Search results for: computer game-based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8987

Search results for: computer game-based learning

6077 An Intelligent Tutoring System Enriched with 3D Virtual Reality for Dentistry Students

Authors: Meltem Eryılmaz

Abstract:

With the emergence of the COVID-19 infection outbreak, the socio-cultural, political, economic, educational systems dynamics of the world have gone through a major change, especially in the educational field, specifically dentistry preclinical education, where the students must have a certain amount of real-time experience in endodontics and other various procedures. The totality of the digital and physical elements that make our five sense organs feel as if we really exist in a virtual world is called virtual reality. Virtual reality, which is very popular today, has started to be used in education. With the inclusion of developing technology in education and training environments, virtual learning platforms have been designed to enrich students' learning experiences. The field of health is also affected by these current developments, and the number of virtual reality applications developed for students studying dentistry is increasing day by day. The most widely used tools of this technology are virtual reality glasses. With virtual reality glasses, you can look any way you want in a world designed in 3D and navigate as you wish. With this project, solutions that will respond to different types of dental practices of students who study dentistry with virtual reality applications are produced. With this application, students who cannot find the opportunity to work with patients in distance education or who want to improve themselves at home have unlimited trial opportunities. Unity 2021, Visual Studio 2019, Cardboard SDK are used in the study.

Keywords: dentistry, intelligent tutoring system, virtual reality, online learning, COVID-19

Procedia PDF Downloads 203
6076 Embracing Diverse Learners: A Way Towards Effective Learning

Authors: Mona Kamel Hassan

Abstract:

Teaching a class of diverse learners poses a great challenge not only for foreign and second language teachers, but also for teachers in different disciplines as well as for curriculum designers. Thus, to contribute to previous research tackling language diversity, the current paper shares the experience of teaching a reading, writing and vocabulary building course to diverse Arabic as a Foreign Language learners in their advanced language proficiency level. Diversity is represented in students’ motivation, their prior knowledge, their various needs and interests, their level of anxiety, and their different learning styles and skills. While teaching this course the researcher adopted the universal design for learning (UDL) framework, which is a means to meet the various needs of diverse learners. UDL stresses the importance of enabling the entire diverse students to gain skills, knowledge, and enthusiasm to learn through the employment of teaching methods that respond to students' individual differences. Accordingly, the educational curriculum developed for this course and the teaching methods employed is modified. First, the researcher made the language curriculum vivid and attractive to inspire students' learning and to keep them engaged in their learning process. The researcher encouraged the entire students, from the first day, to suggest topics of their interest; political, social, cultural, etc. The authentic Arabic texts chosen are those that best meet students’ needs, interests, lives, and sociolinguistic issues, together with the linguistic and cultural components. In class and under the researcher’s guidance, students dig into these topics to find solutions for the tackled issues while working with their peers. Second, to gain equal opportunities to demonstrate learning, role-playing was encouraged to give students the opportunity to perform different linguistic tasks, to reflect and share their diverse interests and cultural backgrounds with their peers. Third, to bring the UDL into the classroom, students were encouraged to work on interactive, collaborative activities through technology to improve their reading and writing skills and reinforce their mastery of the accumulated vocabulary, idiomatic expressions, and collocations. These interactive, collaborative activities help to facilitate student-student communication and student-teacher communication and to increase comfort in this class of diverse learners. Detailed samples of the educational curriculum and interactive, collaborative activities developed, accompanied by methods of teaching employed to teach these diverse learners, are presented for illustration. Results revealed that students are responsive to the educational materials which are developed for this course. Therefore, they engaged in the learning process and classroom activities and discussions effectively. They also appreciated their instructor’s willingness to differentiate the teaching methods to suit students of diverse background knowledge, learning styles, level of anxiety, etc. Finally, the researcher believes that sharing this experience in teaching diverse learners will help both language teachers and teachers in other disciplines to develop a better understanding to meet their students' diverse needs. Results will also pave the way for curriculum designers to develop educational material that meets the needs of diverse learners.

