Search results for: research data sharing
38231 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R
Authors: Pavel H. Llamocca, Victoria Lopez
Abstract:
The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.Keywords: open data, R language, data integration, environmental data
Procedia PDF Downloads 31538230 The Practice and Research of Computer-Aided Language Learning in China
Authors: Huang Yajing
Abstract:
Context: Computer-aided language learning (CALL) in China has undergone significant development over the past few decades, with distinct stages marking its evolution. This paper aims to provide a comprehensive review of the practice and research in this field in China, tracing its journey from the early stages of audio-visual education to the current multimedia network integration stage. Research Aim: The study aims to analyze the historical progression of CALL in China, identify key developments in the field, and provide recommendations for enhancing CALL practices in the future. Methodology: The research employs document analysis and literature review to synthesize existing knowledge on CALL in China, drawing on a range of sources to construct a detailed overview of the evolution of CALL practices and research in the country. Findings: The review highlights the significant advancements in CALL in China, showcasing the transition from traditional audio-visual educational approaches to the current integrated multimedia network stage. The study identifies key milestones, technological advancements, and theoretical influences that have shaped CALL practices in China. Theoretical Importance: The evolution of CALL in China reflects not only technological progress but also shifts in educational paradigms and theories. The study underscores the significance of cognitive psychology as a theoretical underpinning for CALL practices, emphasizing the learner's active role in the learning process. Data Collection and Analysis Procedures: Data collection involved extensive review and analysis of documents and literature related to CALL in China. The analysis was carried out systematically to identify trends, developments, and challenges in the field. Questions Addressed: The study addresses the historical development of CALL in China, the impact of technological advancements on teaching practices, the role of cognitive psychology in shaping CALL methodologies, and the future outlook for CALL in the country. Conclusion: The review provides a comprehensive overview of the evolution of CALL in China, highlighting key stages of development and emerging trends. The study concludes by offering recommendations to further enhance CALL practices in the Chinese context.Keywords: English education, educational technology, computer-aided language teaching, applied linguistics
Procedia PDF Downloads 5538229 Men of Congress in Today’s Brazil: Ethnographic Notes on Neoliberal Masculinities in Support of Bolsonaro
Authors: Joao Vicente Pereira Fernandez
Abstract:
In the context of a democratic crisis, a new wave of authoritarianism prompts domineering male figures to leadership posts worldwide. Although the gendered aspect of this phenomenon has been reasonably documented, recent studies have focused on high-level commanding posts, such as those of president and prime-minister, leaving other positions of political power with limited attention. This natural focus of investigation, however powerful, seems to have restricted our understanding of the phenomenon by precluding a more thorough inquiry of its gendered aspects and its consequences for political representation as a whole. Trying to fill this gap, in recent research, we examined the election results of Jair Bolsonaro’s party for the Legislative Branch in 2018. We found that the party's proportion of non-male representatives was on average, showing it provided reasonable access of women to the legislature in a comparative perspective. However, and perhaps more intuitively, we also found that the elected members of Bolsonaro’s party performed very gendered roles, which allowed us to draw the first lines of the representative profiles gathered around the new-right in Brazil. These results unveiled new horizons for further research, addressing topics that range from the role of women for the new-right on Brazilian institutional politics to the relations between these profiles of representatives, their agendas, and political and electoral strategies. This article aims to deepen the understanding of some of these profiles in order to lay the groundwork for the development of the second research agenda mentioned above. More specifically, it focuses on two out of the three profiles that were grasped predominantly, if not entirely, from masculine subjects during our last research, with the objective of portraying the masculinity standards mobilized and promoted by them. These profiles –the entrepreneur and the army man – were chosen to be developed due to their proximity to both liberal and authoritarian views, and, moreover, because they can possibly represent two facets of the new-right that were integrated in a certain way around Bolsonaro in 2018, but that can be reworked in the future. After a brief introduction of the literature on masculinity and politics