Search results for: real-world data
22284 The Importance of Absorptive Capacities in the Foreign Direct Investment-Growth Nexus: Evidence from Sub-Saharan Africa
Authors: Edmund Kwablah, Anthony Amoah
Abstract:
The merits associated with Foreign Direct Investment (FDI) inflows to host countries in Sub-Saharan Africa cannot be overemphasized. Against this background, countries have sought to design and implement strategic policies geared towards enhacing FDI and promoting economic growth. In this study, we used the Fully Modified Ordinary Least Squares technique and a panel data for Sub-Saharan African (SSA) countries spanning from 1998 to 2016. We hypothesize that FDI’s effect on economic growth is contingent on some absorptive capacities (e.g., financial market development and economic freedom) of the host country. We used financial market data that accounts for market fragility as a measure of financial market development and economic freedom data which uses the overall score of all the freedom indicators as a measure of economic freedom. Our results suggest that FDI has a statistically positive effect on economic growth when we account for host country’s absorptive capacities. However, a negative relationship will ensue if these absorptive capacities are not accounted for. We recommend that a developing continent like SSA should focus on identifying and building the relevant absorptive capacities that can translate the effect of FDI into a positive growth. This is because an economy with sound absorptive capacities reduces business risk and spur economic growth.Keywords: FDI, absorptive capacity, economic growth, FMOLS, Fully Modified Ordinary Least Squares, SSA
Procedia PDF Downloads 18422283 Intelligent Crowd Management Systems in Trains
Authors: Sai S. Hari, Shriram Ramanujam, Unnati Trivedi
Abstract:
The advent of mass transit systems like rail, metro, maglev, and various other rail based transport has pacified the requirement of public transport for the masses to a great extent. However, the abatement of the demand does not necessarily mean it is managed efficiently, eloquently or in an encapsulating manner. The primary problem identified that the one this paper seeks to solve is the dipsomaniac like manner in which the compartments are occupied. This problem is solved by using a comparison of an empty train and an occupied one. The pixel data of an occupied train is compared to the pixel data of an empty train. This is done using canny edge detection technique. After the comparison it intimates the passengers at the consecutive stops which compartments are not occupied or have low occupancy. Thus, redirecting them and preventing overcrowding.Keywords: canny edge detection, comparison, encapsulation, redirection
Procedia PDF Downloads 33422282 Multilevel Modelling of Modern Contraceptive Use in Nigeria: Analysis of the 2013 NDHS
Authors: Akiode Ayobami, Akiode Akinsewa, Odeku Mojisola, Salako Busola, Odutolu Omobola, Nuhu Khadija
Abstract:
Purpose: Evidence exists that family planning use can contribute to reduction in infant and maternal mortality in any country. Despite these benefits, contraceptive use in Nigeria still remains very low, only 10% among married women. Understanding factors that predict contraceptive use is very important in order to improve the situation. In this paper, we analysed data from the 2013 Nigerian Demographic and Health Survey (NDHS) to better understand predictors of contraceptive use in Nigeria. The use of logistics regression and other traditional models in this type of situation is not appropriate as they do not account for social structure influence brought about by the hierarchical nature of the data on response variable. We therefore used multilevel modelling to explore the determinants of contraceptive use in order to account for the significant variation in modern contraceptive use by socio-demographic, and other proximate variables across the different Nigerian states. Method: This data has a two-level hierarchical structure. We considered the data of 26, 403 married women of reproductive age at level 1 and nested them within the 36 states and the Federal Capital Territory, Abuja at level 2. We modelled use of modern contraceptive against demographic variables, being told about FP at health facility, heard of FP on TV, Magazine or radio, husband desire for more children nested within the state. Results: Our results showed that the independent variables in the model were significant predictors of modern contraceptive use. The estimated variance component for the null model, random intercept, and random slope models were significant (p=0.00), indicating that the variation in contraceptive use across the Nigerian states is significant, and needs to be accounted for in order to accurately determine the predictors of contraceptive use, hence the data is best fitted by the multilevel model. Only being told about family planning at the health facility and religion have a significant random effect, implying that their predictability of contraceptive use varies across the states. Conclusion and Recommendation: Results showed that providing FP information at the health facility and religion needs to be considered when programming to improve contraceptive use at the state levels.Keywords: multilevel modelling, family planning, predictors, Nigeria
