Search results for: non linear dynamic analysis
29216 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 47329215 Engineering Analysis for Fire Safety Using Computational Fluid Dynamic (CFD)
Authors: Munirajulu M, Srikanth Modem
Abstract:
A large cricket stadium with the capacity to accommodate several thousands of spectators has the seating arena consisting of a two-tier arrangement with an upper and a lower bowl and an intermediate concourse podium level for pedestrian movement to access the bowls. The uniqueness of the stadium is that spectators can have an unobstructed view from all around the podium towards the field of play. Upper and lower bowls are connected by stairs. The stairs landing is a precast slab supported by cantilevered steel beams. These steel beams are fixed to precast columns supporting the stadium structure. The stair slabs are precast concrete supported on a landing slab and cantilevered steel beams. During an event of a fire at podium level between two staircases, fire resistance of steel beams is very critical to life safety. If the steel beam loses its strength due to lack of fire resistance, it will be weak in supporting stair slabs and may lead to a hazard in evacuating occupants from the upper bowl to the lower bowl. In this study, to ascertain fire rating and life safety, a performance-based design using CFD analysis is used to evaluate the steel beams' fire resistance. A fire size of 3.5 MW (convective heat output of fire) with a wind speed of 2.57 m/s is considered for fire and smoke simulation. CFD results show that the smoke temperature near the staircase/ around the staircase does not exceed 1500 C for the fire duration considered. The surface temperature of cantilevered steel beams is found to be less than or equal to 1500 C. Since this temperature is much less than the critical failure temperature of steel (5200 C), it is concluded that the design of structural steel supports on the staircase is adequate and does not need additional fire protection such as fire-resistant coating. CFD analysis provided an engineering basis for the performance-based design of steel structural elements and an opportunity to optimize fire protection requirements. Thus, performance-based design using CFD modeling and simulation of fire and smoke is an innovative way to evaluate fire rating requirements, ascertain life safety and optimize the design with regard to fire protection on structural steel elements.Keywords: fire resistance, life safety, performance-based design, CFD analysis
Procedia PDF Downloads 19229214 Load Comparison between Different Positions during Elite Male Basketball Games: A Sport Metabolomics Approach
Authors: Kayvan Khoramipour, Abbas Ali Gaeini, Elham Shirzad, Øyvind Sandbakk
Abstract:
Basketball has different positions with individual movement profiles, which may influence metabolic demands. Accordingly, the present study aimed to compare the movement and metabolic load between different positions during elite male basketball games. Five main players of 14 teams (n = 70), who participated in the 2017-18 Iranian national basketball leagues, were selected as participants. The players were defined as backcourt (Posts 1-3) and frontcourt (Posts 4-5). Video based time motion analysis (VBTMA) was performed based on players’ individual running and shuffling speed using Dartfish software. Movements were classified into high and low intensity running with and without having the ball, as well as high and low-intensity shuffling and static movements. Mean frequency, duration, and distance were calculated for each class, except for static movements where only frequency was calculated. Saliva samples were collected from each player before and after 40-minute basketball games and analyzed using metabolomics. Principal component analysis (PCA) and Partial least square discriminant analysis (PLSDA) (for metabolomics data) and independent T-tests (for VBTMA) were used as statistical tests. Movement frequency, duration, and distance were higher in backcourt players (all p ≤ 0.05), while static movement frequency did not differ. Saliva samples showed that the levels of Taurine, Succinic acid, Citric acid, Pyruvate, Glycerol, Acetoacetic acid, Acetone, and Hypoxanthine were all higher in backcourt players, whereas Lactate, Alanine, 3-Metyl Histidine, and Methionine were higher in frontcourt players Based on metabolomics, we demonstrate that backcourt and frontcourt players have different metabolic profiles during games, where backcourt players move clearly more during games and therefore rely more on aerobic energy, whereas frontcourt players rely more on anaerobic energy systems in line with less dynamic but more static movement patterns.Keywords: basketball, metabolomics, saliva, sport loadomics
Procedia PDF Downloads 11629213 Social Identification among Employees: A System Dynamic Approach
Authors: Muhammad Abdullah, Salman Iqbal, Mamoona Rasheed
Abstract:
Social identity among people is an important source of pride and self-esteem, consequently, people struggle to preserve a positive perception of their groups and collectives. The purpose of this paper is to explain the process of social identification and to highlight the underlying causal factors of social identity among employees. There is a little research about how the social identity of employees is shaped in Pakistan’s organizational culture. This study is based on social identity theory. This study uses Systems’ approach as a research methodology. The feedback loop approach is applied to explain the underlying key elements of employee behavior that collectively form social identity among social groups in corporate arena. The findings of this study reveal that effective, evaluative and cognitive components of an individual’s personality are associated with the social identification. The system dynamic feedback loop approach has revealed the underlying structure that is associated with social identity, social group formation, and effective component proved to be the most associated factor. This may also enable to understand how social groups become stable and individuals act according to the group requirements. The value of this paper lies in the understanding gained about the underlying key factors that play a crucial role in social group formation in organizations. It may help to understand the rationale behind how employees socially categorize themselves within organizations. It may also help to design effective and more cohesive teams for better operations and long-term results. This may help to share knowledge among employees as well. The underlying structure behind the social identification is highlighted with the help of system modeling.Keywords: affective commitment, cognitive commitment, evaluated commitment, system thinking
Procedia PDF Downloads 13729212 Development and Validation of a Rapid Turbidimetric Assay to Determine the Potency of Cefepime Hydrochloride in Powder Injectable Solution
Authors: Danilo F. Rodrigues, Hérida Regina N. Salgado
Abstract:
Introduction: The emergence of resistant microorganisms to a large number of clinically approved antimicrobials has been increasing, which restrict the options for the treatment of bacterial infections. As a strategy, drugs with high antimicrobial activities are in evidence. Stands out a class of antimicrobial, the cephalosporins, having as fourth generation cefepime (CEF) a semi-synthetic product which has activity against various Gram-positive bacteria (e.g. oxacillin resistant Staphylococcus aureus) and Gram-negative (e.g. Pseudomonas aeruginosa) aerobic. There are few studies in the literature regarding the development of microbiological methodologies for the analysis of this antimicrobial, so researches in this area are highly relevant to optimize the analysis of this drug in the industry and ensure the quality of the marketed product. The development of microbiological methods for the analysis of antimicrobials has gained strength in recent years and has been highlighted in relation to physicochemical methods, especially because they make possible to determine the bioactivity of the drug against a microorganism. In this context, the aim of this work was the development and validation of a microbiological method for quantitative analysis of CEF in powder lyophilized for injectable solution by turbidimetric assay. Method: For performing the method, Staphylococcus aureus ATCC 6538 IAL 2082 was used as the test microorganism and the culture medium chosen was the Casoy broth. The test was performed using temperature control (35.0 °C ± 2.0 °C) and incubated for 4 hours in shaker. The readings of the results were made at a wavelength of 530 nm through a spectrophotometer. The turbidimetric microbiological method was validated by determining the following parameters: linearity, precision (repeatability and intermediate precision), accuracy and robustness, according to ICH guidelines. Results and discussion: Among the parameters evaluated for method validation, the linearity showed results suitable for both statistical analyses as the correlation coefficients (r) that went 0.9990 for CEF reference standard and 0.9997 for CEF sample. The precision presented the following values 1.86% (intraday), 0.84% (interday) and 0.71% (between analyst). The accuracy of the method has been proven through the recovery test where the mean value obtained was 99.92%. The robustness was verified by the parameters changing volume of culture medium, brand of culture medium, incubation time in shaker and wavelength. The potency of CEF present in the samples of lyophilized powder for injectable solution was 102.46%. Conclusion: The turbidimetric microbiological method proposed for quantification of CEF in lyophilized powder for solution for injectable showed being fast, linear, precise, accurate and robust, being in accordance with all the requirements, which can be used in routine analysis of quality control in the pharmaceutical industry as an option for microbiological analysis.Keywords: cefepime hydrochloride, quality control, turbidimetric assay, validation