Keywords: teaching, language, diverse, learners

Procedia PDF Downloads 99
6075 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 196
6074 Implementation of a Method of Crater Detection Using Principal Component Analysis in FPGA

Authors: Izuru Nomura, Tatsuya Takino, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata

Abstract:

We propose a method of crater detection from the image of the lunar surface captured by the small space probe. We use the principal component analysis (PCA) to detect craters. Nevertheless, considering severe environment of the space, it is impossible to use generic computer in practice. Accordingly, we have to implement the method in FPGA. This paper compares FPGA and generic computer by the processing time of a method of crater detection using principal component analysis.

Keywords: crater, PCA, eigenvector, strength value, FPGA, processing time

Procedia PDF Downloads 555
6073 Children Learning Chinese as a Home Language in an English-Dominant Society

Authors: Sinming Law

Abstract:

Many Chinese families face many difficulties in maintaining their heritage language for their children in English-dominant societies. This article first looks at the losses from monolingualism and benefits of bilingualism. Then, it explores the common methods used today in teaching Chinese. We conclude that families and community play an indispensable role in their children’s acquisition. For children to acquire adequate proficiency in the language, educators should inform families about this topic and partner with them. Families can indeed be active in the process. Hence, the article further describes a guide designed and written by the author to accommodate the needs of parents. It can be used as a model for future guides. Further, the article recommends effective media routes by which families can have access to similar guides.

Keywords: children learning Chinese, biliteracy and bilingual acquisition, family and community support, heritage language maintenance

Procedia PDF Downloads 367
6072 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 103
6071 Bridging Minds and Nature: Revolutionizing Elementary Environmental Education Through Artificial Intelligence

Authors: Hoora Beheshti Haradasht, Abooali Golzary

Abstract:

Environmental education plays a pivotal role in shaping the future stewards of our planet. Leveraging the power of artificial intelligence (AI) in this endeavor presents an innovative approach to captivate and educate elementary school children about environmental sustainability. This paper explores the application of AI technologies in designing interactive and personalized learning experiences that foster curiosity, critical thinking, and a deep connection to nature. By harnessing AI-driven tools, virtual simulations, and personalized content delivery, educators can create engaging platforms that empower children to comprehend complex environmental concepts while nurturing a lifelong commitment to protecting the Earth. With the pressing challenges of climate change and biodiversity loss, cultivating an environmentally conscious generation is imperative. Integrating AI in environmental education revolutionizes traditional teaching methods by tailoring content, adapting to individual learning styles, and immersing students in interactive scenarios. This paper delves into the potential of AI technologies to enhance engagement, comprehension, and pro-environmental behaviors among elementary school children. Modern AI technologies, including natural language processing, machine learning, and virtual reality, offer unique tools to craft immersive learning experiences. Adaptive platforms can analyze individual learning patterns and preferences, enabling real-time adjustments in content delivery. Virtual simulations, powered by AI, transport students into dynamic ecosystems, fostering experiential learning that goes beyond textbooks. AI-driven educational platforms provide tailored content, ensuring that environmental lessons resonate with each child's interests and cognitive level. By recognizing patterns in students' interactions, AI algorithms curate customized learning pathways, enhancing comprehension and knowledge retention. Utilizing AI, educators can develop virtual field trips and interactive nature explorations. Children can navigate virtual ecosystems, analyze real-time data, and make informed decisions, cultivating an understanding of the delicate balance between human actions and the environment. While AI offers promising educational opportunities, ethical concerns must be addressed. Safeguarding children's data privacy, ensuring content accuracy, and avoiding biases in AI algorithms are paramount to building a trustworthy learning environment. By merging AI with environmental education, educators can empower children not only with knowledge but also with the tools to become advocates for sustainable practices. As children engage in AI-enhanced learning, they develop a sense of agency and responsibility to address environmental challenges. The application of artificial intelligence in elementary environmental education presents a groundbreaking avenue to cultivate environmentally conscious citizens. By embracing AI-driven tools, educators can create transformative learning experiences that empower children to grasp intricate ecological concepts, forge an intimate connection with nature, and develop a strong commitment to safeguarding our planet for generations to come.

