Search results for: practice learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10731

Search results for: practice learning

7851 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 112
7850 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 196
7849 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 155
7848 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications

Authors: William Li

Abstract:

Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.

Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles

Procedia PDF Downloads 252
7847 The Impact of Acoustic Performance on Neurodiverse Students in K-12 Learning Spaces

Authors: Michael Lekan-Kehinde, Abimbola Asojo, Bonnie Sanborn

Abstract:

Good acoustic performance has been identified as one of the critical Indoor Environmental Quality (IEQ) factors for student learning and development by the National Research Council. Childhood presents the opportunity for children to develop lifelong skills that will support them throughout their adult lives. Acoustic performance of a space has been identified as a factor that can impact language acquisition, concentration, information retention, and general comfort within the environment. Increasingly, students learn by communication between both teachers and fellow students, making speaking and listening crucial. Neurodiversity - while initially coined to describe individuals with autism spectrum disorder (ASD) - widely describes anyone with a different brain process. As the understanding from cognitive and neurosciences increases, the number of people identified as neurodiversity is nearly 30% of the population. This research looks at guidelines and standard for spaces with good acoustical quality and relates it with the experiences of students with autism spectrum disorder (ASD), their parents, teachers, and educators through a mixed methods approach, including selected case studies interviews, and mixed surveys. The information obtained from these sources is used to determine if selected materials, especially properties relating to sound absorption and reverberation reduction, are equally useful in small, medium sized, and large learning spaces and methodologically approaching. The results describe the potential impact of acoustics on Neurodiverse students, considering factors that determine the complexity of sound in relation to the auditory processing capabilities of ASD students. In conclusion, this research extends the knowledge of how materials selection influences the better development of acoustical environments for autism students.

Keywords: acoustics, autism spectrum disorder (ASD), children, education, learning, learning spaces, materials, neurodiversity, sound

Procedia PDF Downloads 107
7846 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study

Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier

Abstract:

Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.

Keywords: eating disorders, risk factors, physical activity, machine learning

Procedia PDF Downloads 83
7845 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
7844 An Appraisal of the Design, Content, Approaches and Materials of the K-12 Grade 8 English Curriculum by Language Teachers, Supervisors and Teacher-Trainers

Authors: G. Infante Dennis, S. Balinas Elvira, C. Valencia Yolanda, Cunanan

Abstract:

This paper examined the feed-backs, concerns, and insights of the teachers, supervisors, and teacher-trainers on the nature and qualities of the K-12 grade 8 design, content, approaches, and materials. Specifically, it sought to achieve the following objectives: 1) to describe the critical nature and qualities of the design, content, teaching-learning-and-evaluation approaches, and the materials to be utilized in the implementation of the grade 8 curriculum; 2) to extract the possible challenges relevant to the implementation of the design, content, teaching-learning-and-evaluation approaches, and the materials of the grade 8 curriculum in terms of the linguistic and technical competence of the teachers, readiness to implement, willingness to implement, and capability to make relevant adaptations; 3) to present essential demands on the successful and meaningful implementation of the grade 8 curriculum in terms of teacher-related factors, school-related factors, and student-related concerns.

Keywords: curriculum reforms, K-12, teacher-training, language teaching, learning

Procedia PDF Downloads 254
7843 Public Perception and Willingness to Undergo Cosmetic Procedures during COVID-19 Pandemic: A Questionnaire-Based Study Applied to Asymptomatic Individuals

Authors: Ibrahim Alreshidi, Aseel Albrekeit, Ruaa Alharthi

Abstract:

Background: As a result of the spread of COVID-19 at the beginning of 2020, many governments, including Saudi Arabia, have suspended operations in many agencies. Most dermatologists have restricted their practice, including cosmetic procedures, to ensure social distancing. On the 7th of May 2020, Saudi authorities reduced the restriction of COVID-19 virus preventative measures, allowing clinics to start accepting patients following the ministry of health protocols. Objectives: Evaluation of the public's perception and willingness to undergo cosmetic procedures during COVID-19 outbreaks in Saudi Arabia. Materials and methods: A descriptive, cross-sectional, questionnaire-based study was carried out among the individuals who lack typical symptoms of COVID-19 infection in Saudi Arabia. A self-designed web-based questionnaire was developed; content face validity and a pilot study were done. The questionnaire was distributed electronically from the 8th of May until the 31st of May 2020. Results: A total of 656 individuals who lack typical symptoms of COVID-19 infection were included in this analysis. Only 10.5% of participants expressed their will to do cosmetic procedures during the COVID-19 pandemic. More than 90% of the participants believed that the COVID-19 pandemic was either somewhat serious (52.9%) or very serious (38.7%). The willingness to do cosmetic procedures during the COVID-19 pandemic remained unaltered when the price was discounted (p<0.001) and when infection control measures were ensured (p<0.001). Conclusion: The COVID-19 pandemic had a negative impact on the practice of cosmetic dermatology. Fear of transferring the infection to a beloved home member is the main reason to avoid these procedures. Generating well-structured safety guidelines to decrease the risk of this unusual virus transmission in dermatology practice and creating financial incentives may help increase the public willingness to do these cosmetic procedures during this pandemic.