Procedia PDF Downloads 36229211 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 33029210 Comparing the Trophic Structure of the Moroccan Mediterranean Sea with the Moroccan Atlantic Coast Using Ecopath Model
Authors: Salma Aboussalam, Karima Khalil, Khalid Elkalay
Abstract:
To describe the structure, functioning, and state of the Moroccan Mediterranean Sea ecosystem, an Ecopath mass balance model has been applied. The model is based on 31 functional groups, containing 21 fishes, 7 invertebrates, 2 primary producers, and one dead group (detritus), which are considered in this work to explore the trophic interaction. The system's average trophic transfer efficiency was 23%. Both the total primary production and total respiration were calculated to be >1, suggesting that more energy is produced than respired in the system. The structure of our system is based on high respiration and consumption flows. Indicators of ecosystem stability and development showed low values of the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), suggesting that our system is disturbed and has a more linear than web-like trophic structure. The keystone index and mixed trophic impact analysis indicated that other demersal invertebrates, zooplankton, and cephalopods had a tremendous impact on other groups and were recognized as keystone species.Keywords: Ecopath, food web, trophic flux, Moroccan Mediterranean Sea
Procedia PDF Downloads 9129209 Subway Stray Current Effects on Gas Pipelines in the City of Tehran
Authors: Mohammad Derakhshani, Saeed Reza Allahkarama, Michael Isakhani-Zakaria, Masoud Samadian, Hojjat Sharifi Rasaey
Abstract:
In order to investigate the effects of stray current from DC traction systems (subway) on cathodically protected gas pipelines, the subway and the gas network maps in the city of Tehran were superimposed and a comprehensive map was prepared. 213 intersections and about 100150 meters of parallel sections of gas pipelines were found with respect to the railway right of way which was specified for field measurements. The potential measurements data were logged for one hour in each test point. 24-hour potential monitoring was carried out in selected test points as well. Results showed that dynamic stray current from subway on pipeline potential appears as fluctuations in its static potential that is visible in the diagrams during night periods. These fluctuations can cause the pipeline potential to exit the safe zone and lead to corrosion or overprotection. In this study, a maximum potential shift of 100 mv in the pipe-to-soil potential was considered as a criterion for dynamic stray current effective presence. Results showed that a potential fluctuation range between 100 mV to 3 V exists in measured points on pipelines which exceeds the proposed criterion and needs to be investigated. Corrosion rates influenced by stray currents were calculated using coupons. Results showed that coupon linked to the pipeline in one of the locations at region 1 of the city of Tehran has a corrosion rate of 4.2 mpy (with cathodic protection and under influence of stray currents) which is about 1.5 times more than free corrosion rate of 2.6 mpy.Keywords: stray current, DC traction, subway, buried Pipelines, cathodic protection list
Procedia PDF Downloads 82229208 Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes
Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari
Abstract:
In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL.Keywords: surface modification, layer-by-layer technique, weak polyelectrolytes, adsorption-desorption behavior
Procedia PDF Downloads 6429207 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 12229206 Retrospective Cartography of Tbilisi and Surrounding Area
Authors: Dali Nikolaishvili, Nino Khareba, Mariam Tsitsagi
Abstract:
Tbilisi has been a capital of Georgia since the 5ᵗʰ century. City area was covered by forest in historical past. Nowadays the situation has been changing dramatically. Dozens of problems are caused by damages/destruction of green cover and solution, at one glance, seems to be uncomplicated (planting trees and creating green quarters), but on the other hand, according to the increasing tendency, the built up of areas still remains unsolved. Finding out the ways to overcome such obstacles is important even for protecting the health of society. Making of Retrospective cartography of the forest area of Tbilisi with use of GIS technology and remote sensing was the main aim of the research. Research about the dynamic of forest-cover in Tbilisi and its surroundings included the following steps: assessment of the dynamic of forest in Tbilisi and its surroundings. The survey was mainly based on the retrospective mapping method. Using of GIS technology, studying, comparing and identifying the narrative sources was the next step. And the last one was analyzed of the changes from the 80s to the present days on the basis of decryption of remotely sensed images. After creating a unified cartographic basis, the