Keywords: artificial intelligence, environmental education, elementary children, personalized learning, sustainability

Procedia PDF Downloads 83
6070 Education For Social Justice: A Comparative Study of University Teachers' Conceptions and Practice

Authors: Digby Warren, Jiri Kropac

Abstract:

This comparative study seeks to develop a deeper understanding of what is meant by “education for social justice” (ESJ) - an aspiration articulated by universities, though often without much definition. The research methodology involved thematic analysis of data from in-depth interviews with academics (voluntary participants) in different disciplines and institutions in the UK, Czech Republic and other EU countries. The interviews explored lecturers’ conceptions of ESJ, their practice of it, and associated challenges and enabling factors. Main findings are that ESJ is construed as provision of equitable and conscientising education opportunities that run across the whole higher education (HE) journey, from widening access to HE to stimulating critical learning and awareness that can empower graduates to transform their lives and societies. Teaching practice featured study of topics related to social justice; collaborative and creative learning activities, and assignments offering choice and connection to students’ realities. Student responses could be mixed, occasionally resistant, but mostly positive in terms of gaining increased confidence and awareness of equality and social responsibility. Influences at the macro, meso and mico level could support or limit scope for ESJ. Overall, the study highlights the strong, values-based commitment of HE teachers to facilitating student learning engagement, wellbeing and development towards building a better world.

Keywords: higher education, social justice, inclusivity, diversity

Procedia PDF Downloads 75
6069 Role of Machine Learning in Internet of Things Enabled Smart Cities

Authors: Amit Prakash Singh, Shyamli Singh, Chavi Srivastav

Abstract:

This paper presents the idea of Internet of Thing (IoT) for the infrastructure of smart cities. Internet of Thing has been visualized as a communication prototype that incorporates myriad of digital services. The various component of the smart cities shall be implemented using microprocessor, microcontroller, sensors for network communication and protocols. IoT enabled systems have been devised to support the smart city vision, of which aim is to exploit the currently available precocious communication technologies to support the value-added services for function of the city. Due to volume, variety, and velocity of data, it requires analysis using Big Data concept. This paper presented the various techniques used to analyze big data using machine learning.

Keywords: IoT, smart city, embedded systems, sustainable environment

Procedia PDF Downloads 575
6068 Exploration and Reform of Fundamentals of Program Design Based on Application Ability

Authors: Jiaqi Yin, Baofeng Liang

Abstract:

The rapid development in the fields of computer science and information technology presents new challenges and opportunities for foundational programming education. Traditional programming courses often focus heavily on theoretical knowledge while neglecting students’ practical programming and problem-solving abilities. This paper delves into the significance of programming education based on application abilities and provides a detailed explanation of a reform approach that incorporates project-driven teaching to nurture students with more comprehensive computer science skills.

Keywords: fundamentals of programming, application abilities, pedagogical reform, program design

Procedia PDF Downloads 76
6067 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 48
6066 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 141
6065 An Action Research Study of Developing Foreign Language Teachers’ Intercultural Competence

Authors: Wei Hing Rosenkvist

Abstract:

In the past few decades, concerns and demands of promoting student intercultural communicative competence in foreign language education have been increasing along with the rapid growth of information technologies and globalization in the 21st century. In Sweden, related concepts such as internationalization, global citizenship, multiculturalism, and intercultural communication etc., are also keywords that would be found in the written learning objectives of the foreign language education in all levels. Being one of the leading higher institutes in distance education in Europe, Dalarna University clearly states that after completion of the teacher education program, students shall understand the needs for integrating internationalization, intercultural and global perspective in teaching and learning in Swedish schools and implement their own studies to promote education in an international and global context. Despite the fact that many teachers and educators agree with the institutes’ mission and vision about the importance of internationalization and the need of increasing student understanding of intercultural and global perspective, they might find this objective unattainable and restricted due to the nature of the subject and their personal knowledge of intercultural competence. When conducting a comprehensive Chinese language course for the students who are going to become Chinese foreign language teachers, the researcher found that all the learning objectives are linguistic oriented while grammatical components dominate the entire course. Apparently, there is a gap between the learning objectives of the course and the DU’s mission of fostering an international learner with intercultural and globalized perspectives. How to include this macro-learning objective in a foreign language course is a great challenge to the educator. Although scholars from different academic domains have provided different theoretical frameworks and approaches for developing student intercultural competence, research that focuses on the didactic perspectives of developing student intercultural competence in teaching Chinese as a foreign language education (CFL) is limited and practical examples are rare. This has motivated the researcher to conduct an action research study that aims at integrating DU’s macro-learning objective in a current CFL course through different didactic practices with a purpose of developing the teacher student intercultural competence. This research study aims to, firstly, illustrate the cross-cultural knowledge integrated into the present Chinese language course for developing intercultural competence. Secondly, it investigates different didactic means that can be utilized to deliver cross-cultural knowledge to student teachers in the present course without generating dramatic disturbance of the syllabus. Thirdly, it examines the effectiveness of these didactic means in enhancing teacher student intercultural competence regarding the need for integrating and implementing internationalization, intercultural and global perspectives in teaching and learning in Swedish schools. Last but not least, it intends to serve as a practical example for developing the student teachers’ intercultural competence in foreign language education in DU and fill in the research gap of this academic domain worldwide.

Keywords: intercultural competence, foreign language education, action research, teacher education

Procedia PDF Downloads 119
6064 Design of Labview Based DAQ System

Authors: Omar A. A. Shaebi, Matouk M. Elamari, Salaheddin Allid

Abstract:

The Information Computing System of Monitoring (ICSM) for the Research Reactor of Tajoura Nuclear Research Centre (TNRC) stopped working since early 1991. According to the regulations, the computer is necessary to operate the reactor up to its maximum power (10 MW). The fund is secured via IAEA to develop a modern computer based data acquisition system to replace the old computer. This paper presents the development of the Labview based data acquisition system to allow automated measurements using National Instruments Hardware and its labview software. The developed system consists of SCXI 1001 chassis, the chassis house four SCXI 1100 modules each can maintain 32 variables. The chassis is interfaced with the PC using NI PCI-6023 DAQ Card. Labview, developed by National Instruments, is used to run and operate the DAQ System. Labview is graphical programming environment suited for high level design. It allows integrating different signal processing components or subsystems within a graphical framework. The results showed system capabilities in monitoring variables, acquiring and saving data. Plus the capability of the labview to control the DAQ.

Keywords: data acquisition, labview, signal conditioning, national instruments

Procedia PDF Downloads 495
6063 The Impact of a Simulated Teaching Intervention on Preservice Teachers’ Sense of Professional Identity

Authors: Jade V. Rushby, Tony Loughland, Tracy L. Durksen, Hoa Nguyen, Robert M. Klassen

Abstract:

This paper reports a study investigating the development and implementation of an online multi-session ‘scenario-based learning’ (SBL) program administered to preservice teachers in Australia. The transition from initial teacher education to the teaching profession can present numerous cognitive and psychological challenges for early career teachers. Therefore, the identification of additional supports, such as scenario-based learning, that can supplement existing teacher education programs may help preservice teachers to feel more confident and prepared for the realities and complexities of teaching. Scenario-based learning is grounded in situated learning theory which holds that learning is most powerful when it is embedded within its authentic context. SBL exposes participants to complex and realistic workplace situations in a supportive environment and has been used extensively to help prepare students in other professions, such as legal and medical education. However, comparatively limited attention has been paid to investigating the effects of SBL in teacher education. In the present study, the SBL intervention provided participants with the opportunity to virtually engage with school-based scenarios, reflect on how they might respond to a series of plausible response options, and receive real-time feedback from experienced educators. The development process involved several stages, including collaboration with experienced educators to determine the scenario content based on ‘critical incidents’ they had encountered during their teaching careers, the establishment of the scoring key, the development of the expert feedback, and an extensive review process to refine the program content. The 4-part SBL program focused on areas that can be challenging in the beginning stages of a teaching career, including managing student behaviour and workload, differentiating the curriculum, and building relationships with colleagues, parents, and the community. Results from prior studies implemented by the research group using a similar 4-part format have shown a statistically significant increase in preservice teachers’ self-efficacy and classroom readiness from the pre-test to the final post-test. In the current research, professional teaching identity - incorporating self-efficacy, motivation, self-image, satisfaction, and commitment to teaching - was measured over six weeks at multiple time points: before, during, and after the 4-part scenario-based learning program. Analyses included latent growth curve modelling to assess the trajectory of change in the outcome variables throughout the intervention. The paper outlines (1) the theoretical underpinnings of SBL, (2) the development of the SBL program and methodology, and (3) the results from the study, including the impact of the SBL program on aspects of participating preservice teachers’ professional identity. The study shows how SBL interventions can be implemented alongside the initial teacher education curriculum to help prepare preservice teachers for the transition from student to teacher.

