Search results for: recognition primed decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5574

Search results for: recognition primed decision

2694 Mergers and Acquisitions in the Banking Sector: The West African Experience

Authors: Sunday Odunaiya

Abstract:

The statistics of banks in operation in this current dispensation compared to some decades ago has brought about a lot of changes on the face of the financial system. The demand of customers, technological advancement, and government policies among others has therefore generated a lot of heat for financial sector’s growth, sustenance and survival. This paper discusses mergers and acquisitions (M&A) in banking sector using West Africa as a yardstick of evaluation. It explains rigorously the conditions that warrant mergers and acquisitions in the banking sector, its effect, and how to ensure mergers and acquisitions effectiveness in the banking sector. The conceptual and empirical review of the relevant literature were done systematically while value-increasing and value-decreasing theories were used to substantiate the discourse. Findings of this paper show that mergers and acquisitions is a practical and conscious activity in Nigeria, Ghana and Ivory Coast from earliest time till date with tremendous turnaround in the financial sector. It was found out that M&A is consensually arrived at by the targets and the acquirer on a value-based account. In other words, merger and acquisition is a deliberate decision reached by the management of such bank for a ‘just cause’.

Keywords: acquisitions, merger, management, financial sector

Procedia PDF Downloads 277
2693 Financial Portfolio Optimization in Turkish Electricity Market via Value at Risk

Authors: F. Gökgöz, M. E. Atmaca

Abstract:

Electricity has an indispensable role in human daily life, technological development and economy. It is a special product or service that should be instantaneously generated and consumed. Sources of the world are limited so that effective and efficient use of them is very important not only for human life and environment but also for technological and economic development. Competitive electricity market is one of the important way that provides suitable platform for effective and efficient use of electricity. Besides benefits, it brings along some risks that should be carefully managed by a market player like Electricity Generation Company. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Value at Risk methods for case studies. Performance of optimal electricity sale solutions are measured and the portfolio performance has been evaluated via Sharpe-Ratio, and compared with conventional approach. Biennial historical electricity price data of Turkish Day Ahead Market are used to demonstrate the approach.

Keywords: electricity market, portfolio optimization, risk management, value at risk

Procedia PDF Downloads 313
2692 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability

Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong

Abstract:

The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.

Keywords: supply chain, facility location, weber problem, sustainability

Procedia PDF Downloads 100
2691 Generative Adversarial Network Based Fingerprint Anti-Spoofing Limitations

Authors: Yehjune Heo

Abstract:

Fingerprint Anti-Spoofing approaches have been actively developed and applied in real-world applications. One of the main problems for Fingerprint Anti-Spoofing is not robust to unseen samples, especially in real-world scenarios. A possible solution will be to generate artificial, but realistic fingerprint samples and use them for training in order to achieve good generalization. This paper contains experimental and comparative results with currently popular GAN based methods and uses realistic synthesis of fingerprints in training in order to increase the performance. Among various GAN models, the most popular StyleGAN is used for the experiments. The CNN models were first trained with the dataset that did not contain generated fake images and the accuracy along with the mean average error rate were recorded. Then, the fake generated images (fake images of live fingerprints and fake images of spoof fingerprints) were each combined with the original images (real images of live fingerprints and real images of spoof fingerprints), and various CNN models were trained. The best performances for each CNN model, trained with the dataset of generated fake images and each time the accuracy and the mean average error rate, were recorded. We observe that current GAN based approaches need significant improvements for the Anti-Spoofing performance, although the overall quality of the synthesized fingerprints seems to be reasonable. We include the analysis of this performance degradation, especially with a small number of samples. In addition, we suggest several approaches towards improved generalization with a small number of samples, by focusing on what GAN based approaches should learn and should not learn.