mapping and plans of different periods have been linked to this geodatabase. Data about green parks, individual old plants existing in the private yards and respondents' Information (according to a questionnaire created in advance) was added to the basic database, the general plan of Tbilisi and Scientific works as well. On the basis of analysis of historic, including cartographic sources, forest-cover maps for different periods of time were made. In addition, was made the catalog of individual green parks (location, area, typical composition, name and so on), which was the basis of creating several thematic maps. Areas with a high rate of green area degradation were identified. Several maps depicting the dynamics of forest cover of Tbilisi were created and analyzed. The methods of linking the data of the old cartographic sources to the modern basis were developed too, the result of which may be used in Urban Planning of Tbilisi. Understanding, perceiving and analyzing the real condition of green cover in Tbilisi and its problems, in turn, will help to take appropriate measures for the maintenance of ancient plants, to develop forests and to plan properly parks, squares, and recreational sites. Because the healthy environment is the main condition of human health and implies to the rational development of the city.Keywords: catalogue of green area, GIS, historical cartography, cartography, remote sensing, Tbilisi
Procedia PDF Downloads 13729205 Simultaneous Determination of p-Phenylenediamine, N-Acetyl-p-phenylenediamine and N,N-Diacetyl-p-phenylenediamine in Human Urine by LC-MS/MS
Authors: Khaled M. Mohamed
Abstract:
Background: P-Phenylenediamine (PPD) is used in the manufacture of hair dyes and skin decoration. In some developing countries, suicidal, homicidal and accidental cases by PPD were recorded. In this work, a sensitive LC-MS/MS method for determination of PPD and its metabolites N-acetyl-p-phenylenediamine (MAPPD) and N,N-diacetyl-p-phenylenediamine (DAPPD) in human urine has been developed and validated. Methods: PPD, MAPPD and DAPPD were extracted from urine by methylene chloride at alkaline pH. Acetanilide was used as internal standard (IS). The analytes and IS were separated on an Eclipse XDB- C18 column (150 X 4.6 mm, 5 µm) using a mobile phase of acetonitrile-1% formic acid in gradient elution. Detection was performed by LC-MS/MS using electrospray positive ionization under multiple reaction-monitoring mode. The transition ions m/z 109 → 92, m/z 151 → 92, m/z 193 → 92, and m/z 136 → 77 were selected for the quantification of PPD, MAPPD, DAPPD, and IS, respectively. Results: Calibration curves were linear in the range 10–2000 ng/mL for all analytes. The mean recoveries for PPD, MAPPD and DAPPD were 57.62, 74.19 and 50.99%, respectively. Intra-assay and inter-assay imprecisions were within 1.58–9.52% and 5.43–9.45% respectively for PPD, MAPPD and DAPPD. Inter-assay accuracies were within -7.43 and 7.36 for all compounds. PPD, MAPPD and DAPPD were stable in urine at –20 degrees for 24 hours. Conclusions: The method was successfully applied to the analysis of PPD, MAPPD and DAPPD in urine samples collected from suicidal cases.Keywords: p-Phenylenediamine, metabolites, urine, LC-MS/MS, validation
Procedia PDF Downloads 35529204 Adding a Degree of Freedom to Opinion Dynamics Models
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 11929203 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 12829202 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures
Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu
Abstract:
The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.Keywords: electron beam irradiation, EPDM rubber, crosslinking density, gel fraction
Procedia PDF Downloads 15529201 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 12829200 The Effect of Tax Avoidance on Firm Value: Evidence from Amman Stock Exchange
Authors: Mohammad Abu Nassar, Mahmoud Al Khalilah, Hussein Abu Nassar
Abstract:
The purpose of this study is to examine whether corporate tax avoidance practices can impact firm value in the Jordanian context. The study employs a quantitative approach using s sample of (124) industrial and services companies listed on the Amman Stock Exchange for the period from 2010 to 2019. Multiple linear regression analysis has been applied to test the study's hypothesis. The study employs effective tax rate and book-tax difference to measure tax avoidance and Tobin's Q factor to measure firm value. The results of the study revealed that tax avoidance practices, when measured using effective tax rates, do not significantly impact firm value. When the book-tax difference is used to measure tax avoidance, the study results showed a negative impact on firm value. The result of the study has not supported the traditional view of tax avoidance as a transfer of wealth from the government to shareholders for industrial and services companies listed on the Amman Stock Exchange, indicating that Jordanian firms should not use tax avoidance strategies to enhance their value.Keywords: tax avoidance, effective tax rate, book-tax difference, firm value, Amman stock exchange