Procedia PDF Downloads 41922281 The Implementation of Social Responsibility with the Approach of Indonesian Realistic Mathematics Education in Teaching and Learning Mathematics on Students' Engagement and Learning
Authors: Nurwati Djaman, Suradi Tahmir, Nurdin Arsyad
Abstract:
The major objective of this study was to implement and evaluate the use of the implementation of social responsibility with the approach of Indonesian Realistic Mathematics Education (PMRI) in teaching and learning mathematics on students’ engagement and learning. The research problems investigated in this research: 1) What were the effects of the implementation of social responsibility with PMRI approach to learning mathematics? 2) What were the effects of the approach to students’ engagement? An action research and grounded theory methodology were adopted for the study. This study used mixed methods to collect, describe, and interpret the data. The data were collected through focus group discussion, classroom observations, questionnaire, interview, and students’ work. The participants in this study consisted of 45 students. The study revealed that the approach has given students the opportunity to develop their understanding of concepts and procedures, problem-solving ability, and communication ability. Also, students’ involvement in the approach improved their engagement in learning mathematics in the three domains of cognitive engagement, effective engagement, and behavioral engagement. In particular, the data collection from the focus group, classroom observations, and interviews suggest that, during this study, the students became more active participants in the mathematics lessons.Keywords: Indonesian Realistic Mathematics Education, PMRI, learning mathematics, social responsibility, students' engagement
Procedia PDF Downloads 14422280 Vibrations of Springboards: Mode Shape and Time Domain Analysis
Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich
Abstract:
Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain.Keywords: springboard analysis, modal analysis, time domain analysis, vibrations
Procedia PDF Downloads 46022279 The Physical and Physiological Profile of Professional Muay Thai Boxers
Authors: Lucy Horrobin, Rebecca Fores
Abstract:
Background: Muay Thai is an increasingly popular combat sport worldwide. Further academic research in the sport will contribute to its professional development. This research sought to produce normative data in relation to the physical and physiological characteristics of professional Muay Thai boxers, as, currently no such data exists. The ultimate aim being to inform appropriate training programs and to facilitate coaching. Methods: N = 9 professional, adult, male Muay Thai boxers were assessed for the following anthropometric, physical and physiological characteristics, using validated methods of assessment: body fat, hamstring flexibility, maximal dynamic upper body strength, lower limb peak power, upper body muscular endurance and aerobic capacity. Raw data scores were analysed for mean, range and SD and where applicable were expressed relative to body mass (BM). Results: Results showed similar characteristics to those found in other combat sports. Low percentages of body fat (mean±SD) 8.54 ± 1.16 allow for optimal power to weight ratios. Highly developed aerobic capacity (mean ±SD) 61.56 ± 5.13 ml.min.kg facilitate recovery and power maintenance throughout bouts. Lower limb peak power output values of (mean ± SD) 12.60 ± 2.09 W/kg indicate that Muay Thai boxers are amongst the most powerful of combat sport athletes. However, maximal dynamic upper body strength scores of (mean±SD) 1.14 kg/kg ± 0.18 were in only the 60th percentile of normative data for the general population and muscular endurance scores (mean±SD) 31.55 ± 11.95 and flexibility scores (mean±SD) 19.55 ± 11.89 cm expressed wide standard deviation. These results might suggest that these characteristics are insignificant in Muay Thai or under-developed, perhaps due to deficient training programs. Implications: This research provides the first normative data of physical and physiological characteristics of Muay Thai boxers. The findings of this study would aid trainers and coaches when designing effective evidence-based training programs. Furthermore, it provides a foundation for further research relating to physiology in Muay Thai. Areas of further study could be determining the physiological demands of a full rules bout and the effects of evidence-based training programs on performance.Keywords: fitness testing, Muay Thai, physiology, strength and conditioning
Procedia PDF Downloads 23022278 Anomalies of Visual Perceptual Skills Amongst School Children in Foundation Phase in Olievenhoutbosch, Gauteng Province, South Africa
Authors: Maria Bonolo Mathevula
Abstract:
Background: Children are important members of communities playing major role in the future of any given country (Pera, Fails, Gelsomini, &Garzotto, 2018). Visual Perceptual Skills (VPSs) in children are important health aspect of early childhood development through the Foundation Phases in school. Subsequently, children should undergo visual screening before commencement of schooling for early diagnosis ofVPSs anomalies because the primary role of VPSs is to capacitate children with academic performance in general. Aim : The aim of this study was to determine the anomalies of visual VPSs amongst school children in Foundation Phase. The study’s objectives were to determine the prevalence of VPSs anomalies amongst school children in Foundation Phase; Determine the relationship between children’s academic and VPSs anomalies; and to investigate the relationship between VPSs anomalies and refractive error. Methodology: This study was a mixed method whereby triangulated qualitative (interviews) and quantitative (questionnaire and clinical data) was used. This was, therefore, descriptive by nature. The study’s target population was school children in Foundation Phase. The study followed purposive sampling method. School children in Foundation Phase were purposively sampled to form part of this study provided their parents have given a signed the consent. Data was collected by the use of standardized interviews; questionnaire; clinical data card, and TVPS standard data card. Results: Although the study is still ongoing, the preliminary study outcome based on data collected from one of the Foundation Phases have suggested the following:While VPSs anomalies is not prevalent, it, however, have indirect relationship with children’s academic performance in Foundation phase; Notably, VPSs anomalies and refractive error are directly related since majority of children with refractive error, specifically compound hyperopic astigmatism, failed most subtests of TVPS standard tests. Conclusion: Based on the study’s preliminary findings, it was clear that optometrists still have a lot to do in as far as researching on VPSs is concerned. Furthermore, the researcher recommends that optometrist, as the primary healthcare professionals, should also conduct the school-readiness pre-assessment on children before commencement of their grades in Foundation phase.Keywords: foundation phase, visual perceptual skills, school children, refractive error
Procedia PDF Downloads 10222277 Geographic Mapping of Tourism in Rural Areas: A Case Study of Cumbria, United Kingdom
Authors: Emma Pope, Demos Parapanos
Abstract:
Rural tourism has become more obvious and prevalent, with tourists’ increasingly seeking authentic experiences. This movement accelerated post-Covid, putting destinations in danger of reaching levels of saturation called ‘overtourism’. Whereas the phenomenon of overtourism has been frequently discussed in the urban context by academics and practitioners over recent years, it has hardly been referred to in the context of rural tourism, where perhaps it is even more difficult to manage. Rural tourism was historically considered small-scale, marked by its traditional character and by having little impact on nature and rural society. The increasing number of rural areas experiencing overtourism, however, demonstrates the need for new approaches, especially as the impacts and enablers of overtourism are context specific. Cumbria, with approximately 47 million visitors each year, and 23,000 operational enterprises, is one of these rural areas experiencing overtourism in the UK. Using the county of Cumbria as an example, this paper aims to explore better planning and management in rural destinations by clustering the area into rural and ‘urban-rural’ tourism zones. To achieve the aim, this study uses secondary data from a variety of sources to identify variables relating to visitor economy development and demand. These data include census data relating to population and employment, tourism industry-specific data including tourism revenue, visitor activities, and accommodation stock, and big data sources such as Trip Advisor and All Trails. The combination of these data sources provides a breadth of tourism-related variables. The subsequent analysis of this data draws upon various validated models. For example, tourism and hospitality employment density, territorial tourism pressure, and accommodation density. In addition to these statistical calculations, other data are utilized to further understand the context of these zones, for example, tourist services, attractions, and activities. The data was imported into ARCGIS where the density of the different variables is visualized on maps. This study aims to provide an understanding of the geographical context of visitor economy development and tourist behavior in rural areas. The findings contribute to an understanding of the spatial dynamics of tourism within the region of Cumbria through the creation of thematized maps. Different zones of tourism industry clusters are identified, which include elements relating to attractions, enterprises, infrastructure, tourism employment and economic impact. These maps visualize hot and cold spots relating to a variety of tourism contexts. It is believed that the strategy used to provide a visual overview of tourism development and demand in Cumbria could provide a strategic tool for rural areas to better plan marketing opportunities and avoid overtourism. These findings can inform future sustainability policy and destination management strategies within the areas through an understanding of the processes behind the emergence of both hot and cold spots. It may mean that attract and disperse needs to be reviewed in terms of a strategic option. In other words, to use sector or zonal policies for the individual hot or cold areas with transitional zones dependent upon local economic, social and environmental factors.Keywords: overtourism, rural tourism, sustainable tourism, tourism planning, tourism zones