Keywords: COVID-19 pandemic, cosmetic procedures, questionnaire, dermatology

Procedia PDF Downloads 182
7842 Empathy in the Work of Physiotherapists in Slovakia

Authors: Vladimir Littva, Peter Kutis

Abstract:

Based on common practice, we know that an empathic approach to a patient is one of the characteristics of a physiotherapist. Although empathy is regarded as an essential condition of the psychotherapeutic relationship, it has taken quite a while for attention to be paid to it in clinical practice. Patients who are experiencing a sense of understanding from health care providers are more willing to cooperate, and treatment within the optimistic attunes a more comfortable framework of care. Age, experience, family, education and the working environment may have an impact on the degree of empathy for paramedics. Within the KEGA project no. 003KU-4-2021, we decided to investigate the level of empathy in the work of physiotherapists in Slovakia. Research sample and Methods: The sample comprised 194 respondents – physiotherapists working on the territory of Slovakia. 112 were men and 82 women. The age of respondents was between 21 and 64 years of age. 133 were married, 51 were single and ten were divorced. 98 were living in the countryside and 96 in towns. Twenty-two grew up without siblings, 95 with one sibling and 77 with two and more siblings. In the survey, we used the Empathy Assessment Questionnaire (EAQ) with 18 questions with four possible answers: strongly disagree, disagree, agree; and strongly agree, which we validated linguistically and psychometrically. All data were statistically processed by SPSS 25. Results: We evaluated the intrinsic reliability of the questionnaire EAQ using Cronbach's Alpha and the coefficient is 0.756 in the whole set. This means that the questionnaire is a quite strong and reliable measurement tool. The mean for individual questions ranged from 2.39 to 3.74 (maximum was 4). In Pearson's correlations, we confirmed the significant differences between the groups regarding sex in 8 questions out of 18, regarding age in 5 questions, regarding family status in 4 questions and regarding siblings in 4 questions out of 18 at the level 5% (p <0.05). Conclusion: The results obtained during the research show the importance of adequate communication with the patient due to his health and well-being. Empathy in the physiotherapists’ profession is very important. It would be worthwhile if the students of physiotherapy would receive a course during their study that would deal exclusively with empathy, empathic approach, burnout, or psycho-emotional hygiene.

Keywords: empathy, approach, clinical practice, physiotherapists

Procedia PDF Downloads 186
7841 Assessment of Heart Rate, Blood Pressure and Percentage Oxygen Saturation in Young Habitual Shisha Smokers in Kano, Nigeria

Authors: B. I. Waziri, M. A. Yahaya

Abstract:

Background: Practice of shisha smoking involves the use of a multi-stemmed instrument to smoke tobacco or non-tobacco herbal mixture where the smoke is designed to pass through water or other liquid before reaching the smoker. The presence of tobacco content and the use of charcoal when burning the ingredients in this popular practice necessitate for investigation of many physiological parameters of habitual shisha smokers in our environment. Methods: 103 young shisha smokers, regular in the practice for more than three years living in Nasarawa, Kano state, Nigeria, were recruited for the study. The controls were 100 university students (nonsmokers) match for age (18 - 30 years), sex and BMI (20 - 24) with the smokers. Participants with known history of cigarette smoking, cardiovascular or respiratory diseases were excluded. Ethical approval was obtained from the Ministry of Health, Kano Nigeria. Hear rate, blood pressure and percentage oxygen saturation (SPO₂) were measured using stethoscope, sphygmomanometer and pulse oximeter respectively. Data were analyzed using IBM SPSS version 20 and mean values of the measured parameters were compared between the smokers and controls using independent sample t-test. P-values < 0.05 were considered significant. Results: The mean Heart rate was found to be significantly higher (p = 0.01) in the shisha smokers (91.32 ± 0.84) compared to controls (79.19 ± 1.18). Systolic and diastolic blood pressure was also higher (p = 0.00) in the shisha smokers (128.75 ± 1.11 and 85.85 ± 0.78 respectively) compared to controls with the systolic and diastolic pressure of 116.64 ± 0.82 and 80.39 ± 0.83 respectively. SPO₂ was significantly lower (p = 0.00) in the shisha smokers (91.98% ± 0.42%) compared to the controls (97.98 ± 0.18). Conclusion: Habitual Shisha Smoking caused a significant increase in Heart rate, both systolic and diastolic blood pressure and a significant decrease in SPO2 among youth in Kano State, Nigeria.

Keywords: blood pressure, heart rate, shisha, youth

Procedia PDF Downloads 147
7840 Using Presentation as a Means to Develop Communication Skills of Engineering Students

Authors: Urvashi Kaushal

Abstract:

With the entry of multinationals in India, engineering students of Indian universities have opportunity to work with the best and the most innovative industries in the world, but in order to compete in the global job market, they require an added competence of communication skills in English. With work places turning global, competence in English can provide the Indian student the added advantage to begin his/her career in the international market. The present method of teaching English in any engineering college across Gujarat mostly concentrates on developing writing, and reading skills. Developing speech becomes a secondary topic owing to the old trend of lecturing in the class room and the huge strength of the class. This paper aims to highlight the importance of improving speaking skills of engineering students. It also insists that presentations can be used as a viable method to enhance the communication skills of these students. Presentations force students to plan, prepare, practice and perfect their communication skills which will enable them to get a foothold in the industry. The paper also discusses one such experiment carried out at the author’s institute and the response it received. Further, such experimental language learning approach is bound to have some limitations and obstacles. The paper suggests ways to overcome such limitations and strives to develop an interesting means of developing communication skills of the engineering students.

Keywords: engineering, English, presentation, communication skills

Procedia PDF Downloads 441
7839 The Impact of Student-Led Entrepreneurship Education through Skill Acquisition in Federal Polytechnic, Bida, Niger State, Nigeria

Authors: Ibrahim Abubakar Mikugi

Abstract:

Nigerian graduates could only be self-employed and marketable if they acquire relevant skills and knowledge for successful establishment in various occupation and gainful employment. Research has shown that entrepreneurship education will be successful through developing individual entrepreneurial attitudes, raising awareness of career options by integrating and inculcating a positive attitude in the mind of students through skill acquisition. This paper examined the student- led entrepreneurship education through skill acquisition with specific emphasis on analysis of David Kolb experiential learning cycle. This Model allows individual to review their experience through reflection and converting ideas into action by doing. The methodology used was theoretical approach through journal, internet and Textbooks. Challenges to entrepreneurship education through skill acquisition were outlined. The paper concludes that entrepreneurship education is recognised by both policy makers and academics; entrepreneurship is more than mere encouraging business start-ups. Recommendations were given which include the need for authorities to have a clear vision towards entrepreneurship education and skill acquisition. Authorities should also emphasise a periodic and appropriate evaluation of entrepreneurship and to also integrate into schools academic curriculum to encourage practical learning by doing.

Keywords: entrepreneurship, entrepreneurship education, active learning, Cefe methodology

Procedia PDF Downloads 521
7838 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R

Procedia PDF Downloads 379
7837 The Intersection of Artificial Intelligence and Mathematics

Authors: Mitat Uysal, Aynur Uysal

Abstract:

Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.

Keywords: AI, mathematics, machine learning, optimization techniques, image processing

Procedia PDF Downloads 16
7836 The Mediating Role of Masculine Gender Role Stress on the Relationship between the EFL learners’ Self-Disclosure and English Class Anxiety

Authors: Muhammed Kök & Adem Kantar

Abstract:

Learning a foreign language can be affected by various factors such as age, aptitude, motivation, L2 disposition, etc. Among these factors, masculine gender roles stress (MGRS) that male learners possess is the least touched area that has been examined so far.MGRS can be defined as the traditional male role stress when the male learners feel the masculinity threat against their traditionally adopted masculinity norms. Traditional masculine norms include toughness, accuracy, completeness, and faultlessness. From this perspective, these norms are diametrically opposed to the language learning process since learning a language, by its nature, involves stages such as making mistakes and errors, not recalling words, pronouncing sounds incorrectly, creating wrong sentences, etc. Considering the potential impact of MGRS on the language learning process, the main purpose of this study is to investigate the mediating role of MGRS on the relationship between the EFL learners’ self-disclosure and English class anxiety. Data were collected from Turkish EFL learners (N=282) who study different majors in various state universities across Turkey. Data were analyzed by means of the Bootstraping method using the SPSS Process Macro plugin. The findings show that the indirect effect of self-disclosure level on the English Class Anxiety via MGRS was significant. We conclude that one of the reasons why Turkish EFL learners have English class anxiety might be the pressure that they feel because of their traditional gender role stress.

Keywords: masculine, gender role stress, english class anxiety, self-disclosure, masculinity norms

Procedia PDF Downloads 98
7835 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay

Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira

Abstract:

Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.

Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO

Procedia PDF Downloads 264
7834 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion

Authors: Swarna Pundir, Prabuddha Hans

Abstract:

As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved.

Keywords: AI, ML, DL, ANN

Procedia PDF Downloads 98
7833 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 21
7832 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 115
7831 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: fall detection, machine learning, deep learning, pose estimation, tracking

Procedia PDF Downloads 189
7830 The Pursuit of Marital Sustainability Inspiring by Successful Matrimony of Two Distinguishable Indonesian Ethnics as a Learning Process

Authors: Mutiara Amalina Khairisa, Purnama Arafah, Rahayu Listiana Ramli

Abstract:

In recent years, so many cases of divorce increasingly occur. Betrayal in form of infidelity, less communication one another, economically problems, selfishness of two sides, intervening parents from both sides which frequently occurs in Asia, especially in Indonesia, the differences of both principles and beliefs, “Sense of Romantism” depletion, role confict, a large difference in the purpose of marriage,and sex satisfaction are expected as the primary factors of the causes of divorce. Every couple of marriage wants to reach happy life in their family but severe problems brought about by either of those main factors come as a reasonable cause of failure marriage. The purpose of this study is to find out how marital adjustment and supporting factors in ensuring the success of that previous marital adjusment are inseparable two things assumed as a framework can affect the success in marriage becoming a resolution to reduce the desires to divorce. Those two inseparable things are able to become an aspect of learning from the success of the different ethnics marriage to keep holding on wholeness.

Keywords: marital adjustment, marital sustainability, learning process, successful ethnicity differences marriage, basical cultural values

Procedia PDF Downloads 432
7829 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder

Authors: Yu-Chi Chou

Abstract:

The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.

Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation

Procedia PDF Downloads 66
7828 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 183
7827 Integrating Artificial Intelligence in Social Work Education: An Exploratory Study

Authors: Nir Wittenberg, Moshe Farhi

Abstract:

This mixed-methods study examines the integration of artificial intelligence (AI) tools in a first-year social work course to assess their potential for enhancing professional knowledge and skills. The incorporation of digital technologies, such as AI, in social work interventions, training, and research has increased, with the expectation that AI will become as commonplace as email and mobile phones. However, policies and ethical guidelines regarding AI, as well as empirical evaluations of its usefulness, are lacking. As AI is gradually being adopted in the field, it is prudent to explore AI thoughtfully in alignment with pedagogical goals. The outcomes assessed include professional identity, course satisfaction, and motivation. AI offers unique reflective learning opportunities through personalized simulations, feedback, and queries to complement face-to-face lessons. For instance, AI simulations provide low-risk practices for situations such as client interactions, enabling students to build skills with less stress. However, it is essential to recognize that AI alone cannot ensure real-world competence or cultural sensitivity. Outcomes related to student learning, experience, and perceptions will help to elucidate the best practices for AI integration, guiding faculty, and advancing pedagogical innovation. This strategic integration of selected AI technologies is expected to diversify course methodology, improve learning outcomes, and generate new evidence on AI’s educational utility. The findings will inform faculty seeking to thoughtfully incorporate AI into teaching and learning.

Keywords: artificial intelligence (AI), social work education, students, developing a professional identity, ethical considerations

Procedia PDF Downloads 79
7826 Educational Audit and Curricular Reforms in the Arabian Context

Authors: Irum Naz

Abstract:

In the Arabian higher education context, linguistic proficiency in the English language is considered crucial for the developmental sustainability, economic growth, and stability of communities and societies. Qatar’s educational reforms package, through the 2030 vision, identifies the acquisition of English at K-12 as an essential survival communication tool for globalization, believing that Qatari students need better preparation to take on the responsibilities of leadership and to participate effectively in the country’s surging economy. The idea of introducing Qatari students to modern curricula benchmarked to high-student-performance curricula in developed countries is one of the components of reformatory design principles of Education for New Era reform project that is mutually consented to and supported by the Office of Shared Services, Communications Office, and Supreme Education Council. In appreciation of the government’s vision, the English Language Centre (ELC) at the Community College of Qatar ran an internal educational audit and conducted evaluative research to understand and appraise the value, impact, and practicality of the existing ELC language development program. This study sought to identify the type of change that could identify and improve the quality of Foundation Program courses and the manners in which second language learners could be assisted to transit smoothly between (ELC) levels. Following the interpretivist paradigm and mixed research method, the data was gathered through a bicyclic research model and a triangular design. The analyses of the data suggested that there was a need for improvement in the ELC program as a whole, and particularly in terms of curriculum, student learning outcomes, and the general learning environment in the department. Key findings suggest that the target program would benefit from significant revisions, which would include narrowing the focus of the courses, providing sets of specific learning objectives, and preventing repetition between levels. Another promising finding was about the assessment tools and process. The data suggested that a set of standardized assessments that more closely suited the programs of study should be devised. It was also recommended that students undergo a more comprehensive placement process to ensure that they begin the program at an appropriate level and get the maximum benefit from their learning experience. Although this ties into the idea of curriculum revamp, it was expected that students could leave the ELC having had exposure to courses in English for specific purposes. The idea of a more reliable exit assessment for students was raised frequently so ELC could regulate itself and ensure optimum learning outcomes. Another important recommendation was the provision of a Student Learning Center for students that would help them to receive personalized tuition, differentiated instruction, and self-driven and self-evaluated learning experience. In addition, an extra study level was recommended to be added to the program to accommodate the different levels of English language proficiency represented among ELC students. The evidence collected in the course of conducting the study suggests that significant change is needed in the structure of the ELC program, specifically about curriculum, the program learning outcomes, and the learning environment in general.

Keywords: educational audit, ESL, optimum learning outcomes, Qatar’s educational reforms, self-driven and self-evaluated learning experience, Student Learning Center

Procedia PDF Downloads 185
7825 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model

Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano

Abstract:

Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.

Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology

Procedia PDF Downloads 135
7824 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning

Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü

Abstract:

This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.

Keywords: automotive, chassis level control, control systems, pneumatic system control

Procedia PDF Downloads 81
7823 Students’ Motivation, Self-Determination, Test Anxiety and Academic Engagement

Authors: Shakirat Abimbola Adesola, Shuaib Akintunde Asifat, Jelili Olalekan Amoo

Abstract:

This paper presented the impact of students’ emotions on learning when receiving lectures and when taking tests. It was observed that students experience different types of emotions during the study, and this was found to have a significant effect on their academic performance. A total of one thousand six hundred and seventy-five (1675) students from the department of Computer Science in two Colleges of Education in South-West Nigeria took part in this study. The students were randomly selected for the research. Sample comprises of 968 males representing 58%, and 707 females representing 42%. A structured questionnaire, of Motivated Strategies for Learning Questionnaire (MSLQ) was distributed to the participants to obtain their opinions. Data gathered were analyzed using the IBM SPSS 20 to obtain ANOVA, descriptive analysis, stepwise regression, and reliability tests. The results revealed that emotion moderately shape students’ motivation and engagement in learning; and that self-regulation and self-determination do have significant impact on academic performance. It was further revealed that test anxiety has a significant correlation with academic performance.

Keywords: motivation, self-determination, test anxiety, academic performance, and academic engagement

Procedia PDF Downloads 83
7822 Evidence Based Medicine: Going beyond Improving Physicians Viewpoints, Usage and Challenges Upcoming

Authors: Peyman Rezaei Hachesu, Vahideh Zareh Gavgani, Zahra Salahzadeh

Abstract:

To survey the attitudes, awareness, and practice of Evidence Based Medicine (EBM), and to determine the barriers that influence apply’ EBM in therapeutic process among clinical residents in Iran.We conducted a cross sectional survey during September to December 2012 at the teaching hospitals of Tehran University of Medical Sciences among 79 clinical residents from different medical specialties. A valid and reliable questionnaire consisted of five sections and 27 statements were used in this research. We applied Spearman and Mann Whitney test for correlation between variables. Findings showed that the knowledge of residents about EBM is low. Their attitude towards EBM was positive but their knowledge and skills in regard with the evidence based medical information resources were mostly limited to PubMed and Google scholar. The main barrier was the lack of enough time to practicing EBM. There was no significant correlation between residency grade and familiarity and use of electronic EBM resources (Spearman, P = 0.138). Integration of training approaches like journal clubs or workshops with clinical practice is suggested.

Keywords: evidence-based medicine, clinical residents, decision-making, attitude, questionnaire

Procedia PDF Downloads 376