Procedia PDF Downloads 16529199 Rheological and Microstructural Characterization of Concentrated Emulsions Prepared by Fish Gelatin
Authors: Helen S. Joyner (Melito), Mohammad Anvari
Abstract:
Concentrated emulsions stabilized by proteins are systems of great importance in food, pharmaceutical and cosmetic products. Controlling emulsion rheology is critical for ensuring desired properties during formation, storage, and consumption of emulsion-based products. Studies on concentrated emulsions have focused on rheology of monodispersed systems. However, emulsions used for industrial applications are polydispersed in nature, and this polydispersity is regarded as an important parameter that also governs the rheology of the concentrated emulsions. Therefore, the objective of this study was to characterize rheological (small and large deformation behaviors) and microstructural properties of concentrated emulsions which were not truly monodispersed as usually encountered in food products such as margarines, mayonnaise, creams, spreads, and etc. The concentrated emulsions were prepared at different concentrations of fish gelatin (0.2, 0.4, 0.8% w/v in the whole emulsion system), oil-water ratio 80-20 (w/w), homogenization speed 10000 rpm, and 25oC. Confocal laser scanning microscopy (CLSM) was used to determine the microstructure of the emulsions. To prepare samples for CLSM analysis, FG solutions were stained by Fluorescein isothiocyanate dye. Emulsion viscosity profiles were determined using shear rate sweeps (0.01 to 100 1/s). The linear viscoelastic regions (LVRs) of the emulsions were determined using strain sweeps (0.01 to 100% strain) for each sample. Frequency sweeps were performed in the LVR (0.1% strain) from 0.6 to 100 rad/s. Large amplitude oscillatory shear (LAOS) testing was conducted by collecting raw waveform data at 0.05, 1, 10, and 100% strain at 4 different frequencies (0.5, 1, 10, and 100 rad/s). All measurements were performed in triplicate at 25oC. The CLSM results revealed that increased fish gelatin concentration resulted in more stable oil-in-water emulsions with homogeneous, finely dispersed oil droplets. Furthermore, the protein concentration had a significant effect on emulsion rheological properties. Apparent viscosity and dynamic moduli at small deformations increased with increasing fish gelatin concentration. These results were related to increased inter-droplet network connections caused by increased fish gelatin adsorption at the surface of oil droplets. Nevertheless, all samples showed shear-thinning and weak gel behaviors over shear rate and frequency sweeps, respectively. Lissajous plots, or plots of stress versus strain, and phase lag values were used to determine nonlinear behavior of the emulsions in LAOS testing. Greater distortion in the elliptical shape of the plots followed by higher phase lag values was observed at large strains and frequencies in all samples, indicating increased nonlinear behavior. Shifts from elastic-dominated to viscous dominated behavior were also observed. These shifts were attributed to damage to the sample microstructure (e.g. gel network disruption), which would lead to viscous-type behaviors such as permanent deformation and flow. Unlike the small deformation results, the LAOS behavior of the concentrated emulsions was not dependent on fish gelatin concentration. Systems with different microstructures showed similar nonlinear viscoelastic behaviors. The results of this study provided valuable information that can be used to incorporate concentrated emulsions in emulsion-based food formulations.Keywords: concentrated emulsion, fish gelatin, microstructure, rheology
Procedia PDF Downloads 27529198 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution
Authors: P. Zarfam, M. Mansouri Baghbaderani
Abstract:
In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution
Procedia PDF Downloads 24629197 Kinematics and Dynamics Analysis of Crank-Piston System of a High-Power, Nine-Cylinder Aircraft Engine
Authors: Michal Biały, Konrad Pietrykowski, Rafal Sochaczewski
Abstract:
The kinematics and dynamics analysis of crank-piston system of aircraft engine. The object of the study was the high power aircraft engine ASz 62-IR. This engine is produced by a Polish company WSK "PZL-KALISZ" S.A.". All analyzes were performed numerically using CAD and CAE environment. Three-dimensional model of the crank-piston system was developed based on real engine located in the Laboratory of Centre of Innovation and Advanced Technologies of Lublin University of Technology. During the development of the model, the technique of reverse engineering - 3D scanning was used. ASz 62-IR engine is characterized by a radial type of crank-piston system. In this system the cylinders are arranged radially around the circle. This crank-piston system consists of a main connecting rod and eight additional connecting rods. In addition, three-dimensional model consists of a piston pins, pistons and piston rings. As a result of the specific engine design, characteristics of the piston individual movement are slightly different from each other. But the model assumes that they are the same during the analysis. Three-dimensional model of the engine was implemented into the MSC Adams software. The environment of MSC Adams allows for multibody simulation of the dynamic phenomena. This determines the state parameters of the moving elements, among which the load or force distribution on each kinematic node can be distinguished. Materials and characteristic materials parameters were adopted on the basis of commonly used materials for engine parts. The mass values of individual elements were adopted on the basis of real engine parts. The piston gas forces were replaced by calculation of pressure variations recorded during engine tests on the engine test bench. The research the changes of forces acting in the individual kinematic pairs of crank-piston system. The model allows to determine the load on the crankshaft main bearings. This gives the possibility for the main supports forces analysis The model allows for testing and simulation of kinematics and dynamics of a radial aircraft engine. This is the first stage of the work, which aims to numerical simulation of vibration of multi-cylinder aircraft engine. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: aircraft engine, CAD, CAE, dynamics, kinematics, MSC Adams, numerical simulation
Procedia PDF Downloads 38929196 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 9929195 The Intonation of Romanian Greetings: A Sociolinguistics Approach
Authors: Anca-Diana Bibiri, Mihaela Mocanu, Adrian Turculeț
Abstract:
In a language the inventory of greetings is dynamic with frequent input and output, although this is hardly noticed by the speakers. In this register, there are a number of constant, conservative elements that survive different language models (among them, the classic formulae: bună ziua! (good afternoon!), bună seara! (good evening!), noapte bună! (good night!), la revedere! (goodbye!) and a number of items that fail to pass the test of time, according to language use at a time (ciao!, pa!, bai!). The source of innovation depends both of internal factors (contraction, conversion, combination of classic formulae of greetings), and of external ones (borrowings and calques). Their use imposes their frequencies at once, namely the elimination of the use of others. This paper presents a sociolinguistic approach of contemporary Romanian greetings, based on prosodic surveys in two research projects: AMPRom, and SoRoEs. Romanian language presents a rich inventory of questions (especially partial interrogatives questions/WH-Q) which are used as greetings, alone or, more commonly accompanying a proper greeting. The representative of the typical formulae is Ce mai faci? (How are you?), which, unlike its English counterpart How do you do?, has not become a stereotype, but retains an obvious emotional impact, while serving as a mark of sociolinguistic group. The analyzed corpus consists of structures containing greetings recorded in the main Romanian cultural (urban) centers. From the methodological point of view, the acoustic analysis of the recorded data is performed using software tools (GoldWave, Praat), identifying intonation patterns related to three sociolinguistics variables: age, sex and level of education. The intonation patterns of the analyzed statements are at the interface between partial questions and typical greetings.Keywords: acoustic analysis, greetings, Romanian language, sociolinguistics
Procedia PDF Downloads 33729194 Media Representation of Romanian Migrants in the Italian Media: A Comparative Study
Authors: Paula-Catalina Meirosu
Abstract:
The economic migration (intra-EU) is a topic of debate in the public space in both countries of origin and countries of destination. Since the 1990s, after the collapse of communist regimes and then the accession of some former communist countries to the EU, the migratory flows of migrants (including Romanian migrants) to EU countries has been increased constantly. Italy is one of the main countries of destination among Romanians since at the moment Italy hosts more than one million Romanian migrants. Based on an interdisciplinary analytical framework focused on the theories in the field of transnationalism, media and migration studies and critical media analysis, this paper investigates the media construction of intra-EU economic migration in the Italian press from two main perspectives. The first point of view is the media representation of Romanian migrants in the Italian press in a specific context: the EU elections in 2014. The second one explores the way in which Romanian journalists use the media in the destinations countries (such as Italy) as a source to address the issue of migration. In this context, the paper focuses on online articles related to the Romanian migrants’ representation in the media before and during the EU elections in two newspapers (La Repubblica from Italy and Adevarul from Romania), published during January-May 2014. The methodology is based on a social-constructivist approach, predominantly discursive and includes elements of critical discourse analysis (CDA) to identify the patterns of Romanian migrants in the Italian press as well as strategies for building categories, identities, and roles of migrants. The aim of such an approach is to find out the dynamic of the media discourse on migration from a destination country in the light of a European electoral context (EU elections) and based on the results, to propose scenarios for the elections to be held this year.Keywords: migration, media discourse, Romanian migrants, transnationalism