Keywords: classroom simulations, e-learning, initial teacher education, preservice teachers, professional learning, professional teaching identity, scenario-based learning, teacher development

Procedia PDF Downloads 71
6062 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: analogy-making, categorization, learning of categories, abstraction, hierarchical structure

Procedia PDF Downloads 191
6061 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade

Procedia PDF Downloads 224
6060 Wasting Human and Computer Resources

Authors: Mária Csernoch, Piroska Biró

Abstract:

The legends about “user-friendly” and “easy-to-use” birotical tools (computer-related office tools) have been spreading and misleading end-users. This approach has led us to the extremely high number of incorrect documents, causing serious financial losses in the creating, modifying, and retrieving processes. Our research proved that there are at least two sources of this underachievement: (1) The lack of the definition of the correctly edited, formatted documents. Consequently, end-users do not know whether their methods and results are correct or not. They are not aware of their ignorance. They are so ignorant that their ignorance does not allow them to realize their lack of knowledge. (2) The end-users’ problem-solving methods. We have found that in non-traditional programming environments end-users apply, almost exclusively, surface approach metacognitive methods to carry out their computer related activities, which are proved less effective than deep approach methods. Based on these findings we have developed deep approach methods which are based on and adapted from traditional programming languages. In this study, we focus on the most popular type of birotical documents, the text-based documents. We have provided the definition of the correctly edited text, and based on this definition, adapted the debugging method known in programming. According to the method, before the realization of text editing, a thorough debugging of already existing texts and the categorization of errors are carried out. With this method in advance to real text editing users learn the requirements of text-based documents and also of the correctly formatted text. The method has been proved much more effective than the previously applied surface approach methods. The advantages of the method are that the real text handling requires much less human and computer sources than clicking aimlessly in the GUI (Graphical User Interface), and the data retrieval is much more effective than from error-prone documents.

Keywords: deep approach metacognitive methods, error-prone birotical documents, financial losses, human and computer resources

Procedia PDF Downloads 382
6059 The Training Demands of Nursing Assistants on Urinary Incontinence in Nursing Homes: A Mixed Methods Study

Authors: Lulu Liao, Huijing Chen, Yinan Zhao, Hongting Ning, Hui Feng

Abstract:

Urinary tract infection rate is an important index of care quality in nursing homes. The aim of the study is to understand the nursing assistant's current knowledge and attitudes of urinary incontinence and to explore related stakeholders' viewpoint about urinary incontinence training. This explanatory sequential study used Knowledge, Practice, and Attitude Model (KAP) and Adult Learning Theories, as the conceptual framework. The researchers collected data from 509 nursing assistants in sixteen nursing homes in Hunan province in China. The questionnaire survey was to assess the knowledge and attitude of urinary incontinence of nursing assistants. On the basis of quantitative research and combined with focus group, training demands were identified, which nurse managers should adopt to improve nursing assistants’ professional practice ability in urinary incontinence. Most nursing assistants held the poor knowledge (14.0 ± 4.18) but had positive attitudes (35.5 ± 3.19) toward urinary incontinence. There was a significant positive correlation between urinary incontinence knowledge and nursing assistants' year of work and educational level, urinary incontinence attitude, and education level (p < 0.001). Despite a general awareness of the importance of prevention of urinary tract infections, not all nurse managers fully valued the training in urinary incontinence compared with daily care training. And the nursing assistants required simple education resources to equip them with skills to address problem about urinary incontinence. The variety of learning methods also highlighted the need for educational materials, and nursing assistants had shown a strong interest in online learning. Related education material should be developed to meet the learning need of nurse assistants and provide suitable training method for planned quality improvement in urinary incontinence.