in times of democratic crisis, we succinctly present the relevant results of our previous research and then describe these two profiles and their masculinities in detail. We adopt a combination of ethnography and discourse analysis, methods that allow us to make sense of the data we collected on our previous research as well as of the data gathered for this article: social media posts and interactions between the elected members that inspired these profiles and their supporters. Finally, we discuss our results, presenting our main argument on how these descriptions provide a further understanding of the gendered aspect of liberal authoritarianism, from where to better apprehend its political implications in Brazil.Keywords: Brazilian politics, gendered politics, masculinities, new-right
Procedia PDF Downloads 12138228 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives
Authors: Roberto Cabezas H
Abstract:
The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance
Procedia PDF Downloads 14238227 Earthquake Risk Assessment Using Out-of-Sequence Thrust Movement
Authors: Rajkumar Ghosh
Abstract:
Earthquakes are natural disasters that pose a significant risk to human life and infrastructure. Effective earthquake mitigation measures require a thorough understanding of the dynamics of seismic occurrences, including thrust movement. Traditionally, estimating thrust movement has relied on typical techniques that may not capture the full complexity of these events. Therefore, investigating alternative approaches, such as incorporating out-of-sequence thrust movement data, could enhance earthquake mitigation strategies. This review aims to provide an overview of the applications of out-of-sequence thrust movement in earthquake mitigation. By examining existing research and studies, the objective is to understand how precise estimation of thrust movement can contribute to improving structural design, analyzing infrastructure risk, and developing early warning systems. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources, including GPS measurements, satellite imagery, and seismic recordings. By analyzing and synthesizing these diverse datasets, researchers can gain a more comprehensive understanding of thrust movement dynamics during seismic occurrences. The review identifies potential advantages of incorporating out-of-sequence data in earthquake mitigation techniques. These include improving the efficiency of structural design, enhancing infrastructure risk analysis, and developing more accurate early warning systems. By considering out-of-sequence thrust movement estimates, researchers and policymakers can make informed decisions to mitigate the impact of earthquakes. This study contributes to the field of seismic monitoring and earthquake risk assessment by highlighting the benefits of incorporating out-of-sequence thrust movement data. By broadening the scope of analysis beyond traditional techniques, researchers can enhance their knowledge of earthquake dynamics and improve the effectiveness of mitigation measures. The study collects data from various sources, including GPS measurements, satellite imagery, and seismic recordings. These datasets are then analyzed using appropriate statistical and computational techniques to estimate out-of-sequence thrust movement. The review integrates findings from multiple studies to provide a comprehensive assessment of the topic. The study concludes that incorporating out-of-sequence thrust movement data can significantly enhance earthquake mitigation measures. By utilizing diverse data sources, researchers and policymakers can gain a more comprehensive understanding of seismic dynamics and make informed decisions. However, challenges exist, such as data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and improve the accuracy of estimates, further research and advancements in methodology are recommended. Overall, this review serves as a valuable resource for researchers, engineers, and policymakers involved in earthquake mitigation, as it encourages the development of innovative strategies based on a better understanding of thrust movement dynamics.Keywords: earthquake, out-of-sequence thrust, disaster, human life
Procedia PDF Downloads 7738226 Blockchain for the Monitoring and Reporting of Carbon Emission Trading: A Case Study on Its Possible Implementation in the Danish Energy Industry
Authors: Nkechi V. Osuji
Abstract:
The use of blockchain to address the issue of climate change is increasingly a discourse among countries, industries, and stakeholders. For a long time, the European Union (EU) has been combating the issue of climate action in industries through sustainability programs. One of such programs is the EU monitoring reporting and verification (MRV) program of the EU ETS. However, the system has some key challenges and areas for improvement, which makes it inefficient. The main objective of the research is to look at how blockchain can be used to improve the inefficiency of the EU ETS program for the Danish energy industry with a focus on its monitoring and reporting framework. Applying empirical data from 13 semi-structured expert interviews, three case studies, and literature reviews, three outcomes are presented in the study. The