Keywords: anti-spoofing, CNN, fingerprint recognition, GAN

Procedia PDF Downloads 184
2690 Hybrid Graphene Based Nanomaterial as Highly Efficient Catalyst for the Electrochemical Determination of Ciprofloxacin

Authors: Tien S. H. Pham, Peter J. Mahon, Aimin Yu

Abstract:

The detection of drug molecules by voltammetry has attracted great interest over the past years. However, many drug molecules exhibit poor electrochemical signals at common electrodes which result in low sensitivity in detection. An efficient way to overcome this problem is to modify electrodes with functional materials. Since discovered in 2004, graphene (or reduced graphene oxide) has emerged as one of the most studied two-dimensional carbon materials in condensed matter physics, electrochemistry, and so on due to its exceptional physicochemical properties. Additionally, the continuous development of technology has opened the new window for the successful fabrications of many novel graphene-based nanomaterials to serve in electrochemical analysis. This research aims to synthesize and characterize gold nanoparticle coated beta-cyclodextrin functionalized reduced graphene oxide (Au NP–β-CD–RGO) nanocomposites with highly conductive and strongly electro-catalytic properties as well as excellent supramolecular recognition abilities for the modification of electrodes. The electrochemical responses of ciprofloxacin at the as-prepared nanocomposite modified electrode was effectively amplified was much higher in comparison with that at the bare electrode. The linear concentration range was from 0.01 to 120 µM, with a detection limit of 2.7 nM using differential pulse voltammetry. Thus, Au NP–β-CD–RGO nanocomposite has great potential as an ideal material to construct sensitive sensors for the electrochemical determination of ciprofloxacin or similar antibacterial drugs in the future based on its excellent stability, selectivity, and reproducibility.

Keywords: Au nanoparticles, β-CD, ciprofloxacin, electrochemical determination, graphene based nanomaterials

Procedia PDF Downloads 188
2689 The Relevance of Environmental, Social, and Governance in Sustainable Supplier Selection

Authors: Christoph Koester

Abstract:

Supplier selection is one of the key issues in supply chain management with a growing emphasis on sustainability driven by increasing stakeholder expectations and proactivity. In addition, new regulations, such as the German Supply Chain Act, fostered the inclusion of sustainable incl. governance selection criteria in the selection process. In order to provide a systematic approach to select the most suitable sustainable suppliers, this study quantifies the importance and prioritizes the relevant selection criteria across 17 German industries using the Fuzzy Analytical Hierarchy Process. Results show that economic criteria are still the most important in the selection decision averaging a global weight of 51%. However, environmental, social, and governance (ESG) criteria are combined, on average, almost equally important, with global weights of 22%, 16%, and 11%, respectively. While the type of industry influences criteria weights, other factors, such as type of purchasing or demographic factors, appear to have little impact.

Keywords: ESG, fuzzy analytical hierarchy process, sustainable supplier selection, sustainability

Procedia PDF Downloads 87
2688 The Network Effect on Green Information on Taiwan Social Network Sites

Authors: Pi Hsia Liang

Abstract:

The rise of Facebook, Twitter, and other social networks significantly changes in interconnections between people, enhancing the process of information dissemination and amplify the influence of that information. Therefore, to develop informational efficiency or signaling equilibrium type of information environment among social networks, without adverse selection effects, becomes an important issue. Thus, someone may post a piece of intentional information in relation to personal interest for trying to create marginal influence. Therefore, economists are seeking to establish theories of informational efficiency under social network environment in order to resolve adverse selection issues. Reputation could be one of the important factors in the process of creating informational efficiency. Additionally, investors how to process green information, or information of corporate social responsibility is a very important study. This study essentially employs experimental study for examining how investors use stock relevant green information in Facebook and various Taiwan local networks. Facebook, and blogs of Money DJ, Technews and cnYES, respectively, are the primary sites for this examination that also allow to differentiate effects between Facebook and other local social networks. Questionnaire is developed for such an experimental testing. Note that questionnaire allows this study to group, for example, decision frequency and length of time duration focusing on social networks that are used for discriminating investor type and competence of informed investor. This study selects 500 investors that can be separated into two respective 250 samples as the control group and 250 samples in such an experimental. The quantity of sample investor sufficiently results in statistic significance of this experimental study. The empirical results of this study can be used for explaining how financial information in relation to corporate social responsibility would be disseminated in social websites. Therefore, we can lead to better interpretation of price/earnings relationship type of study and empirical studies of green information usefulness or informational efficiency Note that the above mentioned empirical studies did not exist any social network and annual report of corporate social responsibility. This study expects to find the results that both network degree and network cluster significantly affected green information dissemination frequency. In other words, investors with more connections and with high clustered connections might exert a greater influence on their green information dissemination process. The preferred users of financial social networks could make better stock decision that could amplify effects of green information. In addition, Facebook would be more influential than other local Taiwan financial social networks, although Facebook is not a specialized financial social network. In other words, the popularity and reputation effects of Facebook significantly contribute to usefulness of green information and influence of green information. Third, it has a better chance to find rumor or cheating information in local Taiwan financial social networks than Facebook. In other words, Facebook possesses reputation effect, or a better informational efficiency. Or, even though Taiwan local financial social networks have marginal informational effects on stock price, because of shortage of informational efficiency or monitoring system, information could be a tool for those whom owning superior information.