Keywords: mixed methods, nursing assistants, nursing homes, urinary incontinence

Procedia PDF Downloads 137
6058 Evaluation of the Efficiency of French Language Educational Software for Learners in Semnan Province, Iran

Authors: Alireza Hashemi

Abstract:

In recent decades, language teaching methodology has undergone significant changes due to the advent of computers and the growth of educational software. French language education has also benefited from these developments, and various software has been produced to facilitate the learning of this language. However, the question arises whether these software programs meet the educational needs of Iranian learners, particularly in Semnan Province. The aim of this study is to evaluate the efficiency and effectiveness of French language educational software for learners in Semnan Province, considering educational, cultural, and technical criteria. In this study, content analysis and performance evaluation methods were used to examine the educational software ‘Français Facile’. This software was evaluated based on criteria such as teaching methods, cultural compatibility, and technical features. To collect data, standardized questionnaires and semi-structured interviews with learners in Semnan Province were used. Additionally, the SPSS statistical software was employed for quantitative data analysis, and the thematic analysis method was used for qualitative data. The results indicated that the ‘Français Facile’ software has strengths such as providing diverse educational content and an interactive learning environment. However, some weaknesses include the lack of alignment of educational content with the learning culture of learners in Semnan Province and technical issues in software execution. Statistical data showed that 65% of learners were satisfied with the educational content, but 55% reported issues related to cultural alignment with their needs. This study indicates that to enhance the efficiency of French language educational software, there is a need to localize educational content and improve technical infrastructure. Producing locally adapted educational software can improve the quality of language learning and increase the motivation of learners in Semnan Province. This research emphasizes the importance of understanding the cultural and educational needs of learners in the development of educational software and recommends that developers of educational software pay special attention to these aspects.

Keywords: educational software, French language, Iran, learners in Semnan province

Procedia PDF Downloads 42
6057 Students' Perspectives about Humor and the Process of Learning Spanish as a Foreign Language

Authors: Samuel Marínez González

Abstract:

In the last decades, the studies about humor have been increasing significantly in all areas. In the field of education and, specially, in the second language teaching, most research has concentrated on the beneficial effects that the introduction of humor in the process of teaching and learning a foreign language, as well as its impact on teachers and students. In the following research, we will try to know the learners’ perspectives about humor and its use in the Spanish as a Foreign Language classes. In order to do this, a different range of students from the Spanish courses at the University of Cape Town will participate in a survey that will reveal their beliefs about the frequency of humor in their daily lives and their Spanish lessons, their reactions to humorous situations, and the main advantages or disadvantages, from their point of view, to the introduction of humor in the teaching of Spanish as a Foreign Language.

Keywords: education, foreign languages, humor, pedagogy, Spanish as a Foreign Language, students’ perceptions

Procedia PDF Downloads 341
6056 Integrating AI in Education: Enhancing Learning Processes and Personalization

Authors: Waleed Afandi

Abstract:

Artificial intelligence (AI) has rapidly transformed various sectors, including education. This paper explores the integration of AI in education, emphasizing its potential to revolutionize learning processes, enhance teaching methodologies, and personalize education. We examine the historical context of AI in education, current applications, and the potential challenges and ethical considerations associated with its implementation. By reviewing a wide range of literature, this study aims to provide a comprehensive understanding of how AI can be leveraged to improve educational outcomes and the future directions of AI-driven educational innovations. Additionally, the paper discusses the impact of AI on student engagement, teacher support, and administrative efficiency. Case studies highlighting successful AI applications in diverse educational settings are presented, showcasing the practical benefits and real-world implications. The analysis also addresses potential disparities in access to AI technologies and suggests strategies to ensure equitable implementation. Through a balanced examination of the promises and pitfalls of AI in education, this study seeks to inform educators, policymakers, and technologists about the optimal pathways for integrating AI to foster an inclusive, effective, and innovative educational environment.

