Milica Radosavljević, Dušanka Terzić, Ljiljana Mojović, Ljubica Dokić

Abstract:

Maize (Zea mays L.) is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. The main goal of the present study was to investigate a suitability of selected maize hybrids of different genetic background produced in Maize Research Institute ‘Zemun Polje’, Belgrade, Serbia, for starch, bioethanol and animal feed production. All the hybrids are commercial and their detailed characterization is important for the expansion of their different uses. The starches were isolated by using a 100-g laboratory maize wet-milling procedure. Hydrolysis experiments were done in two steps (liquefaction with Termamyl SC, and saccharification with SAN Extra L). Starch hydrolysates obtained by the two-step hydrolysis of the corn flour starch were subjected to fermentation by S. cerevisiae var. ellipsoideus under semi-anaerobic conditions. The digestibility based on enzymatic solubility was performed by the Aufréré method. All investigated ZP maize hybrids had very different physical characteristics and chemical composition which could allow various possibilities of their use. The amount of hard (vitreous) and soft (floury) endosperm in kernel is considered one of the most important parameters that can influence the starch and bioethanol yields. Hybrids with a lower test weight and density and a greater proportion of soft endosperm fraction had a higher yield, recovery and purity of starch. Among the chemical composition parameters only starch content significantly affected the starch yield. Starch yields of studied maize hybrids ranged from 58.8% in ZP 633 to 69.0% in ZP 808. The lowest bioethanol yield of 7.25% w/w was obtained for hybrid ZP 611k and the highest by hybrid ZP 434 (8.96% w/w). A very significant correlation was determined between kernel starch content and the bioethanol yield, as well as volumetric productivity (48h) (r=0.66). Obtained results showed that the NDF, ADF and ADL contents in the whole maize plant of the observed ZP maize hybrids varied from 40.0% to 60.1%, 18.6% to 32.1%, and 1.4% to 3.1%, respectively. The difference in the digestibility of the dry matter of the whole plant among hybrids (ZP 735 and ZP 560) amounted to 18.1%. Moreover, the differences in the contents of the lignocelluloses fraction affected the differences in dry matter digestibility. From the results it can be concluded that genetic background of the selected maize hybrids plays an important part in estimation of the technological value of maize hybrids for various purposes. Obtained results are of an exceptional importance for the breeding programs and selection of potentially most suitable maize hybrids for starch, bioethanol and animal feed production.

Keywords: bioethanol, biomass quality, maize, starch

Procedia PDF Downloads 222
8272 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate

Authors: Susan Diamond

Abstract:

Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare. 

Keywords: deep learning, machine learning, cognitive computing, model training

Procedia PDF Downloads 209
8271 Numerical Investigation of Cavitation on Different Venturi Shapes by Computational Fluid Dynamics

Authors: Sedat Yayla, Mehmet Oruc, Shakhwan Yaseen

Abstract:

Cavitation phenomena might rigorously impair machine parts such as pumps, propellers and impellers or devices as the pressure in the fluid declines under the liquid's saturation pressure. To evaluate the influence of cavitation, in this research two-dimensional computational fluid dynamics (CFD) venturi models with variety of inlet pressure values, throat lengths and vapor fluid contents were applied. In this research three different vapor contents (0%, 5% 10%), four inlet pressures (2, 4, 6, 8 and 10 atm) and two venturi models were employed at different throat lengths ( 5, 10, 15 and 20 mm) for discovering the impact of each parameter on the cavitation number. It is uncovered that there is a positive correlation between pressure inlet and vapor fluid content and cavitation number. Furthermore, it is unveiled that velocity remains almost constant at the inlet pressures of 6, 8,10atm, nevertheless increasing the length of throat results in the substantial escalation in the velocity of the throat at inlet pressures of 2 and 4 atm. Furthermore, velocity and cavitation number were negatively correlated. The results of the cavitation number varied between 0.092 and 0.495 depending upon the velocity values of the throat.

Keywords: cavitation number, computational fluid dynamics, mixture of fluid, two-phase flow, velocity of throat

Procedia PDF Downloads 401
8270 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
8269 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 215
8268 AFM Probe Sensor Designed for Cellular Membrane Components

Authors: Sarmiza Stanca, Wolfgang Fritzsche, Christoph Krafft, Jürgen Popp

Abstract:

Independent of the cell type a thin layer of a few nanometers thickness surrounds the cell interior as the cellular membrane. The transport of ions and molecules through the membrane is achieved in a very precise way by pores. Understanding the process of opening and closing the pores due to an electrochemical gradient across the membrane requires knowledge of the pore constitutive proteins. Recent reports prove the access to the molecular level of the cellular membrane by atomic force microscopy (AFM). This technique also permits an electrochemical study in the immediate vicinity of the tip. Specific molecules can be electrochemically localized in the natural cellular membrane. Our work aims to recognize the protein domains of the pores using an AFM probe as a miniaturized amperometric sensor, and to follow the protein behavior while changing the applied potential. The intensity of the current produced between the surface and the AFM probe is amplified and detected simultaneously with the surface imaging. The AFM probe plays the role of the working electrode and the substrate, a conductive glass on which the cells are grown, represent the counter electrode. For a better control of the electric potential on the probe, a third electrode Ag/AgCl wire is mounted in the circuit as a reference electrode. The working potential is applied between the electrodes with a programmable source and the current intensity in the circuit is recorded with a multimeter. The applied potential considers the overpotential at the electrode surface and the potential drop due to the current flow through the system. The reported method permits a high resolved electrochemical study of the protein domains on the living cell membrane. The amperometric map identifies areas of different current intensities on the pore depending on the applied potential. The reproducibility of this method is limited by the tip shape, the uncontrollable capacitance, which occurs at the apex and a potential local charge separation.

Keywords: AFM, sensor, membrane, pores, proteins

Procedia PDF Downloads 308
8267 Packaging Improvement for Unit Cell Vanadium Redox Flow Battery (V-RFB)

Authors: A. C. Khor, M. R. Mohamed, M. H. Sulaiman, M. R. Daud

Abstract:

Packaging for vanadium redox flow battery is one of the key elements for successful implementation of flow battery in the electrical energy storage system. Usually the bulky battery size and low energy densities make this technology not available for mobility application. Therefore RFB with improved packaging size and energy capacity are highly desirable. This paper focuses on the study of packaging improvement for unit cell V-RFB to the application on Series Hybrid Electric Vehicle. Two different designs of 25 cm2 and 100 cm2 unit cell V-RFB at same current density are used for the sample in this investigation. Further suggestions on packaging improvement are highlighted.

Keywords: electric vehicle, redox flow battery, packaging, vanadium

Procedia PDF Downloads 434
8266 Oxygen Transfer in Viscous Non-Newtonian Liquid in a Hybrid Bioreactor

Authors: Sérgio S. de Jesus, Aline Santana, Rubens Maciel Filho

Abstract:

Global oxygen transfer coefficient (kLa) was characterized in a mechanically agitated airlift bio reactor. The experiments were carried out in an airlift bio reactor (3.2 L) with internal re circulation (a concentric draft-tube airlift vessel device); the agitation is carried out through a turbine Rushton impeller located along with the gas sparger in the region comprised in the riser. The experiments were conducted using xanthan gum (0.6%) at 250 C and a constant rotation velocity of 0 and 800 rpm, as well as in the absence of agitation (airlift mode); the superficial gas velocity varied from 0.0157 to 0.0262 ms-1. The volumetric oxygen transfer coefficient dependence of the rotational speed revealed that the presence of agitation increased up to two times the kLa value.

Keywords: aeration, mass transfer, non-Newtonian fluids, stirred airlift bioreactor

Procedia PDF Downloads 461
8265 Financial Liberalization, Exchange Rates and Demand for Money in Developing Economies: The Case of Nigeria, Ghana and Gambia

Authors: John Adebayo Oloyhede

Abstract:

This paper examines effect of financial liberalization on the stability of the demand for money function and its implication for exchange rate behaviour of three African countries. As the demand for money function is regarded as one of the two main building blocks of most exchange rate determination models, the other being purchasing power parity, its stability is required for the monetary models of exchange rate determination to hold. To what extent has the liberalisation policy of these countries, for instance liberalised interest rate, affected the demand for money function and what has been the consequence on the validity and relevance of floating exchange rate models? The study adopts the Autoregressive Instrumental Package (AIV) of multiple regression technique and followed the Almon Polynomial procedure with zero-end constraint. Data for the period 1986 to 2011 were drawn from three developing countries of Africa, namely: Gambia, Ghana and Nigeria, which did not only start the liberalization and floating system almost at the same period but share similar and diverse economic and financial structures. Its findings show that the demand for money was a stable function of income and interest rate at home and abroad. Other factors such as exchange rate and foreign interest rate exerted some significant effect on domestic money demand. The short-run and long-run elasticity with respect to income, interest rates, expected inflation rate and exchange rate expectation are not greater than zero. This evidence conforms to some extent to the expected behaviour of the domestic money function and underscores its ability to serve as good building block or assumption of the monetary model of exchange rate determination. This will, therefore, assist appropriate monetary authorities in the design and implementation of further financial liberalization policy packages in developing countries.

Keywords: financial liberalisation, exchange rates, demand for money, developing economies

Procedia PDF Downloads 373