Keywords: network effect on financial services, informational efficiency theory, social networks, social websites

Procedia PDF Downloads 246
2687 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: impersonation, image registration, incrimination, object detection, threshold evaluation

Procedia PDF Downloads 231
2686 Accounting Quality and The Adoption of IFRS: Evidence from China

Authors: Khaldoon G. Albitar, Hassan Y. Kikhia, Jin P. Zhang

Abstract:

Since 2007, all companies listed on both Shanghai Stock Exchange and Shenzhen Stock Exchange are required to prepare their consolidated financial statements in accordance with International Financial Reporting Standards (IFRS). This study investigates the impact of adopting IFRS on accounting quality for a sample of listed on Chinese companies during the period 2003-2013 with sample of 10846 observations over a four-year period before and a five-year period after the adoption of IFRS. This study tests whether the level of earnings management is significantly lower after the adoption of IFRS, and reported earnings is more value relevant during the IFRS period by using the Ohlson model and Jones model, as modified by Dechow. The empirical results show that accounting quality improved with lower earnings management and higher value relevant after the adoption of IFRS in China. The current study contributes to the literature on IFRS adoption and earning quality in two ways. First, As most of the existing studies on earnings quality and IFRS have been conducted on data from the U.S and European countries, this study fills a gap in the existing literature by studying the effect of adoption of IFRS on earnings quality in an emerging market. Second, the findings of our study have important implications for policymakers, auditors, multinational firms, and users of financial reports. As the rapid growth of China's economy gains global recognition, the Chinese stock market is capturing the attention of international investor.

Keywords: international financial reporting standards (ifrs), accounting quality, earnings management, value relevance, china

Procedia PDF Downloads 335
2685 Nation Branding: Guidelines for Identity Development and Image Perception of Thailand Brand in Health and Wellness Tourism

Authors: Jiraporn Prommaha

Abstract:

The purpose of this research is to study the development of Thailand Brand Identity and the perception of its image in order to find any guidelines for the identity development and the image perception of Thailand Brand in Health and Wellness Tourism. The paper is conducted through mixed methods research, both the qualitative and quantitative researches. The qualitative focuses on the in-depth interview of executive administrations from public and private sectors involved scholars and experts in identity and image issue, main 11 people. The quantitative research was done by the questionnaires to collect data from foreign tourists 800; Chinese tourists 400 and UK tourists 400. The technique used for this was the Exploratory Factor Analysis (EFA), this was to determine the relation between the structures of the variables by categorizing the variables into group by applying the Varimax rotation technique. This technique showed recognition the Thailand brand image related to the 2 countries, China and UK. The results found that guidelines for brand identity development and image perception of health and wellness tourism in Thailand; as following (1) Develop communication in order to understanding of the meaning of the word 'Health and beauty tourism' throughout the country, (2) Develop human resources as a national agenda, (3) Develop awareness rising in the conservation and preservation of natural resources of the country, (4) Develop the cooperation of all stakeholders in Health and Wellness Businesses, (5) Develop digital communication throughout the country and (6) Develop safety in Tourism.