Keywords: artificial intelligence, education, personalized learning, teaching methodologies, educational outcomes, AI applications, student engagement, teacher support, administrative efficiency, equity in education

Procedia PDF Downloads 32
6055 The Development and Evaluation of the Reliability and Validity of the Science Flow Experience Scale

Authors: Wen-Wei Chiang

Abstract:

In this study, the researcher developed a scale for use in measuring the degree to which high school students experience a state of flow. The researcher then verified its reliability and validity in an actual classroom setting. The ultimate objective was to identify feasible methods by which to promote the experience of a flow state among high school students engaged in the study of science. The nine indices identified in this study to assess the engagement of high school students focus primarily on the study of science-related topics; however, the principles on which they are based are applicable to a wide range of learning situations. Teachers must outline the goals of each lesson clearly and provide unambiguous feedback. They must also look for ways to make the lessons more fun and appealing.

Keywords: flow experience, positive psychology, questionnaire, science learning

Procedia PDF Downloads 119
6054 Approximation of Intersection Curves of Two Parametric Surfaces

Authors: Misbah Irshad, Faiza Sarfraz

Abstract:

The problem of approximating surface to surface intersection is considered to be very important in computer aided geometric design and computer aided manufacturing. Although it is a complex problem to handle, its continuous need in the industry makes it an active topic in research. A technique for approximating intersection curves of two parametric surfaces is proposed, which extracts boundary points and turning points from a sequence of intersection points and interpolate them with the help of rational cubic spline functions. The proposed approach is demonstrated with the help of examples and analyzed by calculating error.

Keywords: approximation, parametric surface, spline function, surface intersection

Procedia PDF Downloads 270
6053 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 130
6052 Learning Language through Story: Development of Storytelling Website Project for Amazighe Language Learning

Authors: Siham Boulaknadel

Abstract:

Every culture has its share of a rich history of storytelling in oral, visual, and textual form. The Amazigh language, as many languages, has its own which has entertained and informed across centuries and cultures, and its instructional potential continues to serve teachers. According to many researchers, listening to stories draws attention to the sounds of language and helps children develop sensitivity to the way language works. Stories including repetitive phrases, unique words, and enticing description encourage students to join in actively to repeat, chant, sing, or even retell the story. This kind of practice is important to language learners’ oral language development, which is believed to correlate completely with student’s academic success. Today, with the advent of multimedia, digital storytelling for instance can be a practical and powerful learning tool. It has the potential in transforming traditional learning into a world of unlimited imaginary environment. This paper reports on a research project on development of multimedia Storytelling Website using traditional Amazigh oral narratives called “tell me a story”. It is a didactic tool created for the learning of good moral values in an interactive multimedia environment combining on-screen text, graphics and audio in an enticing environment and enabling the positive values of stories to be projected. This Website developed in this study is based on various pedagogical approaches and learning theories deemed suitable for children age 8 to 9 year-old. The design and development of Website was based on a well-researched conceptual framework enabling users to: (1) re-play and share the stories in schools or at home, and (2) access the Website anytime and anywhere. Furthermore, the system stores the students work and activities over the system, allowing parents or teachers to monitor students’ works, and provide online feedback. The Website contains following main feature modules: Storytelling incorporates a variety of media such as audio, text and graphics in presenting the stories. It introduces the children to various kinds of traditional Amazigh oral narratives. The focus of this module is to project the positive values and images of stories using digital storytelling technique. Besides development good moral sense in children using projected positive images and moral values, it also allows children to practice their comprehending and listening skills. Reading module is developed based on multimedia material approach which offers the potential for addressing the challenges of reading instruction. This module is able to stimulate children and develop reading practice indirectly due to the tutoring strategies of scaffolding, self-explanation and hyperlinks offered in this module. Word Enhancement assists the children in understanding the story and appreciating the good moral values more efficiently. The difficult words or vocabularies are attached to present the explanation, which makes the children understand the vocabulary better. In conclusion, we believe that the interactive multimedia storytelling reveals an interesting and exciting tool for learning Amazigh. We plan to address some learning issues, in particularly the uses of activities to test and evaluate the children on their overall understanding of story and words presented in the learning modules.