first is on the current conditions and challenges of monitoring and reporting CO₂ emission trading. The second is putting into consideration if blockchain is the right fit to solve these challenges and how. The third stage looks at the factors that might affect the implementation of such a system and provides recommendations to mitigate these challenges. The first stage of the findings reveals that the monitoring and reporting of CO₂ emissions is a mandatory requirement by law for all energy operators under the EU ETS program. However, most energy operators are non-compliant with the program in reality, which creates a gap and causes challenges in the monitoring and reporting of CO₂ emission trading. Other challenges the study found out are the lack of transparency, lack of standardization in CO₂ accounting, and the issue of double-counting in the current system. The second stage of the research was guided by three case studies and requirement engineering (RE) to explore these identified challenges and if blockchain is the right fit to address them. This stage of the research addressed the main research question: how can blockchain be used for monitoring and reporting CO₂ emission trading in the energy industry. Through analysis of the study data, the researcher developed a conceptual private permissioned Hyperledger blockchain and elucidated on how it can address the identified challenges. Particularly, the smart contract of blockchain was highlighted as a key feature. This is because of its ability to automate, be immutable, and digitally enforce negotiations without a middleman. These characteristics are unique in solving the issue of compliance, transparency, standardization, and double counting identified. The third stage of the research presents technological constraints and a high level of stakeholder collaboration as major factors that might affect the implementation of the proposed system. The proposed conceptual model requires high-level integration with other technologies such as the Internet of Things (IoT) and machine learning. Therefore, the study encourages future research in these areas. This is because blockchain is continually evolving its technology capabilities. As such, it remains a topic of interest in research and development for addressing climate change. Such a study is a good contribution to creating sustainable practices to solve the global climate issue.Keywords: blockchain, carbon emission trading, European Union emission trading system, monitoring and reporting
Procedia PDF Downloads 12938225 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps
Procedia PDF Downloads 12538224 Urinalysis by Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles for Different Disease
Authors: Leonardo C. Pacheco-Londoño, Nataly J. Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta, Elkin Navarro, Gustavo Aroca-Martínez, Karin Rondón-Payares, Samuel P. Hernández-Rivera
Abstract:
In our Life Science Research Center of the University Simon Bolivar (LSRC), one of the focuses is the diagnosis and prognosis of different diseases; we have been implementing the use of gold nanoparticles (Au-NPs) for various biomedical applications. In this case, Au-NPs were used for Surface-Enhanced Raman Spectroscopy (SERS) in different diseases' diagnostics, such as Lupus Nephritis (LN), hypertension (H), preeclampsia (PC), and others. This methodology is proposed for the diagnosis of each disease. First, good signals of the different metabolites by SERS were obtained through a mixture of urine samples and Au-NPs. Second, PLS-DA models based on SERS spectra to discriminate each disease were able to differentiate between sick and healthy patients with different diseases. Finally, the sensibility and specificity for the different models were determined in the order of 0.9. On the other hand, a second methodology was developed using machine learning models from all data of the different diseases, and, as a result, a discriminant spectral map of the diseases was generated. These studies were possible thanks to joint research between two university research centers and two health sector entities, and the patient samples were treated with ethical rigor and their consent.Keywords: SERS, Raman, PLS-DA, diseases
Procedia PDF Downloads 14138223 The Role of Food Labeling on Consumers’ Buying Decision: Georgian Case
Authors: Nugzar Todua
Abstract:
The paper studies the role of food labeling in order to promote healthy eating issue in Georgia. The main focus of the research is directed to consumer attitudes regarding food labeling. The methodology of the paper is based on the focus group work, as well as online and face to face surveys. The data analysis has been provided through ANOVA. The study proves that the impact of variables such as the interest, awareness, reliability, assurance and satisfaction of consumers' on buying decision, is statistically important. The study reveals that consumers’ perception regarding to food labeling is positive, but their level of knowledge and ability is rather low. It is urgent to strengthen marketing promotions strategies in the process of implementations of food security policy in Georgia.Keywords: food labeling, buying decision, Georgian consumers, marketing research