Procedia PDF Downloads 13429193 Analysis of Diabetes Patients Using Pearson, Cost Optimization, Control Chart Methods
Authors: Devatha Kalyan Kumar, R. Poovarasan
Abstract:
In this paper, we have taken certain important factors and health parameters of diabetes patients especially among children by birth (pediatric congenital) where using the above three metrics methods we are going to assess the importance of each attributes in the dataset and thereby determining the most highly responsible and co-related attribute causing diabetics among young patients. We use cost optimization, control chart and Spearmen methodologies for the real-time application of finding the data efficiency in this diabetes dataset. The Spearmen methodology is the correlation methodologies used in software development process to identify the complexity between the various modules of the software. Identifying the complexity is important because if the complexity is higher, then there is a higher chance of occurrence of the risk in the software. With the use of control; chart mean, variance and standard deviation of data are calculated. With the use of Cost optimization model, we find to optimize the variables. Hence we choose the Spearmen, control chart and cost optimization methods to assess the data efficiency in diabetes datasets.Keywords: correlation, congenital diabetics, linear relationship, monotonic function, ranking samples, pediatric
Procedia PDF Downloads 25629192 Formation of Nanochannels by Heavy Ions in Graphene Oxide Reinforced Carboxymethylcellulose Membranes for Proton Exchange Membrane Fuel Cells Applications
Authors: B. Kurbanova, M. Karibayev, N. Almas, K. Ospanov, K. Aimaganbetov, T. Kuanyshbekov, K. Akatan, S. Kabdrakhmanova
Abstract:
Proton exchange membranes (PEMs) operating at high temperatures above 100 °C with the excellent mechanical, chemical and thermochemical stability have been received much attention, because of their practical application of proton exchange membrane fuel cells (PEMFCs). Nowadays, a huge number of polymers and polymer-mixed various membranes have been investigated for this application, all of which offer both pros and cons. However, PEMFCs are still lack of ideal membranes with unique properties. In this work, carboxymethylcellulose (CMC) based membranes with dispersive graphene oxide (GO) sheets were fabricated and investigated for PEMFCs application. These membranes and pristine GO were studied by a combination of XRD, XPS, Raman, Brillouin, FTIR, thermo-mechanical analysis (TGA and Dynamic Mechanical Analysis) and SEM microscopy, while substantial studies on the proton transport properties were provided by Electrochemical Impedance Spectroscopy (EIS) measurements. It was revealed that the addition of CMC to the GO boosts proton conductivity of the whole membrane, while GO provides good mechanical and thermomechanical stability to the membrane. Further, the continuous and ordered nanochannels with well-tailored chemical structures were obtained by irradiation of heavy ions Kr⁺¹⁷ with an energy of 1.75 MeV/nucleon on the heavy ion accelerator. The formation of these nanochannels led to the significant increase of proton conductivity at 50% Relative Humidity. Also, FTIR and XPS measurement results show that ion irradiation eliminated the GO’s surface oxygen chemical bonds (C=O, C-O), and led to the formation of C = C, C – C bonds, whereas these changes connected with an increase in conductivity.Keywords: proton exchange membranes, graphene oxide, fuel cells, carboxymethylcellulose, ion irradiation
Procedia PDF Downloads 9229191 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions
Procedia PDF Downloads 30629190 On Fourier Type Integral Transform for a Class of Generalized Quotients
Authors: A. S. Issa, S. K. Q. AL-Omari
Abstract:
In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details.Keywords: Boehmian, Fourier integral, Fourier type integral, generalized quotient
Procedia PDF Downloads 36529189 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 7529188 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 12129187 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology
Authors: I. F. Ejim, F. L. Kamen
Abstract:
Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction
Procedia PDF Downloads 338