Keywords: Amazigh language, e-learning, storytelling, language teaching

Procedia PDF Downloads 405
6051 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 365
6050 Multimodal Convolutional Neural Network for Musical Instrument Recognition

Authors: Yagya Raj Pandeya, Joonwhoan Lee

Abstract:

The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.

Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean

Procedia PDF Downloads 215
6049 Use of Didactic Bibliographic Resources to Improve the Teaching and Learning Processes of Animal Reproduction in Veterinary Science

Authors: Yasser Y. Lenis, Amy Jo Montgomery, Diego F. Carrillo-Gonzalez

Abstract:

Introduction: The use of didactic instruments in different learning environments plays a pivotal role in enhancing the level of knowledge in veterinary science students. The direct instruction of basic animal reproduction concepts in students enrolled in veterinary medicine programs allows them to elucidate the biological and molecular mechanisms that perpetuate the animal species in an ecosystem. Therefore, universities must implement didactic strategies that facilitate the teaching and learning processes for students and, in turn, enrich learning environments. Objective: to evaluate the effect of the use of a didactic textbook on the level of theoretical knowledge in embryo-maternal recognition for veterinary medicine students. Methods: the participants (n=24) were divided into two experimental groups: control (Ctrl) and treatment (Treat). Both groups received 4 hours of theoretical training regarding the basic concepts in bovine embryo-maternal recognition. However, the Treat group was also exposed to a guided lecture and the activity play-to-learn from a cow reproduction didactic textbook. A pre-test and a post-test were applied to assess the prior and subsequent knowledge in the participants. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, a repeated measures model was applied where the effect of the intervention was considered. Results: no significant difference (p>0,05) was observed in the number of right answers for groups Ctrl (54,2%±12,7) and Treat (40,8%±16,8) in the pre-test. There was no difference (p>0,05) compering the number of right answers in Ctrl pre-test (54,2%±12,7) and post-test (60,8±18,8). However, the Treat group showed a significant (p>0,05) difference in the number of right answers when comparing pre-test (40,8%±16,8) and post-test (71,7%±14,7). Finally, after the theoretical training and the didactic activity in the Treat group, an increase of 10.9% (p<0,05) in the number of right answers was found when compared with the Ctrl group. Conclusion: the use of didactic tools that include guided lectures and activities like play-to-learn from a didactic textbook enhances the level of knowledge in an animal reproduction course for veterinary medicine students.

Keywords: animal reproduction, pedagogic, level of knowledge, learning environment

Procedia PDF Downloads 65
6048 Performance Analysis of Vision-Based Transparent Obstacle Avoidance for Construction Robots

Authors: Siwei Chang, Heng Li, Haitao Wu, Xin Fang

Abstract:

Construction robots are receiving more and more attention as a promising solution to the manpower shortage issue in the construction industry. The development of intelligent control techniques that assist in controlling the robots to avoid transparency and reflected building obstacles is crucial for guaranteeing the adaptability and flexibility of mobile construction robots in complex construction environments. With the boom of computer vision techniques, a number of studies have proposed vision-based methods for transparent obstacle avoidance to improve operation accuracy. However, vision-based methods are also associated with disadvantages such as high computational costs. To provide better perception and value evaluation, this study aims to analyze the performance of vision-based techniques for avoiding transparent building obstacles. To achieve this, commonly used sensors, including a lidar, an ultrasonic sensor, and a USB camera, are equipped on the robotic platform to detect obstacles. A Raspberry Pi 3 computer board is employed to compute data collecting and control algorithms. The turtlebot3 burger is employed to test the programs. On-site experiments are carried out to observe the performance in terms of success rate and detection distance. Control variables include obstacle shapes and environmental conditions. The findings contribute to demonstrating how effectively vision-based obstacle avoidance strategies for transparent building obstacle avoidance and provide insights and informed knowledge when introducing computer vision techniques in the aforementioned domain.

Keywords: construction robot, obstacle avoidance, computer vision, transparent obstacle

Procedia PDF Downloads 80