Procedia PDF Downloads 16538222 The Contribution of Boards to Company Performance via Strategic Management
Authors: Peter Crow
Abstract:
Boards and directors have been subjects of much scholarly research and public interest over several decades, more so since the succession of high profile company failures of the early 2000s. An array of research outputs including information, correlations, descriptions, models, hypotheses and theories have been reported. While some of this research has shed light on aspects of the board–performance relationship and on board tasks and behaviours, the nature and characteristics of the supposed board–performance relationship remain undetermined. That satisfactory explanations of how boards influence company performance have yet to emerge is a significant blind spot. Yet the board is ultimately responsible for company performance, in accordance with the wishes of shareholders. The aim of this paper is to explore corporate governance and board practice through the lens of strategic management, and to take tentative steps towards a new conception of corporate governance. The findings of a recent longitudinal multiple-case study designed to explore the board’s involvement in strategic management are reported. Qualitative and quantitative data was collected from two quasi-public large companies in New Zealand including from first-hand observations of boards in session, semi-structured interviews with chief executives and chairmen and the inspection of company and board documentation. A synthetic timeline framework was used to collate the financial, board structure, board activity and decision-making data, in order to provide a holistic perspective. Decision sequences were identified, and realist techniques of abduction and retroduction were iteratively applied to analyse the multi-year data set. Using several models previously proposed in the literature as a guide, conjectures were formed, tested and refined—the culmination of which was a provisional model of how boards can influence performance via strategic management. The model builds on both existing theoretical perspectives and theoretical models proposed in the corporate governance and strategic management literature. This paper seeks to add to the understanding of how boards can make meaningful contributions to value creation via strategic management, and to comment on the qualities of directors, social interactions in boardrooms and other circumstances within which influence might be possible given the highly contingent relationship between board activity and business performance outcomes.Keywords: board practice, case study, corporate governance, strategic management
Procedia PDF Downloads 22638221 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 25338220 A Documentary Review of Theoretical and Practical Elements for a Genre Analysis of Thailand Travel Listicles
Authors: Pinyada Santisarun, Yaowaret Tharawoot, Songyut Akkakoson
Abstract:
This paper reports on a literature review sub-study of a larger research project which has been designed to identify the rhetorical organization of a travel writing genre, together with the use of lexical choices, syntactical structures, and graphological features, based on a randomly-selected corpus of Thailand travel listicles. Conducted as a library-based overview, this study aims to specify theoretical and practical elements for the said larger study. The materials for the review have been retrieved from various Internet sources, covering both public search engines and library databases. Generally, the article focuses on answering questions about the ‘what’ and the ‘how’ of such background elements widely discussed in the literature as the meaning of listicles, how the travel listicles’ patterns and regularities can be categorized to form a new genre, the effect of computer-mediated communication on the travel world, the travel language, and the current situation concerning the importance of travel listicles. The theoretical and practical data derived from this study provide valuable insights into the way in which the genre analysis and lexico-syntactical examination of Thailand travel listicles in the present authors’ larger research project can be properly conducted. The data gained can be added to the expanding body of knowledge in the field of the ESP genre.Keywords: computer-mediated communication, digital writing, genre-based analysis, online travel writing, tourism language
Procedia PDF Downloads 14538219 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks
Authors: Mehrdad Shafiei Dizaji, Hoda Azari
Abstract:
The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven
Procedia PDF Downloads 4138218 Applied Theory Building to Achieve Success in Iran Municipalities
Authors: Morteza Rahiminejad
Abstract:
There are over 1200 cities and municipalities all around Iran, including 30 mega cities, which municipal organizations, Interior ministries, and city councils supervise. Even so, there has been neither any research about the process of success nor performance assessment in municipalities. In this research an attempt is made to build a comprehensive theory (or model) to show the reasons or success process among the local governments. The present research is based on the contingency approach in which the relevant circumstances are important, and both environment and situations call for their own management methods. The methodology of research is grounded theory, which uses Atlas.ti software as a tool.Keywords: success, municipality, Iran, theory building