Procedia PDF Downloads 7422276 Spatial Behavioral Model-Based Dynamic Data-Driven Diagram Information Model
Authors: Chiung-Hui Chen
Abstract:
Diagram and drawing are important ways to communicate and the reproduce of architectural design, Due to the development of information and communication technology, the professional thinking of architecture and interior design are also change rapidly. In development process of design, diagram always play very important role. This study is based on diagram theories, observe and record interaction between man and objects, objects and space, and space and time in a modern nuclear family. Construct a method for diagram to systematically and visualized describe the space plan of a modern nuclear family toward a intelligent design, to assist designer to retrieve information and check/review event pattern of past and present.Keywords: digital diagram, information model, context aware, data analysis
Procedia PDF Downloads 33322275 Characterization of Fateh Sagar Wetland and Its Catchment Area at Udaipur City, (Raj.) India, Using High Resolution Data
Authors: Parul Bhalla, Sarvesh Palria
Abstract:
Wetlands are areas of land that are either temporarily or permanently covered by water. Wetlands exhibit enormous diversity according to their genesis, geographical location, water regime and chemistry, dominant plants and soil or sediment characteristics. The spatial and temporal characteristics of wetland in terms of turbidity and aquatic vegetation could serve as guiding tool, in conservation prioritization of wetlands. The aquatic vegetation in the wetland is an indicator of the trophic status of the wetland which has a bearing on the water quality, the turbidity level in any wetland is indicative of the quality of the water in it. To conserve and manage wetland resources, it is important to have inventory of wetland and its catchment. Fateh Sagar wetland in Udaipur city is the one of the important wetland for tourism industry and other economic activities in the region. Realizing the importance of the wetland, the present study has been taken up with the specific objective of delineation and characterization of Fateh Sagar wetland in terms of turbidity and aquatic vegetation, using high resolution satellite data such as Cartosat and LISS IV multi-temporal data, which will efficiently bring out the changes in water spread and quality parameters. The catchment of wetland has been also characterized for various features. The study leads in to takes necessary steps to conserve the wetland and its resources.Keywords: aquatic vegetation, catchment, turbidity status, wetland
Procedia PDF Downloads 40322274 Secure Image Retrieval Based on Orthogonal Decomposition under Cloud Environment
Authors: Y. Xu, L. Xiong, Z. Xu
Abstract:
In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.Keywords: secure image retrieval, secure search, orthogonal decomposition, secure cloud computing
Procedia PDF Downloads 48522273 Developing an IT Management Policy: A Proposal
Authors: Robert Gilliland
Abstract:
In any organization, a potential issue can arise and become a problem when management deviates from the standard norms set in the system development process of an IT system and the policies that pertain to it. In these instances, cybersecurity is a big challenge that organizations have to face in safeguarding the data that they generate and use. When a new idea, task, or process begins, specific standards must be followed, along with the policies and procedures that ensure the safeguard of data in the information system within the company. A good IT Strategy and Policy should have individuals who are in charge of overseeing the design, development, implementation, and auditing of these policies. Auditors are people who check to make sure that the issue conforms with the plan that is in place. Management has the ability through the role of the manager to potentially abuse power is given and to direct specific ideas, events, projects, and outcomes that are contrary to the vision or goals of the company.Keywords: strategic policy, policy management, new policy, strategic planning
Procedia PDF Downloads 13622272 A Data-Driven Agent Based Model for the Italian Economy
Authors: Michele Catalano, Jacopo Di Domenico, Luca Riccetti, Andrea Teglio
Abstract:
We develop a data-driven agent based model (ABM) for the Italian economy. We calibrate the model for the initial condition and parameters. As a preliminary step, we replicate the Monte-Carlo simulation for the Austrian economy. Then, we evaluate the dynamic properties of the model: the long-run equilibrium and the allocative efficiency in terms of disequilibrium patterns arising in the search and matching process for final goods, capital, intermediate goods, and credit markets. In this perspective, we use a randomized initial condition approach. We perform a robustness analysis perturbing the system for different parameter setups. We explore the empirical properties of the model using a rolling window forecast exercise from 2010 to 2022 to observe the model’s forecasting ability in the wake of the COVID-19 pandemic. We perform an analysis of the properties of the model with a different number of agents, that is, with different scales of the model compared to the real economy. The model generally displays transient dynamics that properly fit macroeconomic data regarding forecasting ability. We stress the model with a large set of shocks, namely interest policy, fiscal policy, and exogenous factors, such as external foreign demand for export. In this way, we can explore the most exposed sectors of the economy. Finally, we modify the technology mix of the various sectors and, consequently, the underlying input-output sectoral interdependence to stress the economy and observe the long-run projections. In this way, we can include in the model the generation of endogenous crisis due to the implied structural change, technological unemployment, and potential lack of aggregate demand creating the condition for cyclical endogenous crises reproduced in this artificial economy.Keywords: agent-based models, behavioral macro, macroeconomic forecasting, micro data
Procedia PDF Downloads 6922271 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia
Authors: Arragaw Alemayehu, Woldeamlak Bewket
Abstract:
The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend
Procedia PDF Downloads 43822270 Product Design and Development of Wearable Assistant Device
Authors: Hao-Jun Hong, Jung-Tang Huang
Abstract:
The world is gradually becoming an aging society, and with the lack of laboring forces, this phenomenon is affecting the nation’s economy growth. Although nursing centers are booming in recent years, the lack of medical resources are yet to be resolved, thus creating an innovative wearable medical device could be a vital solution. This research is focused on the design and development of a wearable device which obtains a more precise heart failure measurement than products on the market. The method used by the device is based on the sensor fusion and big data algorithm. From the test result, the modified structure of wearable device can significantly decrease the MA (Motion Artifact) and provide users a more cozy and accurate physical monitor experience.Keywords: big data, heart failure, motion artifact, sensor fusion, wearable medical device
Procedia PDF Downloads 35122269 Elucidation of the Sequential Transcriptional Activity in Escherichia coli Using Time-Series RNA-Seq Data
Authors: Pui Shan Wong, Kosuke Tashiro, Satoru Kuhara, Sachiyo Aburatani
Abstract:
Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. This method presented here works to augment existing regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. This method is applied on a time-series RNA-Seq data set from Escherichia coli as it transitions from growth to stationary phase over five hours. Investigations are conducted on the various metabolic activities in gene regulation processes by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. Especially, the changes in metabolic activity during phase transition are analyzed with focus on the pagP gene as well as other associated transcription factors. The visualization of the sequential transcriptional activity is used to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. The results show a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli.Keywords: Escherichia coli, gene regulation, network, time-series
Procedia PDF Downloads 37222268 Research on Integrating Adult Learning and Practice into Long-Term Care Education
Authors: Liu Yi Hui, Chun-Liang Lai, Jhang Yu Cih, He You Jing, Chiu Fan-Yun, Lin Yu Fang
Abstract:
For universities offering long-term care education, the inclusion of adulting learning and practices in professional courses as appropriate based on holistic design and evaluation could improve talent empowerment by leveraging social capital. Moreover, it could make the courses and materials used in long-term care education responsive to real-life needs. A mixed research method was used in the research design. A quantitative study was also conducted using a questionnaire survey, and the data were analyzed by SPSS 22.0 Chinese version. The qualitative data included students’ learning files (learning reflection notes, course reports, and experience records).Keywords: adult learning, community empowerment, social capital, mixed research
Procedia PDF Downloads 15622267 The Effect of Sorafenibe on Soat1 Protein by Using Molecular Docking Method
Authors: Mahdiyeh Gholaminezhad
Abstract:
Context: The study focuses on the potential impact of Sorafenib on SOAT1 protein in liver cancer treatment, addressing the need for more effective therapeutic options. Research aim: To explore the effects of Sorafenib on the activity of SOAT1 protein in liver cancer cells. Methodology: Molecular docking was employed to analyze the interaction between Sorafenib and SOAT1 protein. Findings: The study revealed a significant effect of Sorafenib on the stability and activity of SOAT1 protein, suggesting its potential as a treatment for liver cancer. Theoretical importance: This research highlights the molecular mechanism underlying Sorafenib's anti-cancer properties, contributing to the understanding of its therapeutic effects. Data collection: Data on the molecular structure of Sorafenib and SOAT1 protein were obtained from computational simulations and databases. Analysis procedures: Molecular docking simulations were performed to predict the binding interactions between Sorafenib and SOAT1 protein. Question addressed: How does Sorafenib influence the activity of SOAT1 protein and what are the implications for liver cancer treatment? Conclusion: The study demonstrates the potential of Sorafenib as a targeted therapy for liver cancer by affecting the activity of SOAT1 protein. Reviewers' Comments: The study provides valuable insights into the molecular basis of Sorafenib's action on SOAT1 protein, suggesting its therapeutic potential. To enhance the methodology, the authors could consider validating the docking results with experimental data for further validation.Keywords: liver cancer, sorafenib, SOAT1, molecular docking
Procedia PDF Downloads 2722266 Unveiling Coaching Style of PE Teachers: A Convergent Parallel Approach
Authors: Arazan Jane V., Badiang, Ronesito Jr. R., Clavesillas Cristine Joy H., Belleza Saramie S.
Abstract:
This study examined the coaching style among the PE Teachers in terms of Autonomy, Supportive style, and Controlling Style. On the other hand, gives opportunities to an athlete to be independent, task-oriented, and acknowledge their feelings and perspective of each individual. A controlling coaching style is also portrayed by the rises and falls over an athlete's training development; when this variance is identified, it might harm training. The selection of the respondents of the study will use a random sample of High School PE teachers of the Division of Davao del Norte with a total of 78 High School PE teachers, which can be broken down into 70 High School PE Teachers for Quantitative data for the survey questionnaire and 8 PE Teachers for Qualitative data (IDI). In the quantitative phase, a set of survey questionnaires will be used to gather data from the participants—the extent of the Implementation Questionnaire. The tool will be a researcher-made questionnaire based on the Coaching Styles of selected High School PE teachers of Davao Del Norte. In the qualitative phase, an interview guide questionnaire will be used. Focus group discussions will be conducted to determine themes and patterns or participants' experiences and insights. The researchers conclude that the degree of coaching style among PE Teachers from the Division of Davao del Norte is high, as seen by the findings of this study, and that coaching style among these teachers is highly noticeable.Keywords: supportive autonomy style, controlling style, live experiences, exemplified
Procedia PDF Downloads 9622265 A Cellular-Based Structural Health Monitoring Device (HMD) Based on Cost-Effective 1-Axis Accelerometers
Authors: Chih-Hsing Lin, Wen-Ching Chen, Chih-Ting Kuo, Gang-Neng Sung, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang
Abstract:
This paper proposes a cellular-based structure health monitoring device (HMD) for temporary bridge monitoring without the requirement of power line and internet service. The proposed HMD includes sensor node, power module, cellular gateway, and rechargeable batteries. The purpose of HMD focuses on short-term collection of civil infrastructure information. It achieves the features of low cost by using three 1-axis accelerometers with data synchronization problem being solved. Furthermore, instead of using data acquisition system (DAQ) sensed data is transmitted to Host through cellular gateway. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 50.5% cost saving with high sensitivity 2000mv/g. In addition to fit different monitoring environments, the proposed system can be easily replaced and/or extended with different PCB boards, such as communication interfaces and sensors, to adapt to various applications. Therefore, with using the proposed device, the real-time diagnosis system for civil infrastructure damage monitoring can be conducted effectively.Keywords: cellular-based structural health monitoring, cost-effective 1-axis accelerometers, short-term monitoring, structural engineering
Procedia PDF Downloads 51722264 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning
Authors: Eiman Kattan
Abstract:
This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.Keywords: conventional neural network, remote sensing, land cover, land use
Procedia PDF Downloads 37022263 Discrete Choice Modeling in Education: Evaluating Early Childhood Educators’ Practices
Authors: Michalis Linardakis, Vasilis Grammatikopoulos, Athanasios Gregoriadis, Kalliopi Trouli
Abstract:
Discrete choice models belong to the family of Conjoint analysis that are applied on the preferences of the respondents towards a set of scenarios that describe alternative choices. The scenarios have been pre-designed to cover all the attributes of the alternatives that may affect the choices. In this study, we examine how preschool educators integrate physical activities into their everyday teaching practices through the use of discrete choice models. One of the advantages of discrete choice models compared to other more traditional data collection methods (e.g. questionnaires and interviews that use ratings) is that the respondent is called to select among competitive and realistic alternatives, rather than objectively rate each attribute that the alternatives may have. We present the effort to construct and choose representative attributes that would cover all possible choices of the respondents, and the scenarios that have arisen. For the purposes of the study, we used a sample of 50 preschool educators in Greece that responded to 4 scenarios (from the total of 16 scenarios that the orthogonal design resulted), with each scenario having three alternative teaching practices. Seven attributes of the alternatives were used in the scenarios. For the analysis of the data, we used multinomial logit model with random effects, multinomial probit model and generalized mixed logit model. The conclusions drawn from the estimated parameters of the models are discussed.Keywords: conjoint analysis, discrete choice models, educational data, multivariate statistical analysis
Procedia PDF Downloads 46522262 Challenges of Implementing Participatory Irrigation Management for Food Security in Semi Arid Areas of Tanzania
Authors: Pilly Joseph Kagosi
Abstract:
The study aims at assessing challenges observed during the implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation, and literature review. Data collected from the questionnaire was analysed using SPSS while PRA data was analysed with the help of local communities during PRA exercise. Data from other methods were analysed using content analysis. The study revealed that PIM approach has a contribution in improved food security at household level due to the involvement of communities in water management activities and decision making which enhanced the availability of water for irrigation and increased crop production. However, there were challenges observed during the implementation of the approach including; minimum participation of beneficiaries in decision-making during planning and designing stages, meaning inadequate devolution of power among scheme owners. Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However, it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.Keywords: challenges, participatory approach, irrigation management, food security, semi arid areas
Procedia PDF Downloads 32422261 Utilization of Online Risk Mapping Techniques versus Desktop Geospatial Tools in Making Multi-Hazard Risk Maps for Italy
Authors: Seyed Vahid Kamal Alavi
Abstract:
Italy has experienced a notable quantity and impact of disasters due to natural hazards and technological accidents caused by diverse risk sources on its physical, technological, and human/sociological infrastructures during past decade. This study discusses the frequency and impacts of the most three physical devastating natural hazards in Italy for the period 2000–2013. The approach examines the reliability of a range of open source WebGIS techniques versus a proposed multi-hazard risk management methodology. Spatial and attribute data which include USGS publically available hazard data and thirteen years Munich RE recorded data for Italy with different severities have been processed, visualized in a GIS (Geographic Information System) framework. Comparison of results from the study showed that the multi-hazard risk maps generated using open source techniques do not provide a reliable system to analyze the infrastructures losses in respect to national risk sources while they can be adopted for general international risk management purposes. Additionally, this study establishes the possibility to critically examine and calibrate different integrated techniques in evaluating what better protection measures can be taken in an area.Keywords: multi-hazard risk mapping, risk management, GIS, Italy
Procedia PDF Downloads 37122260 The Role of People and Data in Complex Spatial-Related Long-Term Decisions: A Case Study of Capital Project Management Groups
Authors: Peter Boyes, Sarah Sharples, Paul Tennent, Gary Priestnall, Jeremy Morley
Abstract:
Significant long-term investment projects can involve complex decisions. These are often described as capital projects, and the factors that contribute to their complexity include budgets, motivating reasons for investment, stakeholder involvement, interdependent projects, and the delivery phases required. The complexity of these projects often requires management groups to be established involving stakeholder representatives; these teams are inherently multidisciplinary. This study uses two university campus capital projects as case studies for this type of management group. Due to the interaction of projects with wider campus infrastructure and users, decisions are made at varying spatial granularity throughout the project lifespan. This spatial-related context brings complexity to the group decisions. Sensemaking is the process used to achieve group situational awareness of a complex situation, enabling the team to arrive at a consensus and make a decision. The purpose of this study is to understand the role of people and data in the complex spatial related long-term decision and sensemaking processes. The paper aims to identify and present issues experienced in practical settings of these types of decision. A series of exploratory semi-structured interviews with members of the two projects elicit an understanding of their operation. From two stages of thematic analysis, inductive and deductive, emergent themes are identified around the group structure, the data usage, and the decision making within these groups. When data were made available to the group, there were commonly issues with the perception of veracity and validity of the data presented; this impacted the ability of group to reach consensus and, therefore, for decisions to be made. Similarly, there were different responses to forecasted or modelled data, shaped by the experience and occupation of the individuals within the multidisciplinary management group. This paper provides an understanding of further support required for team sensemaking and decision making in complex capital projects. The paper also discusses the barriers found to effective decision making in this setting and suggests opportunities to develop decision support systems in this team strategic decision-making process. Recommendations are made for further research into the sensemaking and decision-making process of this complex spatial-related setting.Keywords: decision making, decisions under uncertainty, real decisions, sensemaking, spatial, team decision making
Procedia PDF Downloads 13122259 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework
Authors: Ma Cecilia Siva
Abstract:
This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.Keywords: tokenized, sigmoid activation, transformer, multi category classification
Procedia PDF Downloads 922258 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 42322257 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer
Procedia PDF Downloads 18222256 Delineation of Subsurface Tectonic Structures Using Gravity, Magnetic and Geological Data, in the Sarir-Hameimat Arm of the Sirt Basin, NE Libya
Authors: Mohamed Abdalla Saleem, Hana Ellafi
Abstract:
The study area is located in the eastern part of the Sirt Basin, in the Sarir-Hameimat arm of the basin, south of Amal High. The area covers the northern part of the Hamemat Trough and the Rakb High. All of these tectonic elements are part of the major and common tectonics that were created when the old Sirt Arch collapsed, and most of them are trending NW-SE. This study has been conducted to investigate the subsurface structures and the sedimentology characterization of the area and attempt to define its development tectonically and stratigraphically. About 7600 land gravity measurements, 22500 gridded magnetic data, and petrographic core data from some wells were used to investigate the subsurface structural features both vertically and laterally. A third-order separation of the regional trends from the original Bouguer gravity data has been chosen. The residual gravity map reveals a significant number of high anomalies distributed in the area, separated by a group of thick sediment centers. The reduction to the pole magnetic map also shows nearly the same major trends and anomalies in the area. Applying the further interpretation filters reveals that these high anomalies are sourced from different depth levels; some are deep-rooted, and others are intruded igneous bodies within the sediment layers. The petrographic sedimentology study for some wells in the area confirmed the presence of these igneous bodies and defined their composition as most likely to be gabbro hosted by marine shale layers. Depth investigation of these anomalies by the average depth spectrum shows that the average basement depth is about 7.7 km, while the top of the intrusions is about 2.65 km, and some near-surface magnetic sources are about 1.86 km. The depth values of the magnetic anomalies and their location were estimated specifically using the 3D Euler deconvolution technique. The obtained results suggest that the maximum depth of the sources is about 4938m. The total horizontal gradient of the magnetic data shows that the trends are mostly extending NW-SE, others are NE-SW, and a third group has an N-S extension. This variety in trend direction shows that the area experienced different tectonic regimes throughout its geological history.Keywords: sirt basin, tectonics, gravity, magnetic
Procedia PDF Downloads 6622255 Analyzing the Programme for International Student Assessment (PISA) Results in Uzbekistan: Insights from Organisation for Economic Co-operation and Development (OECD) Assessments
Authors: Nukarova Marjona Kayimovna
Abstract:
This article examines Uzbekistan's participation in the Programme for International Student Assessment (PISA) 2022, as the country took part in the assessment for the first time. The analysis delves into the initial results and performance metrics reported by the Organisation for Economic Co-operation and Development (OECD). By exploring Uzbekistan's data, the article highlights key findings, trends, and areas of strength and improvement. The aim is to provide a comprehensive understanding of how Uzbekistan's education system compares on the international stage and to offer insights into potential implications for future educational policies and reforms.Keywords: PISA, OECD, data analysis of Uzbekistan, results, critical thinking.
Procedia PDF Downloads 11