Keywords: brand identity, image perception, nation branding, health and wellness tourism, mixed methods research

Procedia PDF Downloads 200
2684 TALENT GAMING©: The Innovative Methodology to Explore Talents and Empower Teams by Using Board Games

Authors: Susana F. Casla

Abstract:

Talent Gaming is an innovative methodology based on a large research done for years about how table board games can be used to empower teams. This methodology was developed thinking about the efficiency of facilitating team coaching sessions and the importance of bringing out the best of individuals when working as a team. The fact that more senses are involved in playing a board game, linked with the psychological element of space and “permission to play”, help us travel to earlier stages of our life when our authenticity was at its heights. By being focused on playing the board game, the individual does not direct their consciousness in a particular way and is rather focused in winning the board game. By doing this, his or her inner talents and authenticity surfaces and the fact that all the senses are involved impacts enormously his behaviors and attitudes. All of this combined results in an arena where our talents show up and our decision making process is not impacted by other elements, such as appearances, status or hierarchy.

Keywords: talent, team, board game, business psychology, coaching teams at work

Procedia PDF Downloads 374
2683 A Systems-Level Approach towards Transition to Electrical Vehicles

Authors: Mayuri Roy Choudhury, Deepti Paul

Abstract:

Many states in the United States are aiming for high renewable energy targets by the year 2045. In order to achieve this goal, they must do transition to Electrical Vehicles (EVS). We first applied the Multi-Level perspective framework to describe the inter-disciplinary complexities associated with the transition to EVs. Thereafter we addressed these complexities by creating an inter-disciplinary policy framework that uses data science algorithms to create evidence-based policies in favor of EVs. Our policy framework uses a systems level approach as it addresses transitions to EVs from a technology, economic, business and social perspective. By Systems-Level we mean approaching a problem from a multi-disciplinary perspective. Our systems-level approach could be a beneficial decision-making tool to a diverse number of stakeholders such as engineers, entrepreneurs, researchers, and policymakers. In addition, it will add value to the literature of electrical vehicles, sustainable energy, energy economics, and management as well as efficient policymaking.

Keywords: transition, electrical vehicles, systems-level, algorithms

Procedia PDF Downloads 228
2682 Mobile Augmented Reality for Collaboration in Operation

Authors: Chong-Yang Qiao

Abstract:

Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.

Keywords: mobile augmented reality, remote collaboration, user experience, cognition model

Procedia PDF Downloads 197
2681 Memory and Narratives Rereading before and after One Week

Authors: Abigail M. Csik, Gabriel A. Radvansky

Abstract:

As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals.

Keywords: memory, event cognition, distributed practice, consolidation

Procedia PDF Downloads 225
2680 Multi-Criteria Goal Programming Model for Sustainable Development of India

Authors: Irfan Ali, Srikant Gupta, Aquil Ahmed

Abstract:

Every country needs a sustainable development (SD) for its economic growth by forming suitable policies and initiative programs for the development of different sectors of the country. This paper is comprised of modeling and optimization of different sectors of India that form a multi-criterion model. In this paper, we developed a fractional goal programming (FGP) model that helps in providing the efficient allocation of resources simultaneously by achieving the sustainable goals in gross domestic product (GDP), electricity consumption (EC) and greenhouse gasses (GHG) emission by the year 2030. Also, a weighted model of FGP is presented to obtain varying solution according to the priorities set by the policy maker for achieving future goals of GDP growth, EC, and GHG emission. The presented models provide a useful insight to the decision makers for implementing strategies in a different sector.

Keywords: sustainable and economic development, multi-objective fractional programming, fuzzy goal programming, weighted fuzzy goal programming

Procedia PDF Downloads 223
2679 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled

Authors: Rishabh Ambavanekar

Abstract:

Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.

Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis

Procedia PDF Downloads 119
2678 Insight-Based Evaluation of a Map-Based Dashboard

Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg

Abstract:

Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage compared to task-based evaluation methods.

Keywords: visual analytics, dashboard, insight-based evaluation, geographic visualization

Procedia PDF Downloads 116
2677 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem

Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis

Abstract:

In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.

Keywords: energy costs, flexible job-shop scheduling, memetic algorithm, power peak

Procedia PDF Downloads 345
2676 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients

Authors: Soha A. Bahanshal, Byung G. Kim

Abstract:

Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.

Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission

Procedia PDF Downloads 186
2675 Contemporary Challenges in Public Relations in the Context of Globalization

Authors: Marine Kobalava, Eter Narimanishvili, Nino Grigolaia

Abstract:

The paper analyzes the contemporary problems of public relations in Georgia. The approaches to public attitudes towards the relationship with the population of the country are studied on a global scale, the importance of forming the concept of public relations in Georgia in terms of globalization is justified. The basic components of public relations are characterized by the RACE system, namely analyzing research, action, communication, evaluation. The main challenges of public relations are identified in the research process; taking into consideration the scope of globalization, the influence of social, economic, and political changes in Georgia on PR development are identified. The article discusses the public relations as the strategic management function that facilitates communication with the society, recognition of public interests, and their prediction. In addition, the feminization of the sector is considered to be the most important achievement of public relations in the modern world. The conclusion is that the feminization indicator of the field is an unconditional increase in the employment rates of women. In the paper, the problems of globalization and public relations in the industrial countries are studied, the directions of improvement of public relations with the background of peculiarities of different countries and globalization process are proposed. Public relations under globalization are assessed in accordance with the theory of benefits and requirements, and the requirements are classified according to informational, self-identification, integration, social interaction, and other types of signs. In the article, conclusions on the current challenges of public relations in Georgia are made, and the recommendations for their solution, taking into consideration globalization processes in the world, are proposed.

Keywords: public relations, globalization, RACE system, public relationship concept, feminization

Procedia PDF Downloads 172
2674 MCDM Spectrum Handover Models for Cognitive Wireless Networks

Authors: Cesar Hernández, Diego Giral, Fernando Santa

Abstract:

The spectral handoff is important in cognitive wireless networks to ensure an adequate quality of service and performance for secondary user communications. This work proposes a benchmarking of performance of the three spectrum handoff models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handoff models was validated with captured data of spectral occupancy in experiments realized at the GSM frequency band (824 MHz-849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparative show that VIKOR Algorithm provides 15.8% performance improvement compared to a SAW Algorithm and, 12.1% better than the MEW Algorithm.

Keywords: cognitive radio, decision making, MEW, SAW, spectrum handoff, VIKOR

Procedia PDF Downloads 438
2673 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 64
2672 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 269
2671 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 292
2670 Conflict, Confusion or Compromise: Violence against Women, A Case Study of Pakistan

Authors: Farhat Jabeen, Syed Asfaq Hussain Bukhari

Abstract:

In the wake of the contemporary period the basic objective of the research paper points out that socio-cultural scenario of Pakistan reveals that gender-based violence is deep rooted in the society irrespective of language and ethnicity. This paper would reconnaissance the possibility reforms in Pakistan for diminishing of violence. Women are not given their due role, rights, and respect. Furthermore, they are treated as chattels. This presentation will cover the socio-customary practices in the context of discrimination, stigmatization, and violence against women. This paper envisages justice in a broader sense of recognition of rights for women, and masculine structure of society, socio-customary practices and discrimination against women are a very serious concern which needs to be understood as a multidimensional problem. The paper will specially focus on understanding the existing obstacles of women in Pakistan in the constitutional scenario. Women stumble across discrimination and human rights manipulations, voluptuous violation and manipulation including domestic viciousness and are disadvantaged by laws, strategies, and programming that do not take their concerns into considerations. This presentation examines the role of honour killings among Pakistani community. This affects their self-assurance and capability to elevation integrity campaign where gender inequalities and discrimination in social, legal domain are to be put right. This paper brings to light the range of practices, laws and legal justice regarding the status of women and also covers attitude towards compensations for murders/killings, domestic violence, rape, adultery, social behavior and recourse to justice.

Keywords: discrimination, cultural, women, violence

Procedia PDF Downloads 325
2669 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 73
2668 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 261
2667 Security Risks Assessment: A Conceptualization and Extension of NFC Touch-And-Go Application

Authors: Ku Aina Afiqah Ku Adzman, Manmeet Mahinderjit Singh, Zarul Fitri Zaaba

Abstract:

NFC operates on low-range 13.56 MHz frequency within a distance from 4cm to 10cm, and the applications can be categorized as touch and go, touch and confirm, touch and connect, and touch and explore. NFC applications are vulnerable to various security and privacy attacks such due to its physical nature; unprotected data stored in NFC tag and insecure communication between its applications. This paper aims to determine the likelihood of security risks happening in an NFC technology and application. We present an NFC technology taxonomy covering NFC standards, types of application and various security and privacy attack. Based on observations and the survey presented to evaluate the risk assessment within the touch and go application demonstrates two security attacks that are high risks namely data corruption and DOS attacks. After the risks are determined, risk countermeasures by using AHP is adopted. The guideline and solutions to these two high risks, attacks are later applied to a secure NFC-enabled Smartphone Attendance System.

Keywords: Near Field Communication (NFC), risk assessment, multi-criteria decision making, Analytical Hierarchy Process (AHP)

Procedia PDF Downloads 302
2666 Evaluation of the Architect-Friendliness of LCA-Based Environmental Impact Assessment Tools

Authors: Elke Meex, Elke Knapen, Griet Verbeeck

Abstract:

The focus of sustainable building is gradually shifting from energy efficiency towards the more global environmental impact of building design during all life-cycle stages. In this context, many tools have been developed that use a LCA-approach to assess the environmental impact on a whole building level. Since the building design strongly influences the final environmental performance and the architect plays a key role in the design process, it is important that these tools are adapted to his work method and support the decision making from the early design phase on. Therefore, a comparative evaluation of the degree of architect-friendliness of some LCA tools on building level is made, based on an evaluation framework specifically developed for the architect’s viewpoint. In order to allow comparison of the results, a reference building has been designed, documented for different design phases and entered in all software tools. The evaluation according to the framework shows that the existing tools are not very architect-friendly. Suggestions for improvement are formulated.

Keywords: architect-friendliness, design supportive value, evaluation framework, tool comparison

Procedia PDF Downloads 540
2665 Jelly and Beans: Appropriate Use of Ultrasound in Acute Kidney Injury

Authors: Raja Ezman Raja Shariff

Abstract:

Acute kidney injury (AKI) is commonly seen in inpatients, and places a great cost on the NHS and patients. Timely and appropriate management is both nephron sparing and potentially life-saving. Ultrasound scanning (USS) is a well-recognised method for stratifying patients. Subsequently, the NICE AKI guidance has defined groups in whom scanning is recommended within 6 hours of request (pyonephrosis), within 24 hours (obstruction/cause unknown), and in whom routine scanning isn't recommended (cause for AKI identified). The audit looks into whether Stockport NHS Trust USS practice was in line with such recommendations. The audit evaluated 92 patients with AKI who had USS, between 01/01/14 to 30/04/14. Data collection was divided into 2 parts. Firstly, radiology request cards and the online imaging software (PACS) were evaluated. Then, the electronic case notes (ADVANTIS) was evaluated further. Based on request cards, 10% of requests were for pyonephrosis. Only 33% were scanned within 6hours and a further 33% within 24hours. 75% were requested for possible obstructions and unknown cause collectively. Of those due to possible obstruction, 71% of patients were scanned within 24 hours. Of those with unknown cause, 50% were scanned within 24 hours. 15% of requests had a cause declared and so potentially did not require scanning. Evaluation of the patients’ notes suggested further interesting findings. Firstly, potentially 39% of patients had a known cause for AKI, therefore, did not need USS. Subsequently, the cohort of unknown cause and possible obstruction was collectively reduced to 45%. Alarmingly the patient cohort with possible pyonephrosis went up to 16%, suggesting an under-recognition of this life-threatening condition. We plan to highlight these findings within our institution and make changes to encourage more appropriate requesting and timely scanning. Time will tell if we manage to save or increase our costs in this cost-conscious NHS. Patient benefits, though, seem to be guaranteed.

Keywords: AKI, ARF, kidney, renal

Procedia PDF Downloads 400