Procedia PDF Downloads 3738217 Understanding the 3R's Element in the Creation of Ecological Form That Leads to Ecodesign
Authors: Mohd Hasni Chumiran
Abstract:
The rapid growth of global industrialism over the past few decades has led to various environmental issues and ecological instability, all due to human activity. In order to solve this global issue, the manufacturers alike have begun to embrace the use of ecodesign products. However, when considering a specific field, multiple questions have been raised and industrial designers (the practising designer's R&D group) have been unable to define the ecological cycle methodology. In this paper, we investigate the validation of problematic in the creation of ecodesign products with the 'reduce, reuse and recycle' (3R’s) method, which is an untested product design theory. The aim of this research is to address the 3R’s method can be extracted in order to transmit an ecological form of ecodesign, specifically among Malaysian furniture manufacturers. By operating the Descriptive Study I (DS-I) phase: Design Research Methodology (DRM), the research has applied two research approaches by the methodological triangulation tradition. To achieve the result, this validation of descriptive structure (design theory) shall be matched with the research hypothesis along the use of research questions.Keywords: design research methodology, ecodesign, ecological form, industrial design
Procedia PDF Downloads 23238216 The Impact of Formulate and Implementation Strategy for an Organization to Better Financial Consequences in Malaysian Private Hospital
Authors: Naser Zouri
Abstract:
Purpose: Measures of formulate and implementation strategy shows amount of product rate-market based strategic management category such as courtesy, competence, and compliance to reach the high loyalty of financial ecosystem. Despite, it solves the market place error intention to fair trade organization. Finding: Finding shows the ability of executives’ level of management to motivate and better decision-making to solve the treatments in business organization. However, it made ideal level of each interposition policy for a hypothetical household. Methodology/design. Style of questionnaire about the data collection was selected to survey of both pilot test and real research. Also, divide of questionnaire and using of Free Scale Semiconductor`s between the finance employee was famous of this instrument. Respondent`s nominated basic on non-probability sampling such as convenience sampling to answer the questionnaire. The way of realization costs to performed the questionnaire divide among the respondent`s approximately was suitable as a spend the expenditure to reach the answer but very difficult to collect data from hospital. However, items of research survey was formed of implement strategy, environment, supply chain, employee from impact of implementation strategy on reach to better financial consequences and also formulate strategy, comprehensiveness strategic design, organization performance from impression on formulate strategy and financial consequences. Practical Implication: Dynamic capability approach of formulate and implement strategy focuses on the firm-specific processes through which firms integrate, build, or reconfigure resources valuable for making a theoretical contribution. Originality/ value of research: Going beyond the current discussion, we show that case studies have the potential to extend and refine theory. We present new light on how dynamic capabilities can benefit from case study research by discovering the qualifications that shape the development of capabilities and determining the boundary conditions of the dynamic capabilities approach. Limitation of the study :Present study also relies on survey of methodology for data collection and the response perhaps connection by financial employee was difficult to responds the question because of limitation work place.Keywords: financial ecosystem, loyalty, Malaysian market error, dynamic capability approach, rate-market, optimization intelligence strategy, courtesy, competence, compliance
Procedia PDF Downloads 30438215 Experimental Evaluation of Succinct Ternary Tree
Authors: Dmitriy Kuptsov
Abstract:
Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation
Procedia PDF Downloads 16038214 A Development of a Conceptual Framework for Safety Culture and Safety Risk Assessment: The Case of Chinese International Construction Projects under the “New Belt and Road” Initiative in Africa
Authors: Bouba Oumarou Aboubakar, HongXia Li, Sardar Annes Farooq
Abstract:
The Belt and Road Initiative’s success strongly depends on the safety of all the million workers on construction projects sites. As the new BRI is directed toward Africa and meets a completely different culture from the Chinese project managers, maintaining low risk for workers risks shall be closely related to cultural sharing and mutual understanding. This is why this work introduces a cultural-wise safety management framework for Chinese Construction projects in Africa. The theoretical contribution of this paper is an improved risk assessment framework that integrates language, culture and difficulty of controlling risk factors into one approach. Practically, this study provides not only a useful tool for project safety management practitioners but the full understanding of all risks that may arise in the BRI projects in Africa.Keywords: cultural-wise, safety culture, risk assessment, Chinese construction, BRI projects, Africa
Procedia PDF Downloads 10738213 Establishment of Aquaculture Cooperative for Sustainable Local People Economic Welfare in Jatiluhur, West Java, Indonesia
Authors: Aisyah Nurfitria, Alifa Rahmadia Putri, Andini Lestari, Kartika Sukmatullahi Hasanah, Mutiara Mayang Oktavia
Abstract:
The research aims to describe and analyze the background and condition of Jatiluhur Dam, West Java, Indonesia. The Jatiluhur Dam as known as the biggest dam in West Java has huge fisheries resource, which is supposed to assure the local people appropriateness of living. Unfortunately based on this field research, the local people are living a life in under poverty line. This study focuses on increasing local people economic welfare through “Aquaculture Cooperative” implementation. Empower and diversify income of local people is the purpose of this study. In the same way, this study also focuses on the sustainable local people’s livelihoods. In order to obtain the sustainability of them, recovering the fisheries of Jatiluhur Dam is the part of “Aquaculture Cooperative” program. Method that is used in this research is a qualitative approach by literature review and in-depth interview through direct observation as data collecting techniques. Factors such as social and economic condition are also considered in order to know how “Aquaculture Cooperative” able to accepted by local people.Keywords: aquaculture cooperative, economic welfare, Jatiluhur fisheries, West Java
Procedia PDF Downloads 44738212 Evaluation of the Role of Advocacy and the Quality of Care in Reducing Health Inequalities for People with Autism, Intellectual and Developmental Disabilities at Sheffield Teaching Hospitals
Authors: Jonathan Sahu, Jill Aylott
Abstract:
Individuals with Autism, Intellectual and Developmental disabilities (AIDD) are one of the most vulnerable groups in society, hampered not only by their own limitations to understand and interact with the wider society, but also societal limitations in perception and understanding. Communication to express their needs and wishes is fundamental to enable such individuals to live and prosper in society. This research project was designed as an organisational case study, in a large secondary health care hospital within the National Health Service (NHS), to assess the quality of care provided to people with AIDD and to review the role of advocacy to reduce health inequalities in these individuals. Methods: The research methodology adopted was as an “insider researcher”. Data collection included both quantitative and qualitative data i.e. a mixed method approach. A semi-structured interview schedule was designed and used to obtain qualitative and quantitative primary data from a wide range of interdisciplinary frontline health care workers to assess their understanding and awareness of systems, processes and evidence based practice to offer a quality service to people with AIDD. Secondary data were obtained from sources within the organisation, in keeping with “Case Study” as a primary method, and organisational performance data were then compared against national benchmarking standards. Further data sources were accessed to help evaluate the effectiveness of different types of advocacy that were present in the organisation. This was gauged by measures of user and carer experience in the form of retrospective survey analysis, incidents and complaints. Results: Secondary data demonstrate near compliance of the Organisation with the current national benchmarking standard (Monitor Compliance Framework). However, primary data demonstrate poor knowledge of the Mental Capacity Act 2005, poor knowledge of organisational systems, processes and evidence based practice applied for people with AIDD. In addition there was poor knowledge and awareness of frontline health care workers of advocacy and advocacy schemes for this group. Conclusions: A significant amount of work needs to be undertaken to improve the quality of care delivered to individuals with AIDD. An operational strategy promoting the widespread dissemination of information may not be the best approach to deliver quality care and optimal patient experience and patient advocacy. In addition, a more robust set of standards, with appropriate metrics, needs to be developed to assess organisational performance which will stand the test of professional and public scrutiny.Keywords: advocacy, autism, health inequalities, intellectual developmental disabilities, quality of care
Procedia PDF Downloads 21738211 The Need for the Development of Entrepreneurial Skill in Benue State University Students, Makurdi
Authors: Philomena Ibuh Adzongo, Margaret U. Oluwole, Justina Nguveren Jor.
Abstract:
This paper investigated the need for the development of entrepreneurial skills for Benue State University students. The population consisted of all 1,500 final year students in Benue State University. A sample of 100 students was selected using simple random sampling. A 12-item self-constructed and content validated questionnaire by research experts titled, the Need for the Development of Entrepreneurial Skills in Benue State University Students (NDECBSUS) was used to collect the data. The questionnaire items were rated using a 4-point modified rating scale of Strongly Agree, Agree, Disagree and Strongly Disagree, assigned the following scores of 4,3,2 and 1, respectively. The questionnaire was administered by the researcher with the help of two research assistants through the primary source. Simple percentages and chi-square were used to answer the research questions and test the hypotheses, respectively. The findings revealed that in business management, business management skills, personal skills, and technical skills need to be developed in students for them to become effective and efficient entrepreneurs and concluded that the acquisition of these skills will reduce the challenge of unemployment. The study recommended that funds should be made available by all education stakeholders for such programmes to remain functional.Keywords: entrepreneurial skill, entrepreneurship, need for development, university students
Procedia PDF Downloads 35638210 The Relationship between Employee Commitment, Job Satisfaction and External Market Orientation in Vietnamese Joint-Stock Commercial Banks
Authors: Nguyen Ngoc Que Tran
Abstract:
Purpose: The purpose of this paper is to investigate the relationship between internal market orientation, external market orientation, employee commitment and job satisfaction. Design/methodology/approach: This study collected data through a survey and utilized simple linear regression and multiple regression analysis to determine if there was any support for the research hypotheses as presented in the previous chapter. Findings: Using data from 256 employees of four leading joint stock banks in Vietnam, the empirical results indicates that employee commitment is positively related with external market orientation, job satisfaction is positively related to employee commitment, and employee commitment and job satisfaction are positively related to external market orientation. However, job satisfaction has no significant positive effect on external market orientation. Theoretical contribution: The primary contribution to marketing theory arising from this study is the integration of job satisfaction, employee commitment, and external market orientation in a single research model. Practical implications: The major contribution to practice is an external market oriented bank has to respond rapidly to the future needs and preferences of its customers. This could result in high levels of commitment to the service process and in doing so provide Vietnamese joint-stock commercial banks with a competitive advantage. The finding is important for the banking service sector in general and the Vietnamese banking industry in particular.Keywords: employee commitment, job satisfaction and external market orientation, vietnam, bank
Procedia PDF Downloads 41538209 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 15038208 The Factors Affecting the Operations of the Industrial Enterprises of Cassava in the Northeast of Thailand
Authors: Thanasuwit Thabhiranrak
Abstract:
This research aims to study factors that affected the operations of the cassava industrial enterprises in northeast of Thailand. Hypothesis was tested by regress analysis and also the analysis in order to determine the relationship between variables with Pearson correlation and show a class action in cassava process including the owner of business executives and supervisors. The research samples were 400 people in northeast region of Thailand. The research results revealed that success of entrepreneurs related to transformation leadership and knowledge management in a positive way at statistical significance level of 0.01 and respondents also emphasized on the importance of transformational leadership factors. The individual and the use of intelligence affect the success of entrepreneurs in cassava industry at statistical significance level of 0.05. The qualitative data were also collected by interviewing with operational level staff, supervisors, executives, and enterprise owners in the northeast of Thailand. The result was found that knowledge management was important in their business operations. Personnel in the organizations should learn from working experience, develop their skills, and increase knowledge from education.Keywords: transformational leadership, knowledge management (KM), cassava, northeast of Thailand, industrial
Procedia PDF Downloads 30338207 The Socio-Economic Impact of the English Leather Glove Industry from the 17th Century to Its Recent Decline
Authors: Frances Turner
Abstract:
Gloves are significant physical objects, being one of the oldest forms of dress. Glove culture is part of every facet of life; its extraordinary history encompasses practicality, and symbolism reflecting a wide range of social practices. The survival of not only the gloves but associated articles enables the possibility to analyse real lives, however so far this area has been largely neglected. Limited information is available to students, researchers, or those involved with the design and making of gloves. There are several museums and independent collectors in England that hold collections of gloves (some from as early as 16th century), machinery, tools, designs and patterns, marketing materials and significant archives which demonstrate the rich heritage of English glove design and manufacturing, being of national significance and worthy of international interest. Through a research glove network which now exists thanks to research grant funding, there is potential for the holders of glove collections to make connections and explore links between these resources to promote a stronger understanding of the significance, breadth and heritage of the English glove industry. The network takes an interdisciplinary approach to bring together interested parties from academia, museums and manufacturing, with expert knowledge of the production, collections, conservation and display of English leather gloves. Academics from diverse arts and humanities disciplines benefit from the opportunities to share research and discuss ideas with network members from non-academic contexts including museums and heritage organisations, industry, and contemporary designers. The fragmented collections when considered in entirety provide an overview of English glove making since earliest times and those who wore them. This paper makes connections and explores links between these resources to promote a stronger understanding of the significance, breadth and heritage of the English Glove industry. The following areas are explored: current content and status of the individual museum collections, potential links, sharing of information histories, social and cultural and relationship to history of fashion design, manufacturing and materials, approaches to maintenance and conservation, access to the collections and strategies for future understanding of their national significance. The facilitation of knowledge exchange and exploration of the collections through the network informs organisations’ future strategies for the maintenance, access and conservation of their collections. By involving industry in the network, it is possible to ensure a contemporary perspective on glove-making in addition to the input from heritage partners. The slow fashion movement and awareness of artisan craft and how these can be preserved and adopted for glove and accessory design is addressed. Artisan leather glove making was a skilled and significant industry in England that has now declined to the point where there is little production remaining utilising the specialist skills that have hardly changed since earliest times. This heritage will be identified and preserved for future generations of the rich cultural history of gloves may be lost.Keywords: artisan glove-making skills, English leather gloves, glove culture, the glove network
Procedia PDF Downloads 12938206 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 23438205 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 10838204 A Study on the Determinants of Earnings Response Coefficient in an Emerging Market
Authors: Bita Mashayekhi, Zeynab Lotfi Aghel
Abstract:
The determinants of Earnings Response Coefficient (ERC), including firm size, earnings growth, and earnings persistence are studied in this research. These determinants are supposed to be moderator variables that affect ERC and Return Response Coefficient. The research sample contains 82 Iranian listed companies in Tehran Stock Exchange (TSE) from 2001 to 2012. Gathered data have been processed by EVIEWS Software. Results show a significant positive relation between firm size and ERC, and also between earnings growth and ERC; however, there is no significant relation between earnings persistence and ERC. Also, the results show that ERC will be increased by firm size and earnings growth, but there is no relation between earnings persistence and ERC.Keywords: earnings response coefficient (ERC), return response coefficient (RRC), firm size, earnings growth, earnings persistence
Procedia PDF Downloads 33538203 Business Intelligence Dashboard Solutions for Improving Decision Making Process: A Focus on Prostate Cancer
Authors: Mona Isazad Mashinchi, Davood Roshan Sangachin, Francis J. Sullivan, Dietrich Rebholz-Schuhmann
Abstract:
Background: Decision-making processes are nowadays driven by data, data analytics and Business Intelligence (BI). BI as a software platform can provide a wide variety of capabilities such as organization memory, information integration, insight creation and presentation capabilities. Visualizing data through dashboards is one of the BI solutions (for a variety of areas) which helps managers in the decision making processes to expose the most informative information at a glance. In the healthcare domain to date, dashboard presentations are more frequently used to track performance related metrics and less frequently used to monitor those quality parameters which relate directly to patient outcomes. Providing effective and timely care for patients and improving the health outcome are highly dependent on presenting and visualizing data and information. Objective: In this research, the focus is on the presentation capabilities of BI to design a dashboard for prostate cancer (PC) data that allows better decision making for the patients, the hospital and the healthcare system related to a cancer dataset. The aim of this research is to customize a retrospective PC dataset in a dashboard interface to give a better understanding of data in the categories (risk factors, treatment approaches, disease control and side effects) which matter most to patients as well as other stakeholders. By presenting the outcome in the dashboard we address one of the major targets of a value-based health care (VBHC) delivery model which is measuring the value and presenting the outcome to different actors in HC industry (such as patients and doctors) for a better decision making. Method: For visualizing the stored data to users, three interactive dashboards based on the PC dataset have been developed (using the Tableau Software) to provide better views to the risk factors, treatment approaches, and side effects. Results: Many benefits derived from interactive graphs and tables in dashboards which helped to easily visualize and see the patients at risk, better understanding the relationship between patient's status after treatment and their initial status before treatment, or to choose better decision about treatments with fewer side effects regarding patient status and etc. Conclusions: Building a well-designed and informative dashboard is related to three important factors including; the users, goals and the data types. Dashboard's hierarchies, drilling, and graphical features can guide doctors to better navigate through information. The features of the interactive PC dashboard not only let doctors ask specific questions and filter the results based on the key performance indicators (KPI) such as: Gleason Grade, Patient's Age and Status, but may also help patients to better understand different treatment outcomes, such as side effects during the time, and have an active role in their treatment decisions. Currently, we are extending the results to the real-time interactive dashboard that users (either patients and doctors) can easily explore the data by choosing preferred attribute and data to make better near real-time decisions.Keywords: business intelligence, dashboard, decision making, healthcare, prostate cancer, value-based healthcare
Procedia PDF Downloads